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PERIODIC SOLUTIONS OF NONAUTONOMOUS

DELAY RAYLEIGH EQUATIONS

Gen-Qiang Wang and Sui Sun Cheng

Abstract. By the Mawhin’s continuation theorem and a sharp inequality for
periodic functions, existence criteria of periodic solutions for non-autonomous
Rayleigh equations with deviating arguments are obtained. In the special case
when the Rayleigh equations are autonmomous, our results are still better
than some of the recent results.

1. Introduction

Periodic solutions of the Rayleigh equations without delays have been the
subject of many investigations (see, e.g. [1-12]), while those with delays are
relatively scarce. The authors in [8] studied the existence of periodic solutions
of the autonomous Rayleigh equations with a deviating argument of the form

x′′ (t) + f (x′ (t)) + g (x (t− τ (t))) = p (t) , (1)

where f, g, τ and p are real continuous functions defined on R such that f (0) =
0, τ and p are 2π-periodic and

∫ 2π

0
p (t) dt = 0. The existence of 2π-periodic

solutions of (1) is established under relatively simple conditions on f and g.
Later in [6], Lu et al. improve and extend the results in [8]. The results in [6]
can be rewritten as follows.

Theorem I. ([6]) Suppose there exist constants K > 0, D > 0, r1 > 0 and
r > 0 such that

(i) | f (x) |6 r1 |x|+ K for x ∈ R,
(ii) xg (x) > 0 and | g (x) |> r1 |x|+ K for |x| > D, and
(iii) limx→−∞

g(x)
x ≤ r (or limx→+∞

g(x)
x ≤ r).

Then for 4π [r1 + (2π + 1) r] < 1, (1) has a 2π-periodic solution.

Received July 26, 2005.
2000 Mathematics Subject Classification: 34K15, 34C25.
Key words and phrases: Periodic solution, non-autonomous Rayleigh equation, sharp

inequality.



408 Gen-Qiang Wang and Sui Sun Cheng

Theorem II. ([6]) Suppose there exist constants K > 0, D > 0 and r > 0
such that

(i) | f (x) |6 K for x ∈ R,
(ii) xg (x) > 0 and | g (x) |> K for |x| > D, and
(iii) limx→−∞

g(x)
x ≤ r (or limx→+∞

g(x)
x ≤ r).

Then for 4π [r1 + (2π + 1) r] < 1, (1) has a 2π-periodic solution.

Although these two results are improvements, they are not the best possi-
ble. In this paper, we show this by considering the existence of 2π-periodic
solutions of a more general nonautonomous Rayleigh equations with deviating
arguments of the form

x′′ (t) + F (t, x′ (t− σ (t))) + G (t, x (t− τ (t))) = p (t) , (2)

where F (t, x) and G (t, x) are real continuous functions defined on R2 with
period 2π for t, F (t, 0) = 0 for t ∈ R, σ, τ and p are real continuous func-
tions defined on R with period 2π, and

∫ 2π

0
p (t) dt = 0. In particular, we

will see from the corollaries of our theorems of this paper that the condition
“4π [r1 + (2π + 1) r] < 1 ” in Theorem I (or Theorem II) can be replaced by
the weaker condition “2π [r1 + (π + 1) r] < 1” (respectively “2π2r < 1”) and
the condition “| g (x) |> r1 |x|+ K >| f (x) | for |x| > D ” in Theorem I can
be improved .

For this purpose, we will apply the sharp inequality for periodic functions in
[4] to find a priori bounds of periodic solutions and make use of a continuation
theorem of Mawhin to prove the existence of 2π-periodic solutions of (2).

Let X, Y be real Banach spaces, let L : DomL ⊂ X → Y be a linear
mapping, and N : X → Y be a continuous mapping. The mapping L is
called a Fredholm mapping of index zero if dimKerL =codim ImL < +∞
and ImL is closed in Y . If L is a Fredholm mapping of index zero and there
exist continuous projectors P : X → X, and Q : Y → Y such that ImP =
KerL, KerQ = ImL =Im(I − Q), then the restriction LP of L to DomL∩
KerP : (I − P )X → ImL is invertible. Denote the inverse of LP by KP . If
Ω is an open bounded subset of X, the mapping N will be called L−compact
on Ω̄ if QN(Ω̄) is bounded and KP (I −Q)N : Ω̄ → X is compact. Since ImQ
is isomorphic to KerL, there exists an isomorphism J : ImQ → KerL.

