# MULTIPLE POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY VALUE PROBLEM SYSTEM 

Xu Xian ${ }^{1}$ and Wang Bingjin ${ }^{2}$<br>${ }^{1,2}$ Department of Mathematics, Xuzhou Normal University, Xuzhou, Jiangsu, 221116, P. R. China<br>${ }^{1}$ e-mail: xuxian68@163.com


#### Abstract

Some results about the existence of multiple positive solutions for a singular three-point boundary value problem system are obtained by using the fixed point index.


## 1. Introduction

In this paper, we study the existence of multiple positive solutions of the three-point boundary value problem system

$$
\left\{\begin{array}{l}
x^{\prime \prime}+\lambda a_{1}(t) f_{1}(x(t), y(t))=0, \quad 0<t<1 \\
y^{\prime \prime}+\lambda a_{2}(t) f_{2}(x(t), y(t))=0, \quad 0<t<1 \\
x(0)=0=x(1)-\alpha_{1} x\left(\eta_{1}\right) \\
y(0)=0=y(1)-\alpha_{2} y\left(\eta_{2}\right)
\end{array}\right.
$$

where $\lambda>0$ is a parameter, $a_{1}, a_{2}:(0,1) \mapsto(0, \infty)$ are continuous, $f_{1}$ : $(0, \infty) \times[0, \infty) \mapsto(0, \infty)$ is continuous, $f_{2}:[0, \infty) \times(0, \infty) \mapsto(0, \infty)$ is continuous, $\alpha_{1}, \alpha_{2} \in[0,1), \eta_{1}, \eta_{2} \in(0,1)$.

The multi-point boundary value problems for ordinary differential equations arise in different areas of applied mathematics and physics. During the last ten years finding solutions, especially positive solutions, to the multi-point boundary value problems has been actively pursued and significant progress has taken place, see $[1,4,6,11,12,13,14,16]$ and the references therein.

In recent years, there were some papers considered the existence of solutions for the two-point boundary value problem system, see $[3,8,9]$ and the references therein. For example, Agarwal and O'Regan [9] studied the two-point

[^0]boundary value problem system
\[

$$
\begin{cases}u^{\prime \prime}+f(t, v(t))=0, & \text { a.e. } t \in[0,1],  \tag{1.2}\\ v^{\prime \prime}+g(t, u(t))=0, & \text { a.e. } t \in[0,1], \\ \alpha_{1} u(0)-\beta_{1} u^{\prime}(0)=0, \gamma_{1} u(1)+\delta_{1} u^{\prime}(1)=0, & \\ \alpha_{2} v(0)-\beta_{2} v^{\prime}(0)=0, \gamma_{2} v(1)+\delta_{2} v^{\prime}(1)=0 . & \end{cases}
$$
\]

By using Leray-Schauder theory, Agarwal and O'Regan obtained some existence results for solutions for the two-point boundary value problems system (1.2).

However, to the author's knowledge, there is fewer papers considered the existence of multiple positive solutions for multi-point boundary value problems system. To cover up this gap, by using the fixed point index method we will give some existence results for multiple positive solutions for the system $\left(1.1_{\lambda}\right)$. The system ( $1.1_{\lambda}$ ) is a singular boundary value problem system since the nonlinearity $a_{1}(t) f_{1}(x, y)$ is allowed to have singularity at $t=0,1$ and $x=0$, and $a_{2}(t) f_{2}(x, y)$ is allowed to have singularity at $t=0,1$ and $y=0$. Singular differential boundary value problems arise in the fields of gas dynamics, Newtonian fluid mechanics, nuclear physics, the theory of boundary layer, nonlinear optics and so on. The readers may refer [2,5,7,15] for some recent results on singular differential boundary value problems.

Lastly, we should point out that, the system (1.1 ) can arise from the study of positive radial solutions of some elliptic boundary value problems system in an annulus $R_{1} \leq|x| \leq R_{2}$ in $R^{N}, N \geq 2$, namely, the following systems:

$$
\begin{cases}\Delta u+\lambda a_{1}(|x|) f_{1}(u, v)=0, & R_{1}<|x|<R_{2}, \\ \Delta v+\lambda a_{2}(|x|) f_{2}(u, v)=0, & R_{1}<|x|<R_{2}, \\ u\left(R_{1}\right)=v\left(R_{1}\right)=0, & \\ u\left(R_{2}\right)-\alpha_{1} u\left(R_{3}\right)=v\left(R_{2}\right)-\alpha_{2} v\left(R_{4}\right)=0, & \end{cases}
$$

where $R_{1}<R_{3}<R_{2}, R_{1}<R_{4}<R_{2}$. Therefore, the results of this paper can apply to the study the existence of positive solutions of the system (1.3 $)$. To the author's knowledge, no one has studied the existence of positive solutions for the systems $\left(1.3_{\lambda}\right)$.

## 2. Several lemmas

Let us list some conditions to be used in this paper.
$\left(H_{1}\right)$

$$
\gamma=\int_{0}^{1} s(1-s)\left(a_{1}(s)+a_{2}(s)\right) d s<\infty
$$

$$
\begin{align*}
& f_{1}(x, y)=g_{1}(x)+h_{1}(x, y),(x, y) \in(0, \infty) \times[0, \infty)  \tag{2}\\
& f_{2}(x, y)=g_{2}(y)+h_{2}(x, y),(x, y) \in[0, \infty) \times(0, \infty)
\end{align*}
$$

where $g_{1}, g_{2} \in C((0, \infty),(0, \infty))$ are non-increasing, $h_{1}, h_{2} \in C([0, \infty) \times[0, \infty),[0, \infty))$, and there exists $R_{0}>0$ such that

$$
A\left(R_{0}\right) \triangleq \inf _{(x, y) \in D_{R_{0}}}\left(\int_{\alpha_{1} x}^{x} \frac{d s}{g_{1}(s)}+\int_{\alpha_{2} y}^{y} \frac{d s}{g_{2}(s)}\right)>0
$$

where $D_{R_{0}}=\left\{(x, y) \in[0, \infty) \times[0, \infty) \mid x+y=R_{0}\right\}$.
Let $E=C[0,1]$ be the usual real Banach space with the norm $\|x\|=$ $\max _{t \in[0,1]}|x(t)|$, and $P=\{x \in E \mid x(t) \geq 0$ for $t \in[0,1]\}$. Then $P$ is a cone of $E$. Let $E^{\Delta}=E \times E$. For any $(x, y) \in E^{\Delta}$, let

$$
\|(x, y)\|=\|x\|+\|y\| .
$$

Then $E^{\Delta}$ is a real Banach space with the norm $\|(\cdot, \cdot)\|$. For $i=1,2$, let

$$
Q_{i}=\left\{x \in P \mid x(t) \geq\|x\| e_{i}(t) \text { for } t \in[0,1]\right\}
$$

where

$$
e_{i}(t)= \begin{cases}\frac{1-\eta_{i}}{2-\alpha_{i} \eta_{i}-\alpha_{i}} t, & t \in\left[0, \eta_{i}\right] \\ \frac{\eta_{i}\left[\left(1-\alpha_{i} \eta_{i}\right)-\left(1-\alpha_{i}\right) t\right]}{2-\alpha_{i} \eta_{i}-\alpha_{i}}, & t \in\left[\eta_{i}, 1\right]\end{cases}
$$

