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Abstract. In this paper, it is shown that some new improvements on general Hilbert and

Hardy inequalities can be established by means of sharpening of Hölder’s inequality and the

positive definiteness of Gramm matrix. In particular, we give some strengthened results of

classical Hilbert and Hardy inequalities.

1. Introduction

The Hilbert-type inequalities are of some significant weight inequalities
which play an important role in analysis and its applications. Let us, firstly,
repeat the well known Hilbert inequality and its equivalent form, which we
usually call Hardy-Hilbert inequality, in integral version:

Theorem 1.1. If f and g ∈ L2[0,∞), then the following inequalities hold and
are equivalent:

∫ ∞

0

∫ ∞

0

f(x)g(y)
x + y

dxdy ≤ π

( ∫ ∞

0
f2(x)dx

∫ ∞

0
g2(x)dx

) 1
2

and ∫ ∞

0

( ∫ ∞

0

f(x)
x + y

dx

)2

dy ≤ π2

∫ ∞

0
f2(x)dx,
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where π and π2 are the best possible constants.

The discrete analogue of Hilbert theorem is obtained by replacing the inte-
gral with the sum from 1 to ∞, and by replacing the functions f and g with
non-negative real sequences.

In recent years lots of authors made some generalizations of this theorem.
Let’s mention some of them: Jichang, Yang, Yong, Peachey and Rassias.

In our paper [7], we have obtain some general results for estimating the
integral ∫

Ω

∫

Ω
K(x, y)f(x)g(y)dµ1(x)dµ2(y),

where µ1 and µ2 are non-negative σ−finite measures. That is a content of the
following

Theorem 1.2. If 1
p + 1

q = 1 with p > 1 and K(x, y), f(x), g(y), ϕ(x), ψ(y) be
nonnegative functions, then the following inequalities hold and are equivalent

∫

Ω

∫

Ω
K(x, y)f(x)g(y)dµ1(x)dµ2(y)

≤
[∫

Ω
ϕ(x)pF (x)f(x)pdµ1(x)

] 1
p

[∫

Ω
ψ(y)qG(y)g(y)qdµ2(y)

] 1
q

(1.1)

and ∫

Ω
G(y)1−pψ(y)−p

[∫

Ω
K(x, y)f(x)dµ1(x)

]p

dµ2(y)

≤
∫

Ω
ϕ(x)pF (x)f(x)pdµ1(x)

(1.2)

where F (x) =
∫
Ω K(x, y)ψ(y)−pdµ2(y) and G(y) =

∫
Ω K(x, y)ϕ(x)−qdµ1(x).

If 0 < p < 1 then the reverse inequalities in (1.1) and (1.2) are valid as well
as the inequality

∫

Ω
F (x)1−qϕ(x)−q

[∫

Ω
K(x, y)g(y)dµ2(y)

]q

dµ1(x)

≤
∫

Ω
ψ(y)qG(y)g(y)qdµ2(y)

(1.3)

Then we have applied these results on some special choices of the kernel
K(x, y) and the functions ϕ(x), ψ(y) and obtained many inequalities which
are generalizations of the previously mentioned authors (see [7]).

Some authors obtained notable improvement of Hilbert inequality by means
of sharpening of Hölder’s inequality. For example, in [9], one can find the
following
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Theorem 1.3. If 1
p + 1

q = 1 with p > 1, then the following inequality is valid:
∫ ∞

0

∫ ∞

0

f(x)g(y)
xλ + yλ

dxdy

<
π

λ sin(π
p )

(1−R(h))min{ 1
p
, 1
q
}

·
[∫ ∞

0
x(p−1)(1−λ)f(x)pdx

] 1
p

[∫ ∞

0
y(q−1)(1−λ)g(y)qdy

] 1
q

Obviously, the preceding inequality is the improvement of classical Hardy-
Hilbert’s inequality. A definition of the number R(h) will be given in the next
section, as well as the improvement of Hölder’s inequality.

2. Preliminaries

Leping, Mingzhe and Weijan established in [10] an important improvement
of Hölder’s inequality, which will help us on extensions of Hilbert’s and Hardy’s
inequalities.

Let f and g be the elements of an inner product space of measurable func-
tions. Then the inner product is denoted by (f, g). The mentioned authors
introduced a function defined by

Sr(f, u) = (f
r
2 , u)||f ||r−

r
2 ,

where u is a parametric variable vector which is variable unit vector and

||f ||r = r

√
(f

r
2 , f

r
2 ), the r-norm. Clearly, Sr(f, u) = 0 when the vector u

selected is orthogonal to f
r
2 .

Mingzhe, Li, and Debnath established in [13], with the help of the positive
definiteness of Gramm matrix, an important inequality of the form

(f, g)2 ≤ ||f ||2||g||2 − (||f ||x− ||g||y)2 = ||f ||2||g||2(1− r(h)), (2.1)

where r(h) =
(

y
||f || − x

||g||
)2

, x = (g, h), y = (f, h) with ||h|| = 1 and xy ≥ 0,

where || || is a 2−norm. The equality in (2.1) holds if and only if the vectors
f and g are linearly dependent; or the vector h is linear combination of f and
g with xy = 0, x 6= y. The inequality (2.1) is a consequence of an earlier paper
of Mitrović (see [16]).

So, the significant improvement of Hölder’s inequality is given by

(f, g) < ||f ||p||g||q(1−R(h))m, (2.2)

where R(h) = (Sp(f, h)− Sq(g, h))2 6= 0, ||h|| = 1, m = min{1
p , 1

q} and f
p
2 , g

q
2

and h are linearly independent.
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We can, similarly as in [10], derive the improvement of reverse Hölder’s in-
equality. Our inner product will be defined by (f, g) =

∫
Ω K(x)f(x)g(x)dµ(x).