Theorem A. (Mawhin’s continuation theorem [2]) Let L be a Fredholm map-
ping of index zero, and let N be L-compact on Ω̄.Suppose

(i) for each λ ∈ (0, 1), x ∈ ∂Ω, Lx 6= λNx; and
(ii) for each x ∈ ∂Ω∩KerL,QNx 6= 0 and deg (JQN, Ω ∩KerL, 0) 6= 0.

Then the equation Lx = Nx has at least one solution in Ω̄∩domL.
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2. Existence criteria

Our main results of this paper are as follows.

Theorem 1. Suppose there exist constants K > 0, D > 0, r1 > 0, r2 > 0
and r > 0 such that

(i) | F (t, x) |6 r1 |x|+ K for (t, x) ∈ R2,
(ii) xG (t, x) > 0 and | G (t, x) |> r2 |x| for t ∈ R and |x| > D, and
(iii) limx→−∞max0≤t≤2π

G(t,x)
x ≤ r (or limx→+∞max0≤t≤2π

G(t,x)
x ≤ r).

Then for 2π
[
r1 + r

(
r1
r2

+ π
)]

< 1, equation (2) has a 2π-periodic solution.

Theorem 2. Suppose there exist K > 0, D > 0 and r > 0 such that
(i) | F (t, x) |6 K for (t, x) ∈ R2,
(ii) xG (t, x) > 0 and | G (t, x) |> K for t ∈ R and |x| > D, and
(iii) limx→−∞max0≤t≤2π

G(t,x)
x ≤ r < 1

2π2 (or limx→+∞max0≤t≤2π
G(t,x)

x

≤ r < 1
2π2 ).

Then (2) has a 2π-periodic solution.

Corollary 1. Suppose there exist constants K > 0, D > 0, r1 > 0, r2 > 0
and r > 0 such that

(i) | f (x) |6 r1 |x|+ K for x ∈ R,
(ii) xg (x) > 0 and | g (x) |> r2 |x| for |x| > D,

(iii) limx→−∞
g(x)

x ≤ r (or limx→+∞
g(x)

x ≤ r).

Then for 2π
[
r1 + r

(
r1
r2

+ π
)]

< 1, (1) has a 2π-periodic solution.

Corollary 2. Suppose there exist K > 0, D > 0 and r > 0 such that
(i) | f (x) |6 K for x ∈ R,
(ii) xg (x) > 0 and | g (x) |> K for |x| > D,

(iii) limx→−∞
g(x)

x ≤ r < 1
2π2 (or limx→+∞

g(x)
x ≤ r < 1

2π2 ).
Then (1) has a 2π-periodic solution.

Let Y be the Banach space of all real 2π-periodic continuous functions
of the form y = y (t) which is defined on R and endowed with the usual
linear structure as well as the norm ‖y‖0 = max0≤t≤2π |y (t)| . Let X be the
Banach space of all real 2π-periodic continuous differentiable functions of the
form x = x (t) which is defined on R and endowed with the usual linear
structure as well as the norm ‖x‖1 = max {‖x‖0 , ‖x′‖0} . Define the mappings
L : X ∩ C(2) (Rn, R) → Y and N : X → Y respectively by

Lx (t) = x′′ (t) , t ∈ R. (3)
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and
Nx (t) = −F (t, x′ (t− σ (t)))−G (t, x (t− τ (t))) + p (t) . (4)

Clearly,

KerL = R and ImL =
{

y ∈ Y |
∫ 2π

0

y (t) dt = 0
}

(5)

Let us define P : X → X and Q : Y → Y/ImL respectively by

Px (t) =
1
2π

∫ 2π

0

x (t) dt, t ∈ R, (6)

for x = x (t) ∈ X and

Qy (t) =
1
2π

∫ 2π

0

y (t) dt, t ∈ R. (7)

for y = y (t) ∈ Y . It is easy to see that

ImP = KerL and ImL = KerQ = Im(I −Q). (8)

It follows that L|DomL∩KerP : (I − P ) X →ImL has an inverse which will be
denoted by KP . Furthermore, we let

x′′ (t) = −λF (t, x′ (t− σ (t)))− λG (t, x (t− τ (t))) + λp (t) , (9)

where λ ∈ (0, 1) .

Lemma 1. The mapping L defined by (3) is a Fredholm mapping of index
zero.

Indeed, from (5), (7), (8) and the definition of Y, dimKerL =codim ImL =
1 < +∞, and

ImL =
{

y ∈ Y |
∫ 2π

0

y (t) dt = 0
}

is closed in Y. Hence L is a Fredholm mapping of index zero.

Lemma 2. Let L and N be defined by (3) and (4) respectively. Suppose Ω is
an open and bounded subset of X. Then N is L-compact on Ω.

