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AN APPROXIMATE NONLINEAR PROXIMAL

PREDICTION-CORRECTION ALGORITHM

FOR MAXIMAL MONOTONE OPERATORS

Min Li

Abstract. This paper introduces an approximate nonlinear proximal predic-

tion-correction algorithm for finding the zero points of T̂ (·), where T̂ is a
maximal monotone operator. In the prediction step, the presented algorithm
allows for constant relative error tolerance which should be easier to verify
and enforce in practice than those given in earlier analysis of approximate
generalized proximal point algorithms. In the correction step, to make more
progress, a general decent direction and a suitable step length are used. And
the global convergence is easily established under weaker conditions on the
algorithm parameters. As for applications, we give two methods, one is for
solving monotone variational inequalities and the other is for the choice of the
decent direction in the correction step.

1. Introduction

T̂ is called a monotone operator on Rn, i.e., it has the property

(x, y), (x′, y′) ∈ T̂ ⇒ (x− x′)T (y − y′) ≥ 0.

T̂ is maximal if it is not properly contained in any other set with the above
property. We define T̂ (x) = {y | (x, y) ∈ T̂}, since it is natural to view T̂
as the graph of point-to-set mapping. We also define the sum T + Q of two
operators T and Q on Rn by

T + Q = {(x, y + z) | (x, y) ∈ T, (x, z) ∈ Q}.
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In this paper we consider T̂ , where T̂ = T + NΩ (See [7], p117), T is a
maximal monotone operator on Rn, and NΩ is the normal cone operator with
respect to Ω, that is

NΩ = {(x, y) | x ∈ Ω, yT (z − x) ≤ 0 ∀z ∈ Ω}, (1.1)

where Ω is closed and convex. Note that NΩ(x) = {y | (x, y) ∈ NΩ} is a
cone and hence βNΩ(x) = NΩ(x) for all x ∈ Ω and β > 0. Obviously NΩ is a
maximal monotone operator. The main problem of this paper is to find one of
the zero points of T̂ (·), defined to be points x∗ ∈ Ω such that 0 ∈ T̂ (x∗). This
kind of issue often appears in a wide variety of equilibrium problems such as
convex programming and monotone variational inequalities. First, we make
the following assumptions:

Assumption 1.1. (int Ω) ∩ (relint dom T ) 6= ∅. Here, “int X” denotes
the interior of the set X, “relint X” the relative interior of the set X, and
“dom T” the domain of the operator T , where dom T = {x | (x, y) ∈ T} =
{x | T (x) 6= ∅}.
Remark 1.1. We can easily prove that T̂ (T̂ = T + NΩ) is maximal and
monotone since T and NΩ are both maximal monotone and satisfy Assumption
1.1.

For a Bregman function h, the approximate Bregman-function-based prox-
imal algorithm [7] generates a pair of sequences {xk}, {ek} conforming to the
recursion:

∇h(xk) + ek ∈ ∇h(xk+1) + βkT̂ (xk+1), (1.2)

where {βk} is a sequence of positive scalars and {ek} satisfies the conditions:

∞∑

k=1

‖ek‖ < ∞, (1.3)

∞∑

k=1

〈ek, xk〉 exists and is finite. (1.4)

The first aim of this paper is to extend the above method. We use (1.2) to
develop the predictor. On the other hand, from a practical point of view, it is
interesting to improve the error sequence considered in [7]. Such summabil-
ity conditions on the errors are rather restrictive and somewhat undesirable
because they impose increasing precision along the iterative process. In this
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paper, a fixed relative error tolerance is permitted which is particular appro-
priate for computer implementation and does not affect the global convergence
of the algorithm.

The second goal of this paper is to accelerate the method. We make a
correction, in which a general decent direction and a suitable step length are
used. This strategy may help to make more progress in each iteration.