Lemma 2.1. Let 1
p + 1

q = 1 with 0 < p < 1, and K(x), f(x), g(x), h(x) be

nonnegative functions such that f(x)
p
2 , g(x)

q
2 and h(x) are linearly indepen-

dent.Then the following inequality holds

(f, g) > ||f ||p||g||q(1−R(h))
1
q , (2.3)

where R(h) = (Sp(f, h)− Sq(g, h))2 6= 0, ||h|| = 1.

Proof. We start with the following identity

(f, g) =
∫

Ω
K(x)

(
f(x)

p
q g(x)

)
f(x)1−

p
q dµ(x).

Now, let A = q
2 and B = q

q−2 . Obviously, 1
A + 1

B = 1. So, if we apply reverse
Hölder’s inequality we obtain

(f, g) >
[∫

Ω
K(x)

(
f(x)

p
q g(x)

)A
dµ(x)

] 1
A

[∫

Ω
K(x)

(
f(x)1−

p
q

)B
dµ(x)

] 1
B

= (f
p
2 , g

q
2 )||f ||pp(1− 2

q
)
.

(2.4)
If we replace f and g with f

p
2 and g

q
2 in (2.1) we obtain

(f
p
2 , g

q
2 )2 < ||f ||pp||g||qq(1−R(h)), (2.5)

and substituing (2.5) in (2.4) we obtain (2.3). ¤

In the next we shall apply these results on our papers [6] and [7].

3. General case

Now we shall state and prove our general improvements, by using the results
from the Section 2. First of all let’s say that we suppose that all integrals
and series converges and such types of conditions shall mostly be omitted.
Further, all the functions that we will have in our results will be non-negative.
Throughout this paper, the exponent m indicates m = min{1

p , 1
q}, where p

and q are conjugate exponents i.e. 1
p + 1

q = 1. Also, the number R(f, g, h)

indicates R(f, g, h) = (Sp(f, h)− Sq(g, h))2, where Sp(f, h) = (f
p
2 , h)||f ||p

− p
2 .

Obviously, Sp(f, h) depends on the inner product. For our general results, the
inner product will be defined by

(f, g) =
∫

Ω

∫

Ω
K(x, y)f(x, y)g(x, y)dµ1(x)dµ2(y), (3.1)
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so we have the following
Theorem 3.1. If p > 1, then the following inequality holds∫

Ω

∫

Ω
K(x, y)f(x)g(y)dµ1(x)dµ2(y)

≤ (1−R(f, g, h))m

·
[∫

Ω
ϕ(x)pF (x)f(x)pdµ1(x)

] 1
p

[∫

Ω
ψ(y)qG(y)g(y)qdµ2(y)

] 1
q

,

(3.2)

where the inner product is defined by (3.1), F (x) =
∫
Ω

K(x,y)
ψ(y)p dµ2(y), G(y) =

∫
Ω

K(x,y)
ϕ(x)q dµ1(x), f(x, y) = f(x)ϕ(x)

ψ(y) , g(x, y) = g(y)ψ(y)
ϕ(x) , and the function

h(x, y) satisfy
∫
Ω

∫
Ω K(x, y)h(x, y)2dµ1(x)dµ2(y) = 1. If p < 1 then the re-

verse inequality in (3.2) is valid.

Proof. We start with the following identity∫

Ω

∫

Ω
K(x, y)f(x)g(y)dµ1(x)dµ2(y)

=
∫

Ω

∫

Ω
K(x, y)f(x, y)g(x, y)dµ1(x)dµ2(y).

(3.3)

Now, by applying the inequality (2.2) we obtain the inequality (3.2). We
obtain the reverse inequalities in a similar way, by applying the Lemma 2.1.
This completes the proof.

¤
Remark 3.2. Equality in the previous theorem is possible if and only if the
functions f(x, y)

p
2 , g(x, y)

q
2 , and h(x, y) are linearly dependent (see Section

2). Otherwise, inequalities in Theorem 3.1 are strict.

If we put

g̃(y) = G(y)1−pψ(y)−p

(∫

Ω
K(x, y)f(x)dµ1(x)

)p−1

,

instead of g in the Theorem 3.1, we obtain Hardy-Hilbert type inequality:

Theorem 3.3. If p > 1 or p < 0 then the following inequality holds∫

Ω
G(y)1−pψ(y)−p

[∫

Ω
K(x, y)f(x)dµ1(x)

]p

dµ2(y)

≤(1−R(f, g̃, h))mp

∫

Ω
ϕ(x)pF (x)f(x)pdµ1(x),

(3.4)

where the inner product is defined by (3.1), and the functions F (x), G(y),
f(x, y), g̃(x, y), h(x, y) are defined in the Theorem 3.1. If 0 < p < 1 then the
reverse inequality in (3.4) is valid.
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Proof. Since 1
p + 1

q = 1, we have, by using (3.2),

∫

Ω
G(y)1−pψ(y)−p

(∫

Ω
K(x, y)f(x)dµ1(x)

)p

dµ2(y)

=
∫

Ω

∫

Ω
K(x, y)f(x)g̃(y)dµ1(x)dµ2(y)

≤(1−R(f, g̃, h))m

·
[∫

Ω
ϕ(x)pF (x)f(x)pdµ1(x)

] 1
p

[∫

Ω
ψ(y)qG(y)g̃(y)qdµ2(y)

] 1
q

=
[∫

Ω
ϕ(x)pF (x)f(x)pdµ1(x)

] 1
p

·
[∫

Ω
G(y)1−pψ(y)−p

( ∫

Ω
K(x, y)f(x)dµ1(x)

)p

dµ2(y)
] 1

q

from where we have (3.4). We obtain the reverse inequalities in a similar way,
by applying the Lemma 2.1. This completes the proof.