Proof. We can conclude for any x ∈ Ω that

QNx (t) =
1
2π

∫ 2π

0

Nx (s) ds, (10)
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and

KP Nx (t) =
∫ t

0

ds

∫ s

0

Nx (v) dv − 1
2π

∫ 2π

0

dt

∫ t

0

ds

∫ s

0

Nx (v) dv

−
(

t

2π
− 1

2

) ∫ 2π

0

ds

∫ s

0

Nx (v) dv. (11)

By (4) and (10), we see that QN
(
Ω̄

)
is bounded, and that it is relatively

compact. Furthermore, noting that KP is continuous, we know KP QN
(
Ω̄

)
is relatively compact. On the other hand, from (11) and the Arzela-Ascoli
theorem, we may see that KP N

(
Ω̄

)
is relatively compact, which leads to the

fact that KP (I −Q)N
(
Ω̄

)
is compact. Thus N is L-compact on Ω.The proof

is complete. ¤

Lemma 3. ([4]) Let C2π be the set of all real continuous 2π-periodic functions
of the form x = x (t). Then for any x = x (t) ∈ C(1) (R,R) ∩ C2π and any
ζ ∈ [0, 2π] , we have

‖x‖0 ≤ |x(ζ)|+ 1
2

∫ 2π

0

|x′ (s)| ds, (12)

where the constant factor 1/2 is the best possible.

Now we are in a position to prove the main theorems.

Proof of Theorem 1. We only give the proof in case

lim
x→−∞

max
0≤t≤2π

G (t, x)
x

≤ r,

since the other case can be treated in similar manners. Let L,N, P and Q be
defined by (3), (4), (6) and (7) respectively. Let x (t) be a 2π-periodic solution
of (9). By (9), we have

∫ 2π

0

(F (t, x′ (t− σ (t))) + G (t, x (t− τ (t)))) dt = 0. (13)

By means of the integral mean value theorem, there is a point ξ ∈ [0, 2π] such
that

F (ξ, x′ (ξ − σ (ξ))) = −G (ξ, x (ξ − τ (ξ))) . (14)
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We will prove that

|x (ξ − τ (ξ))| ≤ r1

r2
‖x′‖0 + D +

K

r2
. (15)

Indeed, if |x (ξ − τ (ξ))| ≤ D, then (15) holds. If |x (ξ − τ (ξ))| > D, then
from (i), (ii) and (14), we have

r2 |x (ξ − τ (ξ))| ≤ |G (ξ, x (ξ − τ (ξ)))|
= |F (ξ, x′ (ξ − σ (ξ)))|
≤ r1 |x′ (ξ − σ (ξ))|+ K. (16)

This shows that (15) holds.
Since ξ− τ (ξ) ∈ R and x (t) has period 2π, there is a t1 ∈ [0, 2π] such that

x (t1) = x (ξ − τ (ξ)) . From (15), we have

|x (t1)| ≤ r1

r2
‖x′‖0 + D +

K

r2
. (17)

Furthermore, by Lemma 3 we have

‖x‖0 ≤ |x (t1)|+ 1
2

∫ 2π

0

|x′ (s)| ds ≤
(

r1

r2
+ π

)
‖x′‖0 + D +

K

r2
. (18)

By the condition 2π
[
r1 + r

(
r1
r2

+ π
)]

< 1, we know there is a positive number
ε such that

η1 = 2π

[
r1 + (r + ε)

(
r1

r2
+ π

)]
< 1. (19)

From condition (iii), we see that there is an ρ > D such that for t ∈ R and
x < −ρ,

G (t, x)
x

< r + ε. (20)

Let
E1 = {t | t ∈ [0, 2π] , x (t− τ (t)) < −ρ} , (21)

E2 = {t | t ∈ [0, 2π] , |x (t− τ (t))| ≤ ρ} , (22)

E3 = [0, 2π] \ (E1 ∪ E2) , (23)
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and
M0 = max

0≤t≤2π,|x|≤ρ
|G (t, x)| . (24)

By (18), (20) and (21), we have
∫

E1

|G (t, x (t− τ (t)))| dt ≤
∫

E1

(r + ε) |x (t− τ (t))| dt

≤ 2π (r + ε) max
0≤t≤2π

|x (t)| = 2π (r3 + ε) ‖x‖0

≤ 2π (r + ε)
[(

r1

r2
+ π

)
‖x′‖0 + D +

K

r2

]
.