Then $Q_{1}$ and $Q_{2}$ are cones of $E$, and $Q^{\Delta}=Q_{1} \times Q_{2}$ is a cone of $E^{\Delta}$.
Now for $\mathrm{i}=1,2$, let us define the linear operator $K_{i}: P \mapsto P$ by

$$
\left(K_{i} x\right)(t)=\left\{\begin{array}{r}
\frac{1}{1-\alpha_{i} \eta_{i}} \int_{0}^{1} G_{[0,1]}\left(\eta_{i}, s\right) a_{i}(s) x(s) d s, t=\eta_{i} \\
\int_{0}^{\eta_{i}} G_{\left[0, \eta_{i}\right]}(t, s) a_{i}(s) x(s) d s+\left(K_{i} x\right)\left(\eta_{i}\right) \frac{t}{\eta_{i}}, t \in\left[0, \eta_{i}\right] \\
\int_{\eta_{i}}^{1} G_{\left[\eta_{i}, 1\right]}(t, s) a_{i}(s) x(s) d s+\left(K_{i} x\right)\left(\eta_{i}\right) \frac{1-t+\alpha_{i}\left(t-\eta_{i}\right)}{1-\eta_{i}} \\
t \in\left[\eta_{i}, 1\right]
\end{array}\right.
$$

where

$$
\begin{gathered}
G_{[0,1]}(t, s)= \begin{cases}(1-t) s, & 0 \leq s \leq t \leq 1 \\
t(1-s), & 0 \leq t \leq s \leq 1\end{cases} \\
G_{\left[0, \eta_{i}\right]}(t, s)= \begin{cases}\left(1-\eta_{i}^{-1} t\right) s, & 0 \leq s \leq t \leq \eta_{i} \\
t\left(1-\eta_{i}^{-1} s\right), & 0 \leq t \leq s \leq \eta_{i}\end{cases} \\
G_{\left[\eta_{i}, 1\right]}(t, s)= \begin{cases}\left(1-\eta_{i}\right)^{-1}(1-t)\left(s-\eta_{i}\right), & \eta_{i} \leq s \leq t \leq 1 \\
\left(1-\eta_{i}\right)^{-1}\left(t-\eta_{i}\right)(1-s), & \eta_{i} \leq t \leq s \leq 1\end{cases}
\end{gathered}
$$

Let $N$ be the set of all positive integers. For each $n \in N$ and $i=1,2$, let us define the operators $F_{\text {in }}: P^{\Delta} \mapsto P, A_{\text {in }}: P^{\Delta} \mapsto P$ and $A_{n}: P^{\Delta} \mapsto P^{\Delta}$ by

$$
\begin{aligned}
& F_{1 n}(x, y)(t)=f_{1}\left(x(t)+n^{-1}, y(t)\right), t \in[0,1], \quad(x, y) \in P^{\Delta} \\
& F_{2 n}(x, y)(t)=f_{2}\left(x(t), y(t)+n^{-1}\right), t \in[0,1],(x, y) \in P^{\Delta}
\end{aligned}
$$

$$
A_{1 n}(x, y)=K_{1} F_{1 n}(x, y), A_{2 n}(x, y)=K_{2} F_{2 n}(x, y),(x, y) \in P^{\Delta}
$$

and

$$
\begin{equation*}
A_{n}(x, y)=\left(A_{1 n}(x, y), A_{2 n}(x, y)\right),(x, y) \in P^{\Delta} \tag{2.1}
\end{equation*}
$$

respectively.
For each $R>0$ and $i=1,2$, let

$$
\begin{gathered}
H_{i}(R)=\sup \left\{h_{i}(x, y) \mid 0 \leq x \leq R+1,0 \leq y \leq R+1\right\} \\
\rho_{i}(R)=1+\frac{H_{i}(R)}{g_{i}(R+1)}
\end{gathered}
$$

In the same way as the proof of Lemma 8 of [15], we have the following Lemma 2.1.

Lemma 2.1. Suppose that $\left(H_{1}\right)$ holds. Then

$$
\lim _{t \rightarrow 0^{+}} t \int_{t}^{1}(1-s) \sum_{i=1}^{2} a_{i}(s) d s=0
$$

and

$$
\lim _{t \rightarrow 1^{-}}(1-t) \int_{0}^{t} s \sum_{i=1}^{2} a_{i}(s) d s=0
$$

By direct computation, we have the following Lemma 2.2.
Lemma 2.2. Suppose that $\left(H_{1}\right)$ holds, and $h \in P$. Then for $i=1,2, \omega_{i}(t)$ is a solution of the three-point boundary value problem

$$
\begin{cases}\omega_{i}^{\prime \prime}+a_{i}(t) h(t)=0, & 0<t<1 \\ \omega_{i}(0)=0=\omega_{i}(1)-\alpha_{i} \omega_{i}\left(\eta_{i}\right) & \end{cases}
$$

if and only if $\omega_{i}(t)=\left(K_{i} h\right)(t)$ for $t \in[0,1]$.
Remark 2.1. For the proof of Lemma 2.2, the readers can also refer Theorem 5 and 7 of [16].

Lemma 2.3. Suppose that $\left(H_{1}\right)$ holds. Then $K_{i}: P \mapsto Q_{i}$ is a completely continuous operator for $i=1,2$.