The framework of the proposed method is that for given xk and βk (inf βk =
β > 0), let x̃k and ek satisfy the following set-valued equation:

∇h(xk) + ek ∈ ∇h(x̃k) + βkT̂ (x̃k), (1.5)

where {ek} is regarded as an error sequence and usually obeys

‖ek‖ ≤ µηk‖xk − x̃k‖, sup
k

ηk = η < 1. (1.6)

From the definition of T̂ (T̂ = T + NΩ), we can find a yk ∈ T (x̃k), such that

∇h(x̃k) + βkyk −∇h(xk)− ek ∈ −NΩ(x̃k). (1.7)

We use the notation

dk = ∇h(xk)−∇h(x̃k) + ek, (1.8)

and then a new iteration xk+1 satisfies

∇h(xk+1)−∇h(xk) + αkβkyk ∈ −NΩ(xk+1), (1.9)

where

αk = γkα∗k, γk ∈ [γ
L
, γ

U
] ⊂ [1, 2) and α∗k =

(xk − x̃k)T dk

‖dk‖2 . (1.10)

For convenience, we make some additional assumptions to guarantee that
the problem under consideration is solvable and the algorithm is well defined.

Assumption 1.2. Suppose h satisfies the following conditions:

(i) h is a twice differentiable real-valued function on Ω0, where Ω0 is an
open set and Ω0 ⊇ Ω.
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(ii) ∇h is uniformly strong monotone on Ω, i.e., there exists a constant
µ > 0, such that

(∇h(x)−∇h(y))T (x− y) ≥ µ‖x− y‖2, ∀ x, y ∈ Ω. (1.11)

And we also assume that we have already known the value of µ.
(iii) ∇h is Lipschitz continuous on Ω, i.e., there exists a constant L > 0,

such that

‖∇h(x)−∇h(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ Ω. (1.12)

(iv) h is strongly convex with positive constant ν, i.e.,

∇2h(x) º νI, ∀ x ∈ Ω.

In the proposed method, we usually assume ν = 1 for reasons of sim-
plicity of the presentation.

(v) If {yk} ∈ Ω is a convergent sequence with limit y∗, then Dh(y∗, yk) →
0. (Dh(x, y) will be defined in (1.13).)

Remark 1.2. (ii) can be satisfied from (iv). The conditions on h are similar
to those of Bregman functions [5], but are stronger.

In the following, we give three examples to explain that we can easily find
such h to satisfy Assumption 1.2.

Example 1. Let h(x) = 1
2‖x‖2Q, where Q is a symmetry positive definite

matrix and Ω is a closed convex set.

Example 2. Let Ω be a bounded and closed convex subset of Rn
++, and set

h(x) =
1
q

n∑

j=1

xq
j ,

where q > 1. Note that Rn
++ is a strict positive orthants, that is,

Rn
++ = {x ∈ Rn | x > 0}.

Example 3. Let Ω be defined as in Example 2 and

h(x) =
n∑

j=1

xj log xj − xj .
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Remark 1.3. If h satisfies Assumption 1.2, so does h(x) + aT x + b, for any
a ∈ Rn and b ∈ R.

Assumption 1.3. The sequences {x̃k} ⊂ Ω and {ek} ⊂ Rn conforming to
the recursion (1.5) exist.

Remark 1.4. The above assumption can be satisfied by some simple condi-
tions on ∇h such as in [3-5, 7]. If h(x) = 1

2‖x‖2, the existence of {x̃k} and
{ek} is assured in Theorem 2 of [6]. Also for monotone variational inequal-
ities, i.e., T = F where F is a continuous monotone mapping from Rn into
itself, it is easy to prove that Assumption 1.3 is satisfied without any extra
conditions.

Assumption 1.4. The zero points set of T̂ (·), denoted by Ω∗, is nonempty.

2. Preliminaries

For convenience, we consider the problems only under the Euclidean norm.
We use the notation PΩ : Rn → Rn to denote any function for which PΩ(y)
is a projection of y on Ω, i.e., for all y ∈ Rn,

PΩ(y) = argmin{‖z − y‖ | z ∈ Ω},
where PΩ is a projection on Ω.

Lemma 2.1. ([1], p267) For any β > 0, y ∈ −NΩ(x) if and only if

x = PΩ[x− βy].