¤

Remark 3.4. Note that Theorems 3.1 and 3.3 are improvements of our gen-
eral results in [7]. Also, we lost the equivalence of the inequalities (see Theorem
1.2). Further, the definitions of the functions g̃ in Hardy-Hilbert type inequal-
ities shall easily be seen from the inequalities and shall be omitted.

The theorems in this section are improvements of our general results in [7].

4. Hardy type inequalities

The inequality (3.4) gives the improvement of so called Hardy-type inequal-
ity. In this section we shall obtain the improvements for some special choices
of the kernel K(x, y). If we put K(x, y) = h(y) for x ≤ y and K(x, y) = 0 for
x > y in Theorems 3.1 and 3.3, where Ω = [a, b], 0 ≤ a < b ≤ ∞, then our
inner product is defined by

(f, g) =
∫ b

a

∫ y

a
h(y)f(x, y)g(x, y)dµ1(x)dµ2(y), (4.1)

so we obtain the following results:
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Theorem 4.1. If p > 1 then the following inequality holds
∫ b

a

∫ y

a
h(y)f(x)g(y)dµ1(x)dµ2(y)

≤(1−R(f, g, h))m

[∫ b

a
ϕ(x)pf(x)p

(∫ b

x
H(y)dµ2(y)

)
dµ1(x)

] 1
p

·
[∫ b

a
ψ(y)qg(y)qh(y)

(∫ y

a
ϕ(x)−qdµ1(x)

)
dµ2(y)

] 1
q

,

(4.2)

where the inner product is defined by (4.1), H(y) = h(y)ψ(y)−p, the functions
f(x, y), g(x, y) are defined in the Theorem 3.1, and∫ b
a

∫ y
a h(y)h(x, y)2dµ1(x)dµ2(y) = 1. If p < 1, then the reverse inequality in

(4.2) is valid.

Theorem 4.2. If p > 1 or p < 0, then the following inequality holds
∫ b

a
H(y)

(∫ y

a
ϕ(x)−qdµ1(x)

)1−p (∫ y

a
f(x)dµ1(x)

)p

dµ2(y)

≤(1−R(f, g̃, h))mp

∫ b

a
ϕ(x)pf(x)p

(∫ b

x
H(y)dµ2(y)

)
dµ1(x),

(4.3)

where the inner product is defined by (4.1), H(y) = h(y)ψ(y)−p, the functions
f(x, y), g̃(x, y) are defined in the Theorem 3.1, and∫ b
a

∫ y
a h(y)h(x, y)2dµ1(x)dµ2(y) = 1. If 0 < p < 1, then the reverse inequality

in (4.3) is valid.

Similarly, we obtain the dual results by putting the kernel K(x, y) = 0 for
x ≤ y and K(x, y) = h(y) for x > y in Theorems 3.1 and 3.3. The inner
product is then defined by

(f, g) =
∫ b

a

∫ b

y
h(y)f(x, y)g(x, y)dµ1(x)dµ2(y), (4.4)

and we obtain following two results:

Theorem 4.3. If p > 1, then the following inequality holds
∫ b

a

∫ b

y
h(y)f(x)g(y)dµ1(x)dµ2(y)

≤1−R(f, g, h))m

[∫ b

a
ϕ(x)pf(x)p

(∫ x

a
H(y)dµ2(y)

)
dµ1(x)

] 1
p

·
[∫ b

a
ψ(y)qg(y)qh(y)

(∫ b

y
ϕ(x)−qdµ1(x)

)
dµ2(y)

] 1
q

,

(4.5)
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where the inner product is defined by (4.4), H(y) = h(y)ψ(y)−p, the functions
f(x, y), g(x, y) are defined in the Theorem 3.1, and∫ b
a

∫ b
y h(y)h(x, y)2dµ1(x)dµ2(y) = 1. If p < 1, then the reverse inequality in

(4.5) is satisfied.

Theorem 4.4. If p > 1 or p < 0, then the following inequality holds

∫ b

a
H(y)

(∫ b

y
ϕ(x)−qdµ1(x)

)1−p(∫ b

y
f(x)dµ1(x)

)p
dµ2(y)

≤(1−R(f, g̃, h))mp

∫ b

a
ϕ(x)pf(x)p

(∫ x

a
H(y)dµ2(y)

)
dµ1(x),

(4.6)

where the inner product is defined by (4.4), H(y) = h(y)ψ(y)−p, the functions
f(x, y), g̃(x, y) are defined in the Theorem 3.1, and∫ b
a

∫ b
y h(y)h(x, y)2dµ1(x)dµ2(y) = 1. If 0 < p < 1, then the reverse inequality

in (4.6) is valid.

Further, we shall consider some special cases of previous theorems. Namely,
if we put h(y) = 1

y , ϕ(x) = xA1 , ψ(y) = yA2 in the Theorems 4.1 and 4.2 we
obtain

Corollary 4.5. If p > 1, then the following inequality holds

∫ b

a

∫ y

a

f(x)g(y)
y

dxdy

<
|1− qA1|−

1
q

|pA2|
1
p

(1−R(f, g, h))m

[∫ b

a
xp(A1−A2)

∣∣∣1−
(x

b

)pA2
∣∣∣f(x)pdx

] 1
p

·
[∫ b

a
yq(A2−A1)

∣∣∣1−
(a

y

)1−qA1
∣∣∣g(y)qdy

] 1
q

,

(4.7)

where the inner product is defined by (4.1) with h(y) = 1
y , A1 and A2 are ar-

bitrary constants such that the integrals converges, and h(x, y) = 2
√

2ye−x−y

(e−2a−e−2b)2
.