(25)

From (22) and (24), we have
∫

E2

|G (t, x (t− τ (t)))| dt ≤ 2πM0. (26)

It follows from condition (i) that
∫ 2π

0

|F (t, x′ (t− σ (t)))| dt 6 2π (r1 ‖x′‖0 + K) . (27)

In view of (ii), (13), (24), (25), (26) and (27), we get
∫

E3

|G (t, x (t− τ (t)))| dt

=
∫

E3

G (t, x (t− τ (t))) dt

= −
∫ 2π

0

F (t, x′ (t− σ (t))) dt−
∫

E1

G (t, x (t− τ (t))) dt

−
∫

E2

G (t, x (t− τ (t))) dt

≤
∫ 2π

0

|F (t, x′ (t− σ (t)))| dt +
∫

E1

|G (t, x (t− τ (t)))| dt

+
∫

E2

|G (t, x (t− τ (t)))| dt

≤ 2π (r1 ‖x′‖0 + K) + 2πM0 + 2π (r + ε)
[(

r1

r2
+ π

)
‖x′‖0 + D +

K

r2

]

≤ 2π

[
r1 + (r + ε)

(
r1

r2
+ π

)]
‖x′‖0 + M1, (28)
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for some positive number M1. It follows from (9), (25), (26), (27) and (28)
that

∫ 2π

0

|x′′ (t)| dt

≤
∫ 2π

0

|F (t, x′ (t− σ (t)))| dt +
∫

E1

|G (t, x (t− τ (t)))| dt

+
∫

E2

|G (t, x (t− τ (t)))| dt +
∫

E3

|G (t, x (t− τ (t)))| dt + 2π ‖p‖0

≤ 2π (r1 ‖x′‖0 + K) + 2π (r + ε)
[(

r1

r2
+ π

)
‖x′‖0 + D +

K

r2

]

+ 2πM0 + 2π

[
r1 + (r + ε)

(
r1

r2
+ π

)]
‖x′‖0 + M1 + 2π ‖p‖0

= 2η1 ‖x′‖0 + M2, (29)

for some positive number M2. Note that x (0) = x (2π), thus there is a t2 ∈
[0, 2π] such that x′ (t2) = 0. Hence, by Lemma 3, we have

‖x′‖0 ≤
1
2

∫ 2π

0

|x′′ (t)| dt. (30)

By (29) and (30), we see that

‖x′‖0 ≤ η1 ‖x′‖0 +
M2

2
. (31)

It follows that
‖x′‖0 ≤ D1, (32)

where D1 = M2/2 (1− η1) . From (18) and (32), we get

‖x‖0 ≤ D0 (33)

where D0 =
(

r1
r2

+ π
)

D1 +D+ K
r2

. Take a positive number D which is greater
than max {D0, D1}+ D and let

Ω =
{
x ∈ X | ‖x‖1 < D

}
. (34)

From Lemma 1 and Lemma 2, we know that L is a Fredholm mapping of
index zero and N is L-compact on Ω. In terms of the a priori bounds found
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above, we see that for any λ ∈ (0, 1) and any x ∈ ∂Ω, Lx 6= λNx. Since for
any x ∈ ∂Ω∩KerL, x = D (> D) or x = −D, then in view of (ii), (7) and∫ 2π

0
p (t) dt = 0, we have

QNx =
1
2π

∫ 2π

0

(−F (s, x′ (s− σ (s)))−G (s, x (s− τ (s))) + p (s)) ds

=
1
2π

∫ 2π

0

(−F (s, 0)−G (s, x (s− τ (s)))) ds

=
−1
2π

∫ 2π

0

G (s, x) ds 6= 0.

In particular, we see that

−1
2π

∫ 2π

0

G
(
s,−D

)
ds > 0 and

−1
2π

∫ 2π

0

G
(
s,D

)
ds < 0.

This show that deg (JQN, Ω ∩KerL, 0) 6= 0. In view of Theorem A, there
exists a 2π-periodic solution of (2). The proof is complete. ¤
Proof of Theorem 2. We only give the proof in case

lim
x→−∞

max
0≤t≤2π

G (t, x)
x

≤ r <
1

2π2
,

since the other case can be treated in similar manners. Let x (t) be a ω-
periodic solution of (9). Then (13) and (14) hold. We will prove that there
are positive numbers D2 and D3 such that

‖x‖0 ≤ D2 and ‖x′‖0 ≤ D3. (35)

From (i) and (14), we see that

|G (ξ, x (ξ − τ (ξ)))| = |F (ξ, x′ (ξ − σ (ξ)))| ≤ K. (36)

It follows from (ii) and (36) that

|x (ξ − τ (ξ))| ≤ D. (37)

Since ξ − τ(ξ) ∈ R and x (t) is 2π-periodic, thus there is a t3 ∈ [0, 2π] such
that x (t3) = x(ξ − τ(ξ)), and so

|x (t3)| ≤ D. (38)
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Furthermore, by Lemma 3, we have

‖x‖0 ≤ |x (t3)|+ 1
2

∫ 2π

0

|x′ (s)| ds ≤ D + π ‖x′‖0 . (39)

From condition (iii), we can take a positive number ε1 such that

η2 = 2π2 (r + ε1) < 1.