From h, one may obtain a kind of distance measure or “D-functions” Dh

by the construction [2]

Dh(x, y) = h(x)− h(y)−∇h(y)T (x− y). (2.1)

Dh(x, y) may be interpreted as the difference between h(x) and the value at
x of a linearized approximation of h around y. By the strict convexity of h,
Dh is nonnegative and Dh(x, y) = 0 if and only if x = y. For example, if
h(x) = 1

2‖x‖2, then Dh(x, y) = 1
2‖x − y‖2. From Assumption 1.2 (iv), we

obtain
Dh(x, y) = h(x)− h(y)−∇h(y)T (x− y)

=
1
2
(x− y)T∇2h(z)(x− y)

≥ 1
2
‖x− y‖2,

(2.2)
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for some z on the line segment [x, y].
It follows from the notation (1.8), Assumption 1.2 and (1.6) that

(xk − x̃k)T dk = (xk − x̃k)T [∇h(xk)−∇h(x̃k)] + (xk − x̃k)T ek

≥ µ‖xk − x̃k‖2 − ‖xk − x̃k‖‖ek‖
≥ µ(1− η)‖xk − x̃k‖2,

(2.3)

and
‖dk‖ ≤ ‖∇h(xk)−∇h(x̃k)‖+ ‖ek‖

≤ (L + µη)‖xk − x̃k‖. (2.4)

To choose a better step-size α, it is natural to let the new iterate xk+1 satisfy:

∇h(xk+1
α )−∇h(xk) + αβkyk ∈ −NΩ(xk+1

α ). (2.5)

From Lemma 2.1, we know that

xk+1
α = PΩ{xk+1

α − [∇h(xk+1
α )−∇h(xk) + αβkyk]}, (2.6)

where yk ∈ T (x̃k).

3. Convergence

Now let us observe the difference between Dh(x∗, xk) and Dh(x∗, xk+1
α ).

Denote
Θk(α) := Dh(x∗, xk)−Dh(x∗, xk+1

α ). (3.1)

We call Θk(α) a profit function because it measures the progress obtained in
the k+1-th iteration.

To achieve rapid convergence, some suitable step length should be carefully
chosen. The following theorem tells us how to choose α.

Theorem 3.1. For given xk ∈ Rn and βk > 0, let x̃k and ek conform to set-
valued equation (1.5) and condition (1.6). Then the new iterate xk+1

α given by
(2.6) for any α > 0 satisfies

Θk(α) ≥ α(xk − x̃k)T dk − 1
2
α2‖dk‖2, (3.2)

where dk is defined in (1.8).
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Proof. By direct algebra,

Dh(x∗, xk)−Dh(x∗, xk+1
α )

= Dh(xk+1
α , xk) + (x∗ − xk+1

α )T [∇h(xk+1
α )−∇h(xk)].

(3.3)

Substituting this and (2.2) into (3.1), we obtain

Θk(α) ≥ 1
2
‖xk+1

α − xk‖2 + (x∗ − xk+1
α )T [∇h(xk+1

α )−∇h(xk)]. (3.4)

From the definition of NΩ, (2.5) is equivalent to

xk+1
α ∈ Ω (x′ − xk+1

α )T [∇h(xk+1
α )−∇h(xk) + αβkyk] ≥ 0, ∀ x′ ∈ Ω.

Let x′ = x∗. Then we have

(x∗ − xk+1
α )T [∇h(xk+1

α )−∇h(xk)] ≥ αβk(xk+1
α − x∗)T yk.

Substituting this into (3.4), we get

Θk(α) ≥ 1
2
‖xk+1

α − xk‖2 + αβk(xk+1
α − x∗)T yk. (3.5)

Since x∗ is a zero point of T̂ , yk ∈ T̂ (x̃k) (yk ∈ T (x̃k), 0 ∈ NΩ(x̃k),
T̂ = T + NΩ) and T̂ is monotone, we have

(x̃k − x∗)T (yk − 0) ≥ 0,

that is,
(xk+1

α − x∗)T yk ≥ (xk+1
α − x̃k)T yk. (3.6)

Then from (3.5), (3.6) and the notation (1.8), we obtain

Θk(α) ≥− 1
2
α2‖dk‖2 +

1
2
‖(xk+1

α − xk) + αdk‖2

+ αβk(xk+1
α − x̃k)T yk + α(xk − xk+1

α )T dk.
(3.7)

Now we consider the last term in the right-hand-side of (3.7). (1.1) and (1.9)
yield

x̃k ∈ Ω, (x′ − x̃k)T [∇h(x̃k) + βkyk −∇h(xk)− ek] ≥ 0, ∀ x′ ∈ Ω.
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By using x′ = xk+1
α and the notation (1.8) in the above inequality, we get

(xk+1
α − x̃k)T (dk − βkyk) ≤ 0,

that is
(xk − xk+1

α )T (dk − βkyk) ≥ (xk − x̃k)T (dk − βkyk),

and thus

(xk − xk+1
α )T dk ≥ (xk − x̃k)T dk − βk(xk+1

α − x̃k)T yk.