If a = 0 inequality holds under the condition 1− qA1 > 0, and the case b = ∞
holds if pA2 > 0. The reverse inequality is fulfilled if p < 1.

Here, we took the function h(x, y) = 2
√

2ye−x−y

(e−2a−e−2b)2
, since the function h(x, y)

satisfy condition
∫ b
a

∫ y
a

1
yh(x, y)2dxdy = 1 (see Section 2).
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Corollary 4.6. If p > 1 or p < 0, then the following inequality holds
∫ b

a
yp(A1−A2)−p

∣∣∣1−
(a

y

)1−qA1
∣∣∣
1−p(∫ y

a
f(x)dx

)p
dy

<
|1− qA1|1−p

|pA2| (1−R(f, g̃, h))mp

∫ b

a
xp(A1−A2)

∣∣∣1−
(x

b

)pA2
∣∣∣f(x)pdx

(4.8)

where the inner product is defined by (4.1) with h(y) = 1
y , A1 and A2 are ar-

bitrary constants such that the integrals converges, and h(x, y) = 2
√

2ye−x−y

(e−2a−e−2b)2
.

If a = 0 inequality holds under the condition 1− qA1 > 0, and the case b = ∞
holds if pA2 > 0. The reverse inequality is fulfilled if 0 < p < 1.

Similarly, if the inner product is defined by (4.4), and h(y) = 1
y , ϕ(x) = xA1 ,

ψ(y) = yA2 , one obtains dual results of those from the Corollaries 4.5 and 4.6.
Here they are omitted.

Remark 4.7. If a = 0 and b = ∞ we see that we have additional conditions
on the constants A1 and A2. For example, if a = 0 and b = ∞ the inequality
(4.8) become

∫ ∞

0
yp(A1−A2)

(
1
y

∫ y

0
f(x)dx

)p

dy

<
|1− qA1|1−p

|pA2| (1−R(f, g̃, h))mp

∫ ∞

0
xp(A1−A2)f(x)pdx

(4.9)

if p > 1, A1 < 1
q , A2 > 0 or p < 0, A1 < 1

q , A2 < 0. The reverse in (4.9)
holds if 0 < p < 1, A1 > 1

q , A2 > 0.

In the previous remark we can take h(x, y) = 2
√

2ye−x−y. Also, the in-
equality (4.9) is valid if the inner product is defined by (4.1). Note that the
inequalities in the previous corollaries are strict (see Remark 3.2).

Remark 4.8. If we put A1 = 1+ε
pq and A2 = 1+ε(1−q)

pq in the inequality (4.9),
we obtain the inequality which is the generalization and also improvement of
Kufner’s paper [8], and for ε = p− k, from [15].

In such a way we obtain improvements on many results about Hardy’s
inequality in recent years. So, let us discuss some more cases.

Remark 4.9. If we put a = 0, A1 = p+1−k
pq , A2 = k−1

p2 in Corollary 4.6, the
inequality (4.8) becomes

∫ b

0
y−k

(∫ y

0
f(x)dx

)p
dy

<
( p

k − 1

)p
(1−R(f, g̃, h))m

∫ b

0
xp−k

(
1−

(x

b

) k−1
p

)
f(x)pdx,
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if 1− qA1 > 0, and this is improvement of the inequality from [3].
Further, it is obvious that the inequalities

∣∣∣1−
(

x
b

)pA2

∣∣∣ ≤ 1 − (
a
b

)pA2 and
∣∣∣1−

(
a
y

)1−qA1
∣∣∣ ≤ 1− (

a
b

)1−qA1 are valid if 1− qA1 > 0 and pA2 > 0, so from
the inequality (4.8) we obtain

∫ b

a
yp(A1−A2)−p

( ∫ y

a
f(x)dx

)p

dy < Kp

∫ b

a
xp(A1−A2)f(x)pdx,

where

K =
|1− qA1|−

1
q

|pA2|
1
p

(1−R(f, g̃, h))m

[
1−

(
a

b

)pA2
] 1

p
[
1−

(
a

b

)1−qA1
] 1

q

,

Now, if A1 = p+1−k
pq and A2 = k−1

p2 , then the inequality becomes improvement
of the result from the paper [4].

5. Homogeneous functions

In this section we apply our main results on non-negative homogeneous
functions. Recall that for homogeneous function of degree −s, s > 0, equality
K(tx, ty) = t−sK(x, y) is satisfied. We define the inner product by

(f, g) =
∫ b

a

∫ b

a
K(x, y)f(x, y)g(x, y)dµ1(x)dµ2(y), (5.1)

where K(x, y) is the homogeneous function of degree −s such that k(α) =∫∞
0 K(1, u)u−αdu < ∞, 1− s < α < 1, and obtain the following two results:

Theorem 5.1. Let p > 1 and K(x, y) be homogeneous function of degree −s,
s > 0, strictly decreasing in both parameters x and y. Then the following
inequality holds

∫ b

a

∫ b

a
K(x, y)f(x)g(y)dxdy

<(1−R(f, g, h))m

[∫ b

a

(
k(pA2)− ϕ1(pA2, x)

)
x1−s+p(A1−A2)f(x)pdx

] 1
p

·
[∫ b

a

(
k(2− s− qA1)− ϕ2(2− s− qA1, y)

)
y1−s+q(A2−A1)g(y)qdy

] 1
q

(5.2)
for the inner product defined by (5.1) and for any A1 ∈ (1−s

q , 1
q ), A2 ∈ (1−s

p , 1
p).