Proof. We only show that $K_{1}: P \mapsto Q_{1}$ is a completely continuous operator. In the same way, we can show that $K_{2}: P \mapsto Q_{2}$ is a completely continuous
operator. For any $x \in P$, let $y(t)=\left(K_{1} x\right)(t)$ for $t \in[0,1]$. It follows from Lemma 2.2 that $y \in C[0,1]$ satisfies

$$
\left\{\begin{array}{l}
y^{\prime \prime}(t)+a_{1}(t) x(t)=0, \\
y(0)=0=y(1)-\alpha_{1} y\left(\eta_{1}\right) .
\end{array} \quad 0<t<1,\right.
$$

Thus, $y$ is a concave function on $[0,1]$. Since the graph of the function $y$ passes through three points $(0,0),\left(\eta_{1}, y\left(\eta_{1}\right)\right)$ and $\left(1, \alpha_{1} y\left(\eta_{1}\right)\right)$, then

$$
\begin{aligned}
y(t) & \leq \begin{cases}\left(-\frac{1-\alpha_{1}}{1-\eta_{1}} t+\frac{1-\alpha_{1} \eta_{1}}{1-\eta_{1}}\right) y\left(\eta_{1}\right), & t \in\left[0, \eta_{1}\right] \\
\frac{t}{\eta_{1}} y\left(\eta_{1}\right), & t \in\left[\eta_{1}, 1\right]\end{cases} \\
& \leq \begin{cases}\frac{1-\alpha_{1} \eta_{1}+1-\alpha_{1}}{1-\eta_{1}} y\left(\eta_{1}\right), & t \in\left[0, \eta_{1}\right] \\
\frac{1}{\eta_{1}} y\left(\eta_{1}\right), & t \in\left[\eta_{1}, 1\right]\end{cases}
\end{aligned}
$$

and so

$$
y\left(\eta_{1}\right) \geq \frac{\eta_{1}\left(1-\eta_{1}\right)}{2-\alpha_{1} \eta_{1}-\alpha_{1}}\|y\| .
$$

Since $y$ is a concave function, we have for $t \in\left[0, \eta_{1}\right]$,

$$
\begin{align*}
y(t) & =y\left(\frac{t}{\eta_{1}} \eta_{1}+\frac{\eta_{1}-t}{\eta_{1}} \cdot 0\right) \\
& \geq \frac{t}{\eta_{1}} y\left(\eta_{1}\right)+\frac{\eta_{1}-t}{\eta_{1}} y(0)  \tag{2.2}\\
& \geq \frac{t}{\eta_{1}} y\left(\eta_{1}\right) \\
& \geq \frac{1-\eta_{1}}{2-\alpha_{1} \eta_{1}-\alpha_{1}}\|y\| t
\end{align*}
$$

and for $t \in\left[\eta_{1}, 1\right]$,

$$
\begin{align*}
y(t) & =y\left(\frac{t-\eta_{1}}{1-\eta_{1}} \cdot 1+\frac{1-t}{1-\eta_{1}} \cdot \eta_{1}\right) \\
& \geq \frac{t-\eta_{1}}{1-\eta_{1}} y(1)+\frac{1-t}{1-\eta_{1}} y\left(\eta_{1}\right) \\
& =\frac{1-\alpha_{1} \eta_{1}-\left(1-\alpha_{1}\right) t}{1-\eta_{1}} y\left(\eta_{1}\right)  \tag{2.3}\\
& \geq \frac{\eta_{1}\left[\left(1-\alpha_{1} \eta_{1}\right)-\left(1-\alpha_{1}\right) t\right]}{2-\alpha_{1} \eta_{1}-\alpha_{1}}\|y\| .
\end{align*}
$$

By (2.2) and (2.3), we see that $K_{1}: P \mapsto Q_{1}$.
Now we shall show that $K_{1}$ is a completely continuous operator. The continuity and the boundedness of $K_{1}$ can be easily obtained. Let $\Omega \subset P$ be a
bounded set of $P$ and $L$ a positive number such that $\|x\| \leq L$ and $\left\|K_{1} x\right\| \leq L$ for all $x \in \Omega$. For any $\varepsilon>0$, by $\left(H_{1}\right)$ there exists $\delta_{1}>0$ such that

$$
\begin{equation*}
\int_{0}^{\delta_{1}} G_{\left[0, \eta_{1}\right]}(s, s) a_{1}(s) d s<\varepsilon . \tag{2.4}
\end{equation*}
$$

Since $G_{\left[0, \eta_{1}\right]}(t, s)$ is uniformly continuous on $\left[0, \eta_{1}\right] \times\left[0, \eta_{1}\right]$, then there exists $0 \leq \delta<\varepsilon$ such that for any $t_{1}, t_{2} \in\left[0, \eta_{1}\right)$ with $\left|t_{1}-t_{2}\right| \leq \delta$

$$
\begin{equation*}
\int_{\delta_{1}}^{\eta_{1}}\left|G_{\left[0, \eta_{1}\right]}\left(t_{1}, s\right)-G_{\left[0, \eta_{1}\right]}\left(t_{2}, s\right)\right| a_{1}(s) d s<\varepsilon . \tag{2.5}
\end{equation*}
$$

Using the fact that $G_{\left[0, \eta_{1}\right]}(t, s) \leq G_{\left[0, \eta_{1}\right]}(s, s)$ for $(t, s) \in\left[0, \eta_{1}\right] \times\left[0, \eta_{1}\right]$, by (2.4) and (2.5) we have for $t_{1}, t_{2} \in\left[0, \eta_{1}\right]$ with $\left|t_{1}-t_{2}\right|<\delta$,

$$
\begin{aligned}
\left|\left(K_{1} x\right)\left(t_{2}\right)-\left(K_{1} x\right)\left(t_{1}\right)\right| & \leq\left(K_{1} x\right)\left(\eta_{1}\right) \eta_{1}^{-1}\left|t_{2}-t_{1}\right| \\
& +L \int_{0}^{\eta_{1}}\left|G_{\left[0, \eta_{1}\right]}\left(t_{1}, s\right)-G_{\left[0, \eta_{1}\right]}\left(t_{2}, s\right)\right| a_{1}(s) d s \\
& \leq L \eta_{1}^{-1}\left|t_{2}-t_{1}\right|+2 L \int_{0}^{\delta_{1}} G_{\left[0, \eta_{1}\right]}(s, s) a_{1}(s) d s \\
& +L \int_{\delta_{1}}^{\eta_{1}}\left|G_{\left[0, \eta_{1}\right]}\left(t_{1}, s\right)-G_{\left[0, \eta_{1}\right]}\left(t_{2}, s\right)\right| a_{1}(s) d s \\
& \leq L\left(\eta_{1}^{-1}+3\right) \varepsilon
\end{aligned}
$$

Thus, $K_{1}(\Omega)$ is equicontinuous on $\left[0, \eta_{1}\right]$. Similarly, $K_{1}(\Omega)$ is equicontinuous on $\left[\eta_{1}, 1\right]$. According to Ascoli-Arzelà Theorem, $K_{1}(\Omega) \subset C[0,1]$ is a relatively compact set, and so $K_{1}: P \mapsto Q_{1}$ is a completely continuous operator. The proof is completed.

By Lemma 2.3, we have the following Lemma 2.4.
Lemma 2.4. Suppose that $\left(H_{1}\right)$ holds. Then $A_{n}: P^{\Delta} \mapsto Q^{\Delta}$ is a completely continuous operator for each positive integer $n$.