Furthermore we see that there is a ρ1 > D such that for t ∈ R and x < −ρ1,

G (t, x)
x

< r + ε1. (40)

Let
E′

1 = {t | t ∈ [0, 2π] , x (t− τ (t)) < −ρ1} , (41)

E′
2 = {t | t ∈ [0, 2π] , |x (t− τ (t))| ≤ ρ1} , (42)

E′
3 = [0, 2π] \ (E′

1 ∪ E′
2) , (43)

and
M3 = max

0≤t≤2π,|x|≤ρ1

|G (t, x)| . (44)

By (39), (40) and (41), we have
∫

E′1

|G (t, x (t− τ (t)))| dt ≤
∫

E′1

(r + ε) |x (t− τ (t))| dt

≤ 2π (r + ε) max
0≤t≤2π

|x (t)|
= 2π (r + ε) ‖x‖0
≤ 2π (r + ε) [D + π ‖x′‖0] . (45)

From (42) and (44), we have
∫

E′2

|G (t, x (t− τ (t)))| dt ≤ 2πM3. (46)

It follows from condition (i) that

∫ 2π

0

|F (t, x′ (t− σ (t)))| dt 6 2πK. (47)
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In view of (ii), (13), (43), (45), (46) and (47), we get
∫

E′3

|G (t, x (t− τ (t)))| dt

=
∫

E′3

G (t, x (t− τ (t))) dt

= −
∫ 2π

0

F (t, x′ (t− σ (t))) dt−
∫

E1

G (t, x (t− τ (t))) dt

−
∫

E2

G (t, x (t− τ (t))) dt

≤
∫ 2π

0

|F (t, x′ (t− σ (t)))| dt +
∫

E1

|G (t, x (t− τ (t)))| dt

+
∫

E2

|G (t, x (t− τ (t)))| dt

≤ 2πK + 2πM3 + 2π (r + ε1) [D + π ‖x′‖0]
≤ 2π2 (r + ε1) ‖x′‖0 + M4, (48)

for some positive number M4. It follows from (9), (45), (46), (47) and (48)
that

∫ 2π

0

|x′′ (t)| dt

≤
∫ 2π

0

|F (t, x′ (t− σ (t)))| dt +
∫

E′1

|G (t, x (t− τ (t)))| dt

+
∫

E′2

|G (t, x (t− τ (t)))| dt +
∫

E′3

|G (t, x (t− τ (t)))| dt + 2π ‖p‖0
≤ 2πK + 2π (r + ε1) [D + π ‖x′‖0] + 2πM3 + 2π2 (r + ε1) ‖x′‖0

+ M4 + 2π ‖p‖0
= 2η2 ‖x′‖0 + M5, (49)

for some positive number M5. Since x (0) = x (2π), we know there is a t4 ∈
[0, 2π] such that x′ (t4) = 0. Hence, by Lemma 3, we have

‖x′‖0 ≤
1
2

∫ 2π

0

∣∣∣x′′ (t)
∣∣∣ dt. (50)
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From (49) and (50) we see that

‖x′‖0 ≤ η2 ‖x′‖0 +
M5

2
. (51)

It follows that
‖x′‖0 ≤ D3, (52)

where D3 = M5/2 (1− η2) . By (39) and (52), we get

‖x‖0 ≤ D2, (53)

where D2 = D + πD3. From (52) and (53), we see that there are positive
numbers D2 and D3 such that (35) hold .We may now proceed as in the proof
of Theorem 1 and complete our proof. ¤
Example. Consider a Rayleigh equation of the form (2) where h (x) = x3 if
x > 0 and h (x) = x if x < 0,

σ (t) = sin t, τ (t) = cos t, p (t) =
cos t

5
,

F (t, x) = (
1 + cos t

24π (1 + π)
)x + exp

(−x2
)− 1,

and

G (t, x) =
exp

(
(sin t)2

)
h (x)

13π (π + 1)
.

It is then easy to verify that all the assumptions in Theorem 1 are satisfied
with

K = 2, D = 1, r1 =
1

12π (1 + π)
, r2 =

1
13π (1 + π)

, r3 =
e

13π (π + 1)
.

Thus (2) has a 2π-periodic solution. Furthermore, this solution is nontrivial
since y (t) ≡ 0 is not a solution of (2).
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