Further, the functions f , g, h are defined by f(x, y) = f(x)xA1

yA2
, g(x, y) =
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g(y) yA2

xA1
, h(x, y) = 1√

K(x,y)

2e−x−y

(e−2a−e−2b)2
, and

ϕ1(α, x) =
(

a

x

)1−α ∫ 1

0
K(1, u)u−αdu +

(
x

b

)s+α−1 ∫ 1

0
K(u, 1)us+α−2du,

ϕ2(α, y) =
(

a

y

)s+α−1 ∫ 1

0
K(u, 1)us+α−2du +

(
y

b

)1−α ∫ 1

0
K(1, u)u−αdu.

If b = ∞ then the reverse in (5.2) is valid if 0 < p < 1 and K(x, y) is
strictly decreasing in x and strictly increasing in y, for any A1 ∈ (1

q , 1−s
q ) and

A2 ∈ (1−s
p , 1

p), or if p < 0 and K(x, y) is strictly increasing in x and strictly
decreasing in y, for any A1 ∈ (1−s

q , 1
q ) and A2 ∈ (1

p , 1−s
p ).

Further, if a = 0 then the reverse in (5.2) is valid if 0 < p < 1 and K(x, y)
is strictly increasing in x and strictly decreasing in y for any A1 ∈ (1

q , 1−s
q )

and A2 ∈ (1−s
p , 1

p), or if p < 0 and K(x, y) is strictly decreasing in x and
strictly increasing in y for any A1 ∈ (1−s

q , 1
q ) and A2 ∈ (1

p , 1−s
p ).

Proof. If we put ϕ(x) = xA1 and ψ(y) = yA2 in the Theorem 3.1, we obtain
∫ b

a

∫ b

a
K(x, y)f(x)g(y)dxdy

<(1−R(f, g, h))m

[∫ b

a
f(x)px1−s+p(A1−A2)

(∫ b
x

a
x

K(1, u)u−pA2du

)
dx

] 1
p

·
[∫ b

a
g(y)qy1−s+q(A2−A1)

( ∫ y
a

y
b

K(1, u)uqA1+s−2du

)
dy

] 1
q

.

Here, we used substitution u =
y

x
. Further, it can easily be shown (see [5]),

that if l(y) = yα−1
∫ y
0 K(1, u)u−αdu, α < 1 then

l′(y) = yα−2

∫ y

0
u1−α ∂K(1, u)

∂u
du. (5.3)

Now, since
∫ b

x

a
x

K(1, u)u−pA2du =
∫ ∞

0
K(1, u)u−pA2du−

∫ a
x

0
K(1, u)u−pA2du

−
∫ x

b

0
K(u, 1)upA2+s−2du,
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we obtain, by using (5.3),
∫ b

x
a
x

K(1, u)u−pA2du ≤ k(pA2) − ϕ1(pA2, x) and

analogously
∫ y

a
y
b

K(1, u)uqA1+s−2du ≤ k(2 − s − qA1) − ϕ2(2 − s − qA1, y), so
the result follows from the Theorem 3.1 and monotony of the integral. ¤

Note that the function h(x, y), defined in the previous theorem, satisfy
condition

∫ b
a

∫ b
a K(x, y)h(x, y)2dxdy = 1.

Remark 5.2. Previous theorem is the improvement of our result in [7]. If
the function K(x, y) is symmetrical then k(2 − s − qA1) = k(qA1). So, if
max {1

p , 1
q} < s, then we can put A1 = A2 = 1

pq in the Theorem 5.1 and obtain
the improvement on [5].

Theorem 5.3. Let p > 1 and K(x, y) be homogeneous function of degree −s,
s > 0, strictly decreasing in both parameters x and y. Then the following
inequality holds

∫ b

a

(
k(2− s− qA1)− ϕ2(2− s− qA1, y)

)1−p
y(p−1)(s−1)+p(A1−A2)

·
(∫ b

a
K(x, y)f(x)dx

)p

dy

<(1−R(f, g̃, h))mp

∫ b

a

(
k(pA2)− ϕ1(pA2, x)

)
x1−s+p(A1−A2)f(x)pdx,

(5.4)

where the inner product is defined by (5.1), for any A1 ∈ (1−s
q , 1

q ) and A2 ∈
(1−s

p , 1
p), where the functions f(x, y), g̃(x, y), h(x, y), ϕ1(α, x), ϕ2(α, y) are

defined in the previous theorem.
If b = ∞ and p < 0, then the inequality (5.4) is also valid for any A1 ∈

(1−s
q , 1

q ) and A2 ∈ (1
p , 1−s

p ) if K(x, y) is strictly increasing in x and strictly
decreasing in y.

If b = ∞, then the reverse inequality in (5.4) is valid for any A1 ∈ (1
q , 1−s

q )
and A2 ∈ (1−s

p , 1
p), if 0 < p < 1 and K(x, y) is strictly decreasing in x and

strictly increasing in y.
If a = 0 and p < 0, then the inequality (5.4) is also valid for any A1 ∈

(1−s
q , 1

q ) and A2 ∈ (1
p , 1−s

p ) if K(x, y) is strictly decreasing in x and strictly
increasing in y.

If a = 0, then the reverse inequality in (5.4) is valid for any A1 ∈ (1
q , 1−s

q )
and A2 ∈ (1−s

p , 1
p), if 0 < p < 1 and K(x, y) is strictly increasing in x and

strictly decreasing in y.