Substituting this into (3.7), we obtain

Θk(α) ≥ −1
2
α2‖dk‖2 + α(xk − x̃k)T dk.

The assertion is proved. ¤
According to Theorem 3.1, it is natural to choose step-size as

α∗k =
(xk − x̃k)T dk

‖dk‖2 .

Using (2.3) and (2.4), we have

α∗k ≥
µ(1− η)‖xk − x̃k‖2
(L + µη)2‖xk − x̃k‖2

=
µ(1− η)
(L + µη)2

. (3.8)

For fast convergence, we get the step-size αk by multiplying α∗k by a relaxation
factor γk as in the SOR methods, i.e.,

αk = γkα∗k, γk ∈ [γL , γU ] ⊂ [1, 2).

Theorem 3.2. Let {xk}, {x̃k}, {ek} and {ηk} be the sequences conforming
to the set-valued equation (1.5) and condition (1.6). Then the sequence {xk}
generated by (1.9) satisfies

Dh(x∗, xk+1) ≤ Dh(x∗, xk)− µ2(1− η)2γL(2− γU )
2(L + µη)2

‖xk − x̃k‖2. (3.9)
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Proof. From (3.2) and (1.10), we obtain

Θk(γkα∗k) ≥ γkα∗k(xk − x̃k)T dk − 1
2
(γkα∗k)2‖dk‖2

= γkα∗k(xk − x̃k)T dk − 1
2
(γ2

kα∗k)(xk − x̃k)T dk

≥ 1
2
α∗kγ

L
(2− γ

U
)(xk − x̃k)T dk.

And then it follows from (3.1) and (2.3) that

Dh(x∗, xk+1) ≤ Dh(x∗, xk)− 1
2
α∗kγ

L
(2− γ

U
)(xk − x̃k)T dk

≤ Dh(x∗, xk)− 1
2
α∗kγ

L
(2− γ

U
)µ(1− η)‖xk − x̃k‖2

The assertion follows from (3.8) immediately. ¤
From Inequality (2.2) and (3.9), we can see that

1
2
‖x∗ − xk‖2 ≤ Dh(x∗, xk) ≤ Dh(x∗, x0) and lim

k→∞
‖xk − x̃k‖ = 0. (3.10)

Consequently, {xk} and {x̃k} are both bounded. In the following, we will prove
the convergence of the approximate nonlinear proximal prediction-correction
algorithm.

Theorem 3.3. Let {xk}, {x̃k}, {ek} and {ηk} be the sequences conforming
to the set-valued equation (1.5) and condition (1.6). Then the sequence {xk}
generated by (1.9) converges to one zero point of T̂ (·).
Proof. From Theorem 3.2, we know that {x̃k} is bounded. Therefore it has one
cluster point at least. Let x∞ be a cluster point of {x̃k} and the subsequences
{x̃kj} converges to x∞. Define

zk =
1
βk

[∇h(xk)−∇h(x̃k) + ek],

then zkj ∈ T̂ (x̃kj )(according to (1.5)). Using limk→∞ ‖xk − x̃k‖ = 0, ek → 0
(see (1.6)), infk βk = β > 0 and ∇h(·) is Lipschitz continuous, we obtain

lim
j→∞

zkj = lim
j→∞

1
βkj

[∇h(xkj )−∇h(x̃kj ) + ekj ] = 0.
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Because T̂ is maximal, it is a closed set in Rn ×Rn, then

lim
j→∞

(x̃kj , zkj ) = (x∞, 0) ∈ T̂ ,

and x∞ is a zero point of T̂ (·). Note that Inequality (3.9) is true for all zero
points of T̂ (·), hence we have

Dh(x∞, xk+1) ≤ Dh(x∞, xk), ∀ k ≥ 0. (3.11)

Since {x̃kj} → x∞ and xk − x̃k → 0, {xkj} → x∞. From Assumption 1.2 (v),
we know that Dh(x∞, xkj ) → 0, i.e., for any given ε > 0, there is an l > 0,
such that