Lemma 2.5. Suppose that $\left(H_{1}\right)$ and $\left(H_{2}\right)$ hold, $\lambda>0, R_{\lambda}>0$. Moreover, for each $n \in N, \lambda A_{n}$ has at least one fixed point $\left(x_{n}, y_{n}\right)$ such that $\left\|\left(x_{n}, y_{n}\right)\right\| \leq R_{\lambda}$. Then the set $\left\{\left(x_{n}, y_{n}\right) \mid n \in N\right\}$ is a relatively compact set.

Proof. Let $z_{0}(t)=1$ for $t \in[0,1]$. Then we have for every positive integer $n$,

$$
\begin{align*}
& x_{n}(t)=\lambda K_{1} F_{1 n}\left(x_{n}, y_{n}\right)(t) \geq \lambda g_{1}\left(R_{\lambda}+1\right)\left(K_{1} z_{0}\right)(t)=: z_{\lambda 1}(t), t \in[0,1],  \tag{2.6}\\
& y_{n}(t)=\lambda K_{2} F_{2 n}\left(x_{n}, y_{n}\right)(t) \geq \lambda g_{2}\left(R_{\lambda}+1\right)\left(K_{2} z_{0}\right)(t)=: z_{\lambda 2}(t), t \in[0,1] . \tag{2.7}
\end{align*}
$$

Let us define the function $F_{1}$ by

$$
F_{1}(t)=\int_{t}^{1}(1-s) a_{1}(s) d s, t \in(0,1] .
$$

Obviously, $F_{1} \in C(0,1], F_{1}(1)=0$, and $F_{1}$ is non-increasing on $(0,1]$. For each positive integer $n$, by Lemma 2.2, we have

$$
\left\{\begin{array}{l}
-x_{n}^{\prime \prime}(t)=\lambda a_{1}(t) f_{1}\left(x_{n}(t)+n^{-1}, y_{n}(t)\right), \quad 0<t<1  \tag{2.8}\\
x_{n}(0)=0=x_{n}(1)-\alpha_{1} x_{n}\left(\eta_{1}\right)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
-y_{n}^{\prime \prime}(t)=\lambda a_{2}(t) f_{2}\left(x_{n}(t), y_{n}(t)+n^{-1}\right), \quad 0<t<1  \tag{2.9}\\
y_{n}(0)=0=y_{n}(1)-\alpha_{2} y_{n}\left(\eta_{2}\right)
\end{array}\right.
$$

By (2.8), we see that $x_{n}$ is a strictly concave function on $(0,1)$. Then there exists unique $t_{n 1} \in(0,1)$ such that $x_{n}^{\prime}\left(t_{n 1}\right)=0$ and $x_{n}\left(t_{n 1}\right)=\left\|x_{n}\right\|$. By $\left(H_{2}\right)$ and (2.8), we have

$$
-x_{n}^{\prime \prime}(t) \leq \lambda a_{1}(t) g_{1}\left(x_{n}(t)\right) \rho_{1}\left(R_{\lambda}\right), t \in(0,1)
$$

Integrate from $t_{n 1}$ to $t\left(t \in\left(t_{n 1}, 1\right)\right)$ to obtain

$$
\begin{equation*}
\frac{-x_{n}^{\prime}(t)}{g_{1}\left(x_{n}(t)\right)} \leq \lambda \rho_{1}\left(R_{\lambda}\right) \int_{t_{n 1}}^{t} a_{1}(s) d s \tag{2.10}
\end{equation*}
$$

Then integrate from $t_{n 1}$ to 1 to obtain

$$
\begin{equation*}
\int_{x_{n}(1)}^{x_{n}\left(t_{n 1}\right)} \frac{d s}{g_{1}(s)} \leq \lambda \rho_{1}\left(r_{\lambda}\right) \int_{t_{n 1}}^{1}(1-s) a_{1}(s) d s=\lambda \rho_{1}\left(R_{\lambda}\right) F_{1}\left(t_{n 1}\right) \tag{2.11}
\end{equation*}
$$

On the other hand, by $(2.6)$, we have when $\alpha_{1} \in(0,1)$,

$$
\begin{align*}
\int_{x_{n}(1)}^{x_{n}\left(t_{n 1}\right)} \frac{d s}{g_{1}(s)} & \geq \frac{x_{n}\left(t_{n 1}\right)-x_{n}(1)}{g_{1}\left(x_{n}(1)\right)} \\
& =\frac{x_{n}\left(t_{n 1}\right)-\alpha_{1} x_{n}\left(\eta_{1}\right)}{g_{1}\left(x_{n}(1)\right)}  \tag{2.12}\\
& \geq \frac{x_{n}\left(\eta_{1}\right)\left(1-\alpha_{1}\right)}{g_{1}\left(x_{n}(1)\right)} \\
& \geq \frac{z_{\lambda 1}\left(\eta_{1}\right)\left(1-\alpha_{1}\right)}{g_{1}\left(z_{\lambda 1}(1)\right)}>0
\end{align*}
$$

and when $\alpha_{1}=0$,

$$
\begin{equation*}
\int_{x_{n}(1)}^{x_{n}\left(t_{n 1}\right)} \frac{d s}{g_{1}(s)} \geq \int_{0}^{\left\|z_{\lambda 1}\right\|} \frac{d s}{g_{1}(s)} \tag{2.13}
\end{equation*}
$$

By (2.11)-(2.13), we have

$$
\begin{equation*}
F_{1}\left(t_{n 1}\right) \geq\left[\lambda \rho_{1}\left(R_{\lambda}\right)\right]^{-1} \min \left\{\frac{z_{\lambda 1}\left(\eta_{1}\right)\left(1-\alpha_{1}\right)}{g_{1}\left(z_{\lambda 1}(1)\right)}, \int_{0}^{\left\|z_{\lambda 1}\right\|} \frac{d s}{g_{1}(s)}\right\} \tag{2.14}
\end{equation*}
$$

Let $\beta_{01} \in(0,1)$ be such that

$$
F_{1}\left(\beta_{01}\right)=\left[\lambda \rho_{1}\left(R_{\lambda}\right)\right]^{-1} \min \left\{\frac{z_{\lambda 1}\left(\eta_{1}\right)\left(1-\alpha_{1}\right)}{g_{1}\left(z_{\lambda 1}(1)\right)}, \int_{0}^{\left\|z_{\lambda 1}\right\|} \frac{d s}{g_{1}(s)}\right\}
$$

Then (2.14) implies that $t_{n 1} \leq \beta_{01}$. Similarly, there exists $\alpha_{01} \in(0,1)$ such that $t_{n 1} \geq \alpha_{01}$.