If a = 0 and b = ∞, we obtain, from the Theorems 5.1 and 5.3, inequalities
for arbitrary nonnegative homogeneous function of degree −s.
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Corollary 5.4. If p > 1 and K(x, y) be homogeneous function of degree −s,
then the following inequality holds

∫ ∞

0

∫ ∞

0
K(x, y)f(x)g(y)dxdy

<L(1−R(f, g, h))m

·
[∫ ∞

0
x1−s+p(A1−A2)f(x)pdx

] 1
p

[∫ ∞

0
y1−s+q(A2−A1)g(y)qdy

] 1
q

,

(5.5)

where the inner product is defined by (5.1), with a = 0, b = ∞, for any
A1 ∈ (1−s

q , 1
q ), A2 ∈ (1−s

p , 1
p) where L = k(pA2)

1
p k(2− s− qA1)

1
q .

The reverse inequality is valid if 0 < p < 1, for any A1 ∈ (1
q , 1−s

q ) and A2 ∈
(1−s

p , 1
p), or if p < 0, for any A1 ∈ (1−s

q , 1
q ) and A2 ∈ (1

p , 1−s
p ).

Corollary 5.5. If p > 1 and K(x, y) be homogeneous function of degree −s,
then the following inequality holds

∫ ∞

0
y(p−1)(s−1)+p(A1−A2)

( ∫ ∞

0
K(x, y)f(x)dx

)p

<Lp(1−R(f, g̃, h))mp

∫ ∞

0
x1−s+p(A1−A2)f(x)pdx

(5.6)

where the inner product is defined by (5.1), with a = 0, b = ∞, for any
A1 ∈ (1−s

q , 1
q ), A2 ∈ (1−s

p , 1
p). If p < 0, the inequality holds too, for any

A1 ∈ (1−s
q , 1

q ), A2 ∈ (1
p , 1−s

p ). If 0 < p < 1, then the reverse inequality holds
for any A1 ∈ (1

q , 1−s
q ), A2 ∈ (1−s

p , 1
p).

Remark 5.6. If K(x, y) = (x + y)−s, then the constant L becomes L = B(1−
A2p, s− 1 + A2p)

1
p B(1−A1q, s− 1 + A1q)

1
q , where B is a Beta function. So,

we obtain improvements of papers [2] and [6].

Now, we shall make some generalizations of the Theorems 5.1 and 5.3. If
we use substitution u = x + λ and v = y + λ and the inner product

(f, g) =
∫ b

a

∫ b

a
K(x + λ, y + λ)f(x, y)g(x, y)dxdy (5.7)

we have

Theorem 5.7. Let p > 1 and K(x, y) be homogeneous function of degree −s,
s > 0, strictly decreasing in both parameters x and y. Then the following
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inequality holds

∫ b

a

∫ b

a
K(x + λ, y + λ)f(x)g(y)dxdy

< (1−R(f, g, h))m

·
[∫ b

a

(
k(pA2)− ψ1(pA2, x, λ)

)
(x + λ)1−s+p(A1−A2)f(x)pdx

] 1
p

[∫ b

a

(
k(2− s− qA1)− ψ2(2− s− qA1, y, λ)

)
(y + λ)1−s+q(A2−A1)g(y)qdy

] 1
q

(5.8)
if the inner product is defined by (5.7), for any parameters A1 ∈ (1−s

q , 1
q ),

A2 ∈ (1−s
p , 1

p), where f(x, y) = f(x) (x+λ)A1

(y+λ)A2
, g(x, y) = g(y) (y+λ)A2

(x+λ)A1
, h(x, y) =

1√
K(x+λ,y+λ)

2e−x−y

(e−2a−e−2b)2
, and

ψ1(α, x, λ) =
(

a + λ

x + λ

)1−α ∫ 1

0
K(1, u)u−αdu

+
(

x + λ

b + λ

)s+α−1 ∫ 1

0
K(u, 1)us+α−2du,

ψ2(α, y, λ) =
(

a + λ

y + λ

)s+α−1 ∫ 1

0
K(u, 1)us+α−2du

+
(

y + λ

b + λ

)1−α ∫ 1

0
K(1, u)u−αdu.

If b = ∞ the reverse inequality holds under the same conditions as in the
Theorem 5.1.

Remark 5.8. If the function K(x, y) from the Theorem 5.7 is symmetrical
and 0 < 1 − 2λ

p < s, 0 < 1 − 2λ
q < s then, by putting A1 = A2 = 2λ

pq in the
theorem we obtain improvement on the results of Jichang and Rassias ([5]).

Theorem 5.9. Let p > 1 and K(x, y) be homogeneous function of degree −s,
s > 0, strictly decreasing in both parameters x and y. Then the following
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inequality holds

∫ b

a

(
k(2− s− qA1)− ψ2(2− s− qA1, y, λ)

)1−p(y + λ)(p−1)(s−1)+p(A1−A2)

·
( ∫ b

a
K(x + λ, y + λ)f(x)dx

)p

dy

< (1−R(f, g̃, h))mp

∫ b

a

(
k(pA2)− ψ1(pA2, x, λ)

)
(x + λ)1−s+p(A1−A2)f(x)pdx

(5.9)
if the inner product is defined by (5.7), for any A1 ∈ (1−s

q , 1
q ), A2 ∈ (1−s

p , 1
p),

where the functions f(x, y), g̃(x, y), h(x, y), ψ1(α, x, λ), ψ2(α, y, λ) are defined
in the previous theorem. The case p < 1 and b = ∞ is treated in the same way
as in the Theorem 5.3.