Dh(x∞, xkl) < ε. (3.12)

Therefore, for any k ≥ kl, it follows from (2.2), (3.11) and (3.12) that

1
2
‖x∞ − xk‖2 ≤ Dh(x∞, xk) ≤ Dh(x∞, xkl) < ε,

and thus the sequence {xk} converges to x∞. ¤

4. Two methods for application

Method 1. (For monotone variational inequalities) Let Ω be a nonempty
closed convex subset of Rn and F be a continuous monotone mapping from
Rn into itself. A variational inequality problem, denoted by VI(Ω, F ), is to
determine a vector x∗ ∈ Ω such that

(x− x∗)T F (x∗) ≥ 0, ∀ x ∈ Ω.

Another popular reformulation for VI(Ω, F ) is the multi-valued equation

0 ∈ T̂ (x) := T (x) + NΩ(x),

where T (x) = F (x). Obviously, in the proposed method yk is defined as F (x̃k)
and from (1.7) and Lemma 2.1, we get

x̃k = PΩ{x̃k − [∇h(x̃k)−∇h(xk)− ek + βkF (x̃k)]} (4.1)

with ‖ek‖ ≤ µηk‖xk − x̃k‖. We can find an x̃k satisfying (4.1) through the
following method. First, similar to proximal point algorithms, for any given
h(x) which satisfies Assumption 1.2, there exists an x ∈ Ω, such that

(x′ − x)T [∇h(x)−∇h(xk) + βkF (x)] ≥ 0, ∀ x′ ∈ Ω. (4.2)
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Due to Lemma 2.1, this is equivalent to

x = PΩ{x− [∇h(x)−∇h(xk) + βkF (x)]}.
The approximate solution x̄ of (4.2) can be found through some iteration meth-
ods, i.e.,

x̄ ≈ PΩ{x̄− [∇h(x̄)−∇h(xk) + βkF (x̄)]}. (4.3)

Define x̃k as follows:

x̃k = PΩ{x̄− [∇h(x̄)−∇h(xk) + βkF (x̄)]}
= PΩ{x̃k − [∇h(x̃k)−∇h(xk)− ek + βkF (x̃k)]}, (4.4)

where
ek = [∇h(x̃k)−∇h(x̄)]− [x̃k − x̄] + βk[F (x̃k)− F (x̄)]

and
‖ek‖ ≤ µηk‖xk − x̃k‖. (4.5)

Remark 4.1. From (4.3) and (4.4), we obtain that x̄ ≈ x̃k and thus the
condition (4.5) on ek can be met from the continuities of ∇h(x) and F (x),
when ‖x̄− x̃k‖ is small enough. Method 1 is the extension of Section 4 in [8].

Method 2. (Example for choice of yk)
1. Given xk ∈ Ω, find an x̃k ∈ Ω such that

∇h(xk) + ek ∈ ∇h(x̃k) + βkT (x̃k) (4.6)

for some ek satisfying

‖ek‖ ≤ µηk‖xk − x̃k‖ and sup
k

ηk < 1.

2. Set
yk =

1
βk

[∇h(xk) + ek −∇h(x̃k)], (4.7)

∇h(xk+1)−∇h(xk) + αkβkyk ∈ −NΩ(xk+1),

where αk is defined in (1.10).
3. Terminate if a stopping criterion is met, otherwise set k = k + 1 and

goto 1.

Remark 4.2. From (4.6) and (4.7), we know that yk ∈ T (x̃k). Since 0 ∈
NΩ(x̃k) and T̂ = T + NΩ,

∇h(xk) + ek ∈ ∇h(x̃k) + βkT̂ (x̃k).

This method gives us an example for the choice of yk in application.
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5. Conclusion remarks

In this paper, we suggest an approximate nonlinear proximal prediction-
correction algorithm for finding the zero points of maximal monotone op-
erators. It is shown that the method has global convergence under proper
assumptions. Our main work is using ∇h(u) to substitute u in the proximal
algorithms and we only assume h(u) satisfies Assumption 1.2. Moreover, in
the prediction step, the presented algorithm allows for constant relative error
tolerance, and in the correction step, a general decent direction and a suitable
step length are used. It is our belief that the research on the choice of h(u)
is important in application and we hope this paper may stimulate further
investigation in this direction.
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