Now let us define the function $I:[0, \infty) \mapsto[0, \infty)$ by $I(x)=\int_{0}^{x} \frac{d s}{g_{1}(s)}$ for $x \in[0, \infty)$. For any $t_{1}, t_{2} \in\left[\beta_{01}, 1\right], t_{1} \leq t_{2}$, by (2.10), we have

$$
\begin{aligned}
I\left(x_{n}\left(t_{1}\right)\right)-I\left(x_{n}\left(t_{2}\right)\right) & =\int_{x_{n}\left(t_{2}\right)}^{x_{n}\left(t_{1}\right)} \frac{d s}{g_{1}(s)}=\int_{t_{1}}^{t_{2}} \frac{-x_{n}^{\prime}(s) d s}{g_{1}\left(x_{n}(s)\right)} \\
& \leq \lambda \rho_{1}\left(R_{\lambda}\right) \int_{t_{1}}^{t_{2}} d s \int_{\alpha_{01}}^{s} a_{1}(\tau) d \tau \\
& \leq \lambda \rho_{1}\left(R_{\lambda}\right)\left(\int_{t_{1}}^{t_{2}}\left(t_{2}-s\right) a_{1}(s) d s\right. \\
& \left.+\left(t_{2}-t_{1}\right) \int_{\alpha_{01}}^{t_{1}} a_{1}(s) d s\right) \\
& \leq \lambda \rho_{1}\left(R_{\lambda}\right)\left(\int_{t_{1}}^{t_{2}}(1-s) a_{1}(s) d s\right. \\
& \left.+\frac{1}{\alpha_{01}}\left(t_{2}-t_{1}\right) \int_{\alpha_{01}}^{1-\left(t_{2}-t_{1}\right)} s a_{1}(s) d s\right)
\end{aligned}
$$

This and the inequalities of Lemma 2.1 imply that the set $I\left(\left\{x_{n} \mid n \in N\right\}\right)$ is euicontinuous on $\left[\beta_{01}, 1\right]$. It is easy to see that $I^{-1}$, the converse function of $I$, is uniformly continuous on $\left[0, I\left(R_{\lambda}\right)\right]$. Therefore, the set $\left\{x_{n} \mid n \in N\right\}$ is euicontinuous on $\left[\beta_{01}, 1\right]$. Similarly, $\left\{x_{n} \mid n \in N\right\}$ is equicontinuous on $\left[0, \alpha_{01}\right]$. From (2.6), we have for $t \in\left[\alpha_{01}, \beta_{01}\right]$

$$
\left|x_{n}^{\prime}(t)\right| \leq \lambda\left(g_{1}\left(\min _{t \in\left[\alpha_{01}, \beta_{01}\right]} z_{\lambda 1}(t)\right)+H_{1}\left(R_{\lambda}\right)\right) \int_{\alpha_{01}}^{\beta_{01}} a_{1}(s) d s
$$

Thus $\left\{x_{n} \mid n \in N\right\}$ is equicontinuous on $\left[\alpha_{01}, \beta_{01}\right]$. Then, by Ascoli-Arzelà Theorem, we see that $\left\{x_{n} \mid n \in N\right\} \subset C[0,1]$ is a relatively compact set.

Similarly, by (2.7) and (2.9), we can show that $\left\{y_{n} \mid n \in N\right\} \subset C[0,1]$ is also a relatively compact set. Therefore, $\left\{\left(x_{n}, y_{n}\right) \mid n \in N\right\}$ is a relatively compact set. The proof is completed.

## 3. MAIN RESULTS

Theorem 3.1. Suppose that $\left(H_{1}\right)$ and $\left(H_{2}\right)$ hold. Moreover,

$$
\begin{gathered}
\lim _{y \rightarrow \infty} \frac{h_{1}(x, y)}{y}=\infty \text { uniformly respect to } x \in[0, \infty), \\
\lim _{x \rightarrow \infty} \frac{h_{2}(x, y)}{x} \geq a \text { uniformly respect to } y \in[0, \infty),
\end{gathered}
$$

where $a$ is a positive number. Then there exists $\lambda^{*}>0$ such that the system (1.1 $\lambda^{\prime}$ has at least two positive solutions for $0<\lambda<\lambda^{*}$.

Proof. Let the operator $A_{n}$ be defined by (2.1) for each positive integer $n$. Take $0<R_{0}^{\prime}<R_{0}$ be such that

$$
A\left(R_{0}^{\prime}\right) \triangleq \inf _{(x, y) \in D_{R_{0}^{\prime}}}\left(\int_{\alpha_{1} x}^{x} \frac{d s}{g_{1}(s)}+\int_{\alpha_{2} y}^{y} \frac{d s}{g_{2}(s)}\right)>0
$$

Let the positive number $\lambda^{*}$ be such that

$$
\lambda^{*}<\min \left\{\frac{A\left(R_{0}\right)}{2\left[\rho_{1}\left(R_{0}\right)+\rho_{2}\left(R_{0}\right)\right] \gamma}, \frac{A\left(R_{0}^{\prime}\right)}{2\left[\rho_{1}\left(R_{0}^{\prime}\right)+\rho_{2}\left(R_{0}^{\prime}\right)\right] \gamma}\right\}
$$

Let $\lambda_{0} \in\left(0, \lambda^{*}\right)$ be fixed. Now we shall show that

$$
\begin{equation*}
(x, y) \neq \mu \lambda_{0} A_{n}(x, y), \forall n \in N,(x, y) \in \partial B_{R_{0}} \cap Q^{\Delta}, \mu \in[0,1] \tag{3.1}
\end{equation*}
$$

where $B_{R_{0}}=\left\{(x, y) \in P^{\Delta} \mid\|(x, y)\|<R_{0}\right\}$. In fact, if not, then there exist $n_{0} \in N, \mu_{0} \in(0,1]$ and $\left(x_{0}, y_{0}\right) \in \partial B_{R_{0}} \cap Q^{\Delta}$ such that

$$
\begin{equation*}
\left(x_{0}, y_{0}\right)=\mu_{0} \lambda_{0} A_{n_{0}}\left(x_{0}, y_{0}\right) \tag{3.2}
\end{equation*}
$$

From $\left(H_{2}\right)$, we see that

$$
\begin{aligned}
& x_{0}\left(\eta_{1}\right)=\mu_{0} \lambda_{0} K_{1} F_{1 n_{0}}\left(x_{0}, y_{0}\right)\left(\eta_{1}\right) \geq \mu_{0} \lambda_{0} g_{1}\left(R_{0}+1\right)\left(K_{1} z_{0}\right)\left(\eta_{1}\right)>0 \\
& y_{0}\left(\eta_{2}\right)=\mu_{0} \lambda_{0} K_{2} F_{2 n_{0}}\left(x_{0}, y_{0}\right)\left(\eta_{2}\right) \geq \mu_{0} \lambda_{0} g_{2}\left(R_{0}+1\right)\left(K_{2} z_{0}\right)\left(\eta_{2}\right)>0
\end{aligned}
$$

where $z_{0}(t)=1$ for $t \in[0,1]$. Then we have for $t \in[0,1]$,

$$
\begin{equation*}
x_{0}(t) \geq\|x\| e_{1}(t)>0, \quad y_{0}(t) \geq\|y\| e_{2}(t)>0 \tag{3.3}
\end{equation*}
$$

By (3.2) and Lemma 2.2, we have

$$
\left\{\begin{array}{l}
x_{0}^{\prime \prime}(t)+\mu_{0} \lambda_{0} a_{1}(t) f_{1}\left(x_{0}(t)+n_{0}^{-1}, y_{0}(t)\right)=0, \quad 0<t<1  \tag{3.4}\\
x_{0}(0)=0=x_{0}(1)-\alpha_{1} x_{0}\left(\eta_{1}\right)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
y_{0}^{\prime \prime}(t)+\mu_{0} \lambda_{0} a_{2}(t) f_{2}\left(x_{0}(t), y_{0}(t)+n_{0}^{-1}\right)=0, \quad 0<t<1  \tag{3.5}\\
y_{0}(0)=0=y_{0}(1)-\alpha_{2} y_{0}\left(\eta_{2}\right)
\end{array}\right.
$$

By (3.4), we see that $x_{0}$ is a strictly concave function on $[0,1]$, and there exists $t_{1} \in(0,1)$ such that $x_{0}^{\prime}\left(t_{1}\right)=0, x_{0}\left(t_{1}\right)=\left\|x_{0}\right\|$. By (3.4), and $\left(H_{2}\right)$, we have

$$
\begin{equation*}
-x_{0}^{\prime \prime}(t) \leq \lambda_{0} a_{1}(t) g_{1}\left(x_{0}(t)\right) \rho_{1}\left(R_{0}\right), t \in(0,1) \tag{3.6}
\end{equation*}
$$

Integrate from $t\left(t \in\left(0, t_{1}\right)\right)$ to $t_{1}$ to obtain

$$
\frac{x_{0}^{\prime}(t)}{g_{1}\left(x_{0}(t)\right)} \leq \lambda_{0} \rho_{1}\left(R_{0}\right) \int_{t}^{t_{1}} a_{1}(s) d s
$$

Then integrate from 0 to $t_{1}$ to obtain

$$
\begin{equation*}
\int_{x_{0}(0)}^{x_{0}\left(t_{1}\right)} \frac{d s}{g_{1}(s)} \leq \lambda_{0} \rho_{1}\left(R_{0}\right) \int_{0}^{t_{1}} s a_{1}(s) d s \leq \frac{\lambda_{0} \rho_{1}\left(R_{0}\right) \gamma}{1-t_{1}} \tag{3.7}
\end{equation*}
$$

In the same way as the proof of (2.11), by (3.6), we can show that

$$
\begin{equation*}
\int_{x_{0}(1)}^{x_{0}\left(t_{1}\right)} \frac{d s}{g_{1}(s)} \leq \lambda_{0} \rho_{1}\left(R_{0}\right) \int_{t_{1}}^{1}(1-s) a_{1}(s) d s \leq \frac{\lambda_{0} \rho_{1}\left(R_{0}\right) \gamma}{t_{1}} \tag{3.8}
\end{equation*}
$$

By (3.7) and (3.8), we have

$$
\begin{equation*}
\int_{\alpha_{1}\left\|x_{0}\right\|}^{\left\|x_{0}\right\|} \frac{d s}{g_{1}(s)} \leq \int_{x_{0}(1)}^{x_{0}\left(t_{1}\right)} \frac{d s}{g_{1}(s)} \leq 2 \lambda_{0} \rho_{1}\left(R_{0}\right) \gamma \tag{3.9}
\end{equation*}
$$

By (3.5), we can show that

$$
\begin{equation*}
\int_{\alpha_{2}\left\|y_{0}\right\|}^{\left\|y_{0}\right\|} \frac{d s}{g_{2}(s)} \leq 2 \lambda_{0} \rho_{2}\left(R_{0}\right) \gamma \tag{3.10}
\end{equation*}
$$

By (3.9) and (3.10), we have

$$
A\left(R_{0}\right) \leq \int_{\alpha_{1}\left\|x_{0}\right\|}^{\left\|x_{0}\right\|} \frac{d s}{g_{1}(s)}+\int_{\alpha_{2}\left\|y_{0}\right\|}^{\left\|y_{0}\right\|} \frac{d s}{g_{2}(s)} \leq 2 \lambda_{0}\left(\rho_{1}\left(R_{0}\right)+\rho_{2}\left(R_{0}\right)\right) \gamma
$$

and so

$$
\lambda_{0} \geq \frac{A\left(R_{0}\right)}{2 \gamma\left(\rho_{1}\left(R_{0}\right)+\rho_{2}\left(R_{0}\right)\right)}
$$

which is a contradiction. This implies that (3.1) holds. Then we have for each positive integer $n$,

$$
\begin{equation*}
i\left(\lambda_{0} A_{n}, B_{R_{0}} \cap Q^{\Delta}, Q^{\Delta}\right)=1 \tag{3.11}
\end{equation*}
$$

Similarly, we can show that

$$
\begin{equation*}
i\left(\lambda_{0} A_{n}, B_{R_{0}^{\prime}} \cap Q^{\Delta}, Q^{\Delta}\right)=1 \tag{3.12}
\end{equation*}
$$

Let $[\alpha, \beta] \subset(0,1)$, and

$$
\begin{aligned}
& \gamma_{1}=\int_{\alpha}^{\beta} G_{[0,1]}\left(\eta_{1}, s\right) a_{1}(s) e_{2}(s) d s \\
& \gamma_{2}=\int_{\alpha}^{\beta} G_{[0,1]}\left(\eta_{2}, s\right) a_{2}(s) e_{1}(s) d s
\end{aligned}
$$

Then, for $M_{\lambda_{0}}>\max \left\{\left(\lambda_{0} \gamma_{1}\right)^{-1}, 4\left(\lambda_{0}^{2} \gamma_{1} \gamma_{2} a\right)^{-1}\right\}$, there exists $R_{\lambda_{0}}^{\prime}>0$ such that

$$
\begin{equation*}
h_{1}(x, y) \geq M_{\lambda_{0}} y, y \geq R_{\lambda_{0}}^{\prime}, x \geq 0 \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{2}(x, y) \geq \frac{1}{2} a x, x \geq R_{\lambda_{0}}^{\prime}, y \geq 0 \tag{3.14}
\end{equation*}
$$

Let $c_{0}=\min \left\{\min _{t \in[\alpha, \beta]} e_{1}(t), \min _{t \in[\alpha, \beta]} e_{2}(t)\right\}, n_{1}>c_{0}^{-1}$ and

$$
R_{\lambda_{0}} \geq \max \left\{4 n_{1} R_{\lambda_{0}}^{\prime}\left(\lambda_{0} a \gamma_{2}\right)^{-1}, 2 R_{\lambda_{0}}^{\prime} c_{0}^{-1}, 4 n_{1} R_{\lambda_{0}}^{\prime}, R_{0}\right\}
$$

Let $\left(\Psi_{1}, \Psi_{2}\right) \in Q^{\Delta} \backslash\{\theta, \theta\}$. Now we shall show that

$$
\begin{equation*}
(x, y) \neq \lambda_{0} A_{n}(x, y)+\mu\left(\Psi_{1}, \Psi_{2}\right),(x, y) \in \partial B_{R_{\lambda_{0}}} \cap Q^{\Delta}, \mu \geq 0, n \in N \tag{3.15}
\end{equation*}
$$

In fact, if not, assume that for some $\left(x_{0}, y_{0}\right) \in \partial B_{R_{\lambda_{0}}} \cap Q^{\Delta}, n_{0} \in N$ and $\mu_{0} \geq 0$,

$$
\left(x_{0}, y_{0}\right)=\lambda_{0} A_{n_{0}}\left(x_{0}, y_{0}\right)+\mu_{0}\left(\Psi_{1}, \Psi_{2}\right) .
$$

Since $\left\|\left(x_{0}, y_{0}\right)\right\|=R_{\lambda_{0}}$, then we have one of these two cases:
(1) $\left\|x_{0}\right\| \geq \frac{R_{\lambda_{0}}}{2}$. Since $x_{0} \in Q_{1}$, then we have

$$
x_{0}(t) \geq\left\|x_{0}\right\| e_{1}(t) \geq \frac{R_{\lambda_{0}}}{2} \min _{t \in[\alpha, \beta]} e_{1}(t) \geq R_{\lambda_{0}}^{\prime}, t \in[\alpha, \beta] .
$$

By (3.14), we have

$$
\begin{aligned}
\left\|y_{0}\right\| & \geq y_{0}\left(\eta_{2}\right)=\lambda_{0} \int_{0}^{1} G_{[0,1]}\left(\eta_{2}, s\right) a_{2}(s) f_{2}\left(x_{0}(s), y_{0}(s)+n_{0}^{-1}\right) d s+\mu_{0} \Psi_{2}\left(\eta_{2}\right) \\
& \geq \lambda_{0} \int_{0}^{1} G_{[0,1]}\left(\eta_{2}, s\right) a_{2}(s) f_{2}\left(x_{0}(s), y_{0}(s)+n_{0}^{-1}\right) d s \\
& \geq \frac{1}{2} \lambda_{0} a \int_{\alpha}^{\beta} G_{[0,1]}\left(\eta_{2}, s\right) a_{2}(s) x_{0}(s) d s \\
& \geq \frac{1}{2}\left\|x_{0}\right\| \lambda_{0} a \gamma_{2} \\
& \geq \frac{1}{4} R_{\lambda_{0}} \lambda_{0} a \gamma_{2} \\
& \geq n_{1} R_{\lambda_{0}}^{\prime}
\end{aligned}
$$

(2) $\left\|y_{0}\right\| \geq \frac{R_{\lambda_{0}}}{2}$. Since $y_{0} \in Q_{2}$, then we have

$$
y_{0}(t) \geq\left\|y_{0}\right\| e_{2}(t) \geq \frac{R_{\lambda_{0}}}{2} \min _{t \in[\alpha, \beta]} e_{2}(t) \geq R_{\lambda_{0}}^{\prime}, t \in[\alpha, \beta] .
$$

By (3.13), we have

$$
\begin{aligned}
\left\|x_{0}\right\| & \geq x_{0}\left(\eta_{1}\right)=\lambda_{0} \int_{0}^{1} G_{[0,1]}\left(\eta_{1}, s\right) a_{1}(s) f_{1}\left(x_{0}(s)+n_{0}^{-1}, y_{0}(s)\right) d s+\mu_{0} \Psi_{1}\left(\eta_{1}\right) \\
& \geq \lambda_{0} \int_{0}^{1} G_{[0,1]}\left(\eta_{1}, s\right) a_{1}(s) f_{1}\left(x_{0}(s)+n_{0}^{-1}, y_{0}(s)\right) d s \\
& \geq \frac{1}{2} \lambda_{0} M_{\lambda_{0}}\left\|y_{0}\right\| \gamma_{1} \\
& \geq \frac{R_{\lambda_{0}}}{4} \lambda_{0} M_{\lambda_{0}} \gamma_{1} \\
& \geq \frac{R_{\lambda_{0}}}{4} \\
& \geq n_{1} R_{\lambda_{0}}^{\prime}
\end{aligned}
$$

Now, from the arguments of (1) and (2), we have

$$
\begin{aligned}
& x_{0}(t) \geq\left\|x_{0}\right\| e_{1}(t) \geq n_{1} R_{\lambda_{0}}^{\prime} \min _{t \in[\alpha, \beta]} e_{1}(t) \geq R_{\lambda_{0}}^{\prime}, t \in[\alpha, \beta], \\
& y_{0}(t) \geq\left\|y_{0}\right\| e_{2}(t) \geq n_{1} R_{\lambda_{0}}^{\prime} \min _{t \in[\alpha, \beta]} e_{2}(t) \geq R_{\lambda_{0}}^{\prime}, t \in[\alpha, \beta] .
\end{aligned}
$$

Then, by (3.13) and (3.14), we have

$$
\begin{align*}
\left\|x_{0}\right\| & \geq x_{0}\left(\eta_{1}\right) \geq \lambda_{0} \int_{\alpha}^{\beta} G_{[0,1]}\left(\eta_{1}, s\right) a_{1}(s) h_{1}\left(x_{0}(s)+n_{0}^{-1}, y_{0}(s)\right) d s  \tag{3.16}\\
& \geq \lambda_{0} M_{\lambda_{0}}\left\|y_{0}\right\| \gamma_{1} \\
\left\|y_{0}\right\| & \geq y_{0}\left(\eta_{2}\right) \geq \lambda_{0} \int_{0}^{1} G_{[0,1]}\left(\eta_{2}, s\right) a_{2}(s) f_{2}\left(x_{0}(s), y_{0}(s)+n_{0}^{-1}\right) d s \\
& \geq \lambda_{0} \int_{\alpha}^{\beta} G_{[0,1]}\left(\eta_{2}, s\right) a_{2}(s) h_{2}\left(x_{0}(s), y_{0}(s)+n_{0}^{-1}\right) d s  \tag{3.17}\\
& \geq \frac{1}{2} \lambda_{0} a\left\|x_{0}\right\| \gamma_{2}
\end{align*}
$$