Remark 5.10. If a = 0, b = ∞, K(x, y) = (x + y)−s, λ = 1
2 , A1 = A2 = 2−s

pq

and s > 2−min{p, q}, then the inequality (5.8) reads
∫ ∞

0

∫ ∞

0

f(x)g(y)
(x + y + 1)s

dxdy

< (1−R(f, g, h))m

·
[∫ ∞

0

(
kλ(p)− (2x + 1)

2−s
q
−1

∫ 1

0

u
s−2

q

(1 + u)s
du

)
(x +

1
2
)1−sf(x)pdx

] 1
p

·
[∫ ∞

0

(
kλ(p)− (2y + 1)

2−s
p
−1

∫ 1

0

u
s−2

p

(1 + u)s
du

)
(y +

1
2
)1−sg(y)qdy

] 1
q

,

where kλ(p) = B
(

p+s−2
p , q+s−2

q

)
. That inequality is the result from the paper

[11].

Another way of generalizing Theorems 5.1 and 5.3 arises from the substitu-
tion u = Axα and v = Byβ, where A,B, α, β > 0. More precisely, if

(f, g) =
∫ b

a

∫ b

a
K(Axα, Byβ)f(x, y)g(x, y)dxdy (5.10)

we obtain such generalizations:

Theorem 5.11. Let p > 1 and K(x, y) be homogeneous function of degree
−s, s > 0, strictly decreasing in both parameters x and y. Then the following
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inequality holds

∫ b

a

∫ b

a
K(Axα, Byβ)f(x)g(y)dxdy

< M(1−R(f, g, h))m

·
[∫ b

a

(
k(pA2)−ζ1(pA2, x)

)
xα(1−s)+αp(A1−A2)−(α−1)(p−1)f(x)pdx

] 1
p

·
[∫ b

a

(
k(2− s− qA1)−ζ2(2− s− qA1, y)

)
yβ(1−s)+βq(A2−A1)−(β−1)(q−1)g(y)qdy

] 1
q

,

(5.11)
if the inner product is defined by (5.10), for any parameters A1 ∈ (1−s

q , 1
q ),

A2 ∈ (1−s
p , 1

p), where f(x, y) = f(x)x
αA1+1−α

q

y
βA2+

1−β
p

, g(x, y) = g(y) y
βA2+

1−β
p

x
αA1+1−α

q
, h(x, y) =

1√
K(Axα,Byβ)

2e−x−y

(e−2a−e−2b)2
, with the constant M defined by

M = α
− 1

q β
− 1

p A
2−s

p
+A1−A2−1

B
2−s

q
+A2−A1−1 and

ζ1(γ, x) =
(

a

x

)α(1−γ) ∫ B
A

aβ−α

0
K(1, u)u−γdu

+
(

x

b

)α(s+γ−1) ∫ A
B

bα−β

0
K(u, 1)us+γ−2du,

ζ2(γ, y) =
(

a

y

)β(s+γ−1) ∫ A
B

aα−β

0
K(u, 1)us+γ−2du

+
(

y

b

)β(1−γ) ∫ B
A

bβ−α

0
K(1, u)u−γdu.

If a = 0 or b = ∞ the reverse inequality holds under the same conditions as
in the Theorem 5.1.

Theorem 5.12. Let p > 1 and K(x, y) be homogeneous function of degree
−s, s > 0, strictly decreasing in both parameters x and y. Then the following
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inequality holds
∫ b

a

(
k(2− s− qA1)− ζ2(2− s− qA1, y)

)1−p
yβ(p−1)(s−1)+βp(A1−A2)+β−1

·
( ∫ b

a
K(Axα, Byβ)f(x)dx

)p

dy < Mp(1−R(f, g̃, h))mp

·
∫ b

a

(
k(pA2)− ζ1(pA2, x)

)
xα(1−s)+αp(A1−A2)−(α−1)(p−1)f(x)pdx

(5.12)
if the inner product is defined by (5.10), for any A1 ∈ (1−s

q , 1
q ), A2 ∈ (1−s

p , 1
p),

where f(x, y), g̃(x, y),h(x, y), M , ζ1(γ, x), ζ2(γ, y) are defined in the previous
theorem. The cases p < 1 and a = 0 or b = ∞ are treated in the same way as
in the Theorem 5.3.

If a = 0 and b = ∞ we have the inequalities for arbitrary nonnegative
homogeneous function of degree −s, what follows from the Theorems 5.11 and
5.12.

Theorem 5.13. Let p > 1 and K(x, y) be homogeneous function of degree
−s. Then the following inequality holds∫ ∞

0

∫ ∞

0
K(Axα, Byβ)f(x)g(y)dxdy

<N(1−R(f, g, h))m

[∫ ∞

0
xα(1−s)+αp(A1−A2)−(α−1)(p−1)f(x)pdx

] 1
p

·
[∫ ∞

0
yβ(1−s)+βq(A2−A1)−(β−1)(q−1)g(y)qdy

] 1
q

,

(5.13)

if the inner product is defined by (5.10), with a = 0, b = ∞, A1 ∈ (1−s
q , 1

q ),
A2 ∈ (1−s

p , 1
p) and N = L · M , where L is defined in Corollary 5.4 and M

in Theorem 5.11. The reverse inequality, when p < 1, holds under the same
conditions as in the Corollary 5.4.