From (3.16) and (3.17), we have

$$
\left\|x_{0}\right\| \geq \lambda_{0} M_{\lambda_{0}} \gamma_{1} \cdot \frac{1}{2} \lambda_{0} a \gamma_{2}\left\|x_{0}\right\| \geq 2\left\|x_{0}\right\|
$$

which is a contradiction. This implies that (3.15) holds. From the properties of the fixed point index, we have

$$
\begin{equation*}
i\left(\lambda_{0} A_{n}, B_{R_{\lambda_{0}}} \cap Q^{\Delta}, Q^{\Delta}\right)=0, \forall n \in N \tag{3.18}
\end{equation*}
$$

It follows from (3.11) and (3.18) that

$$
i\left(\lambda_{0} A_{n},\left(B_{R_{\lambda}} \backslash \bar{B}_{R_{0}}\right) \cap Q^{\Delta}, Q^{\Delta}\right)=-1, \forall n \in N
$$

Thus, the operator $\lambda_{0} A_{n}$ has at least one fixed point $\left(x_{n 1}, y_{n 1}\right)$ such that $\left\|\left(x_{n 1}, y_{n 1}\right)\right\| \leq R_{\lambda_{0}}$. From Lemma 2.5, $\left\{\left(x_{n 1}, y_{n 1}\right) \mid n \in N\right\}$ is a relatively
compact set. Without loss of generality, we may assume that $\left(x_{n 1}, y_{n 1}\right) \rightarrow$ $\left(x_{1}, y_{1}\right)$ as $n \rightarrow \infty$. By Lemma 2.2, we have for each positive integer $n$

$$
\left\{\begin{array}{l}
x_{11}^{\prime \prime}(t)+\lambda_{0} a_{1}(t) f_{1}\left(x_{n 1}(t)+n^{-1}, y_{n 1}(t)\right)=0, \quad 0<t<1,  \tag{3.19}\\
x_{n 1}(0)=0=x_{n 1}(1)-\alpha_{1} x_{n 1}\left(\eta_{1}\right),
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
y_{11}^{\prime \prime}(t)+\lambda_{0} a_{2}(t) f_{2}\left(x_{n 1}(t), y_{n 1}(t)+n^{-1}\right)=0, \quad 0<t<1,  \tag{3.20}\\
y_{n 1}(0)=0=y_{n 1}(1)-\alpha_{2} y_{n 1}\left(\eta_{2}\right),
\end{array}\right.
$$

By (3.19), we have for $t \in(0,1)$,

$$
\begin{aligned}
x_{n 1}(t) & =x_{n 1}\left(\frac{1}{2}\right)+\left(t-\frac{1}{2}\right) x_{n 1}^{\prime}\left(\frac{1}{2}\right) \\
& -\int_{\frac{1}{2}}^{t} d s \int_{\frac{1}{2}}^{s} \lambda_{0} a_{1}(\tau) f_{1}\left(x_{n 1}(\tau)+n^{-1}, y_{n 1}(\tau)\right) d \tau
\end{aligned}
$$

Thus, $\left\{\left.x_{n 1}^{\prime}\left(\frac{1}{2}\right) \right\rvert\, n \in N\right\}$ is a bounded set. Without loss of generality, assume that $x_{n 1}^{\prime}\left(\frac{1}{2}\right) \rightarrow a_{1}$ as $n \rightarrow \infty$. Then, using the Lebesgue dominant Theorem, we have

$$
\begin{aligned}
x_{1}(t) & =x_{1}\left(\frac{1}{2}\right)+\left(t-\frac{1}{2}\right) a_{1} \\
& -\int_{\frac{1}{2}}^{t} d s \int_{\frac{1}{2}}^{s} \lambda_{0} a_{1}(\tau) f_{1}\left(x_{1}(\tau), y_{1}(\tau)\right) d \tau, t \in(0,1) .
\end{aligned}
$$

A direct computation shows

$$
\begin{equation*}
x_{0}^{\prime \prime}(t)+\lambda_{0} a_{1}(t) f_{1}\left(x_{0}(t), y_{0}(t)\right)=0, t \in(0,1) . \tag{3.21}
\end{equation*}
$$

By (3.19), we have

$$
\begin{equation*}
x_{1}(0)=0=x_{1}(1)-\alpha_{1} x_{1}\left(\eta_{1}\right) . \tag{3.22}
\end{equation*}
$$

Similarly, by (3.20) we can show that

$$
\left\{\begin{array}{l}
y_{1}^{\prime \prime}(t)+\lambda_{0} a_{2}(t) f_{2}\left(x_{1}(t), y_{1}(t)\right)=0, \quad 0<t<1,  \tag{3.23}\\
y_{1}(0)=0=y_{1}(1)-\alpha_{2} y_{1}\left(\eta_{2}\right)
\end{array}\right.
$$

$\operatorname{By}(3.21)-(3.23)$, we see that $\left(x_{1}, y_{1}\right)$ is a positive solution of $\left(1.1_{\lambda_{0}}\right)$.
By (3.12), we see that for every $n \in N \lambda_{0} A_{n}$ has at least one fixed point $\left(x_{n 2}, y_{n 2}\right)$ such that $\left\|\left(x_{n 2}, y_{n 2}\right)\right\| \leq R_{0}^{\prime}$. It follows from Lemma 2.5 that $\left\{\left(x_{n 2}, y_{n 2}\right) \mid n \in N\right\}$ is a relatively compact set. Without loss of generality, assume that $\left(x_{n 2}, y_{n 2}\right) \rightarrow\left(x_{2}, y_{2}\right)$ as $n \rightarrow \infty$. In the same way as above, we can show that $\left(x_{2}, y_{2}\right)$ is also a positive solution of $\left(1.1_{\lambda_{0}}\right)$. Since $\lambda_{0} \in\left(0, \lambda_{*}\right)$ is arbitrarily given, then the conclusion holds. This completes the proof.

In a similar way, we have the following Theorem 3.2.

Theorem 3.2. Suppose that $\left(H_{1}\right)$ and $\left(H_{2}\right)$ hold. Moreover,

$$
\begin{aligned}
& \lim _{y \rightarrow \infty} \frac{h_{1}(x, y)}{y} \geq a \text { uniformly respect to } x \in[0, \infty), \\
& \lim _{x \rightarrow \infty} \frac{h_{2}(x, y)}{x}=\infty \text { uniformly respect to } y \in[0, \infty),
\end{aligned}
$$

where $a$ is a positive number. Then there exists $\lambda^{*}>0$ such that the system $\left(1.1_{\lambda}\right)$ has at least two positive solutions for $0<\lambda<\lambda^{*}$.

Example 3.1. Consider the following three-point differential equation systems

$