Remark 5.14. If K(x, y) = (x + y)−s, A1 = A2 = 2−s
pq , α = β = 1 and

s > 2−min{p, q}, then the inequality (5.13) becomes
∫ ∞

0

∫ ∞

0

f(x)g(y)
(Ax + By)s

dxdy < kA,B

[∫ ∞

0
x1−sf(x)pdx

] 1
p

[∫ ∞

0
y1−sg(y)qdy

] 1
q

where kA,B = B(p+s−2
p , q+s−2

q )(1−R(f, g, h))mA
2−s−p

p B
2−s−q

q , what is the re-
sult from [12]. Further, if we put K(x, y) = (x+y)−1, A = B = 1, α = β = λ,
A1 = A2 = 1

pq in the Theorem 5.13, we obtain Theorem 1.3 from the Intro-
duction.
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Theorem 5.15. Let p > 1 and K(x, y) be homogeneous function of degree
−s. Then the following inequality holds

∫ ∞

0
yβ(p−1)(s−1)+βp(A1−A2)+β−1

( ∫ ∞

0
K(Axα, Byβ)f(x)dx

)p

dy

<Np(1−R(f, g̃, h))mp

∫ ∞

0
xα(1−s)+αp(A1−A2)−(α−1)(p−1)f(x)pdx,

(5.14)

if the inner product is defined by (5.10), with a = 0, b = ∞, where A1 ∈
(1−s

q , 1
q ), A2 ∈ (1−s

p , 1
p) and N is defined in the Theorem 5.13. The case p < 1

is treated in the same way as in the Corollary 5.5.

Finally, we give the results in discrete case. We define the inner product by

({am,n}, {bm,n}) =
∞∑

m=1

∞∑

n=1

K(Amα, Bnβ)am,nbm,n, (5.15)

where A,B, α, β > 0 and {am,n}, {bm,n} are non-negative sequences.

Theorem 5.16. Let {an} and {bn} be nonnegative real sequences and K(x, y)
be homogeneous function of degree −s strictly decreasing in both parameters x
and y and p > 1. Then the following inequality holds

∞∑

m=1

∞∑

n=1

K(Amα, Bnβ)ambn

<N(1−R(a, b, h))m

[ ∞∑

m=1

mα(1−s)+αp(A1−A2)+(p−1)(1−α)am
p

] 1
p

·
[ ∞∑

n=1

nβ(1−s)+βq(A2−A1)+(q−1)(1−β)bn
q

] 1
q

,

(5.16)

if the inner product is defined by (5.15), for any A1 ∈
(
max{1−s

q , α−1
αq }, 1

q

)
,

A2 ∈
(
max{1−s

p , β−1
βp }, 1

p

)
, with the sequences defined by am,n =am

m
αA1+1−α

q

n
βA2+

1−β
p

,

bm,n = bn
n

βA2+
1−β

p

m
αA1+1−α

q
,hm,n = 1√

K(Amα,Bnβ)

6
mnπ2 and N defined in the Theorem

5.13.

Proof. Let’s put ϕ(Amα) = (Amα)A1+ 1
qα
− 1

q and ψ(Bnβ) = (Bnβ)A2+ 1
pβ
− 1

p

in Theorem 3.1. Since qA1 + 1
α − 1 ≥ 0 and pA2 + 1

β − 1 ≥ 0, the func-

tions F (Amα) =
∑∞

n=1
K(Amα,Bnβ)

(Bnβ)
pA2+ 1

β
−1

and G(Bnβ) =
∑∞

n=1
K(Amα,Bnβ)

(Axα)qA1+ 1
α−1

are

strictly decreasing, wherefrom one obtains following estimates: F (Amα) ≤
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∫∞
0

K(Amα,Byβ)

(Byβ)
pA2+ 1

β
−1

dy and G(Bnβ) ≤ ∫∞
0

K(Axα,Bnβ)

(Axα)qA1+ 1
α−1

dx. So the result follows

from the Theorem 3.1. ¤

Similarly, we have:

Theorem 5.17. Let {an} and {bn} be nonnegative real sequences and K(x, y)
be homogeneous function of degree −s strictly decreasing in both parameters x
and y, and p > 1. Then the following inequality holds

∞∑

n=1

nβ(s−1)(p−1)+pβ(A1−A2)+β−1

( ∞∑

m=1

K(Amα, Bnβ)am

)p

<Np(1−R(a, b̃, h))mp
∞∑

m=1

mα(1−s)+αp(A1−A2)+(p−1)(1−α)am
p,

(5.17)

if the inner product is defined by (5.15), for any A1 ∈
(
max{1−s

q , α−1
αq }, 1

q

)
,

A2 ∈
(
max{1−s

p , β−1
βp }, 1

p

)
, where the sequences h, a, b̃ are defined in the The-

orem 5.16 and N in the Theorem 5.13.

Remark 5.18. If one put K(x, y) = (x + y)−1, A = B = 1, α = β = λ,
A1 = A2 = 1

pq and λ ≤ min{p, q} in the Theorems 5.16 and 5.17, one obtains
discrete analogue of the Theorem 1.3 i.e. following inequalities:

∞∑

m=1

∞∑

n=1

ambn

mλ + nλ

<
π

λ sin(π
p )

(1−R(a, b, h))m

[ ∞∑

m=1

m(p−1)(1−λ)am
p

] 1
p

[ ∞∑

n=1

n(q−1)(1−λ)bn
q

] 1
q

and
∞∑

n=1

nλ−1
( ∞∑

m=1

am

mλ + nλ

)p
<

πp

λp sin(π
p )p

(1−R(a, b̃, h))mp
∞∑

m=1

m(p−1)(1−λ)am
p.

The first inequality is the result from [9]. If we add condition s ≤ 2 in Remark
5.10 we obtain discrete analogues of those inequalities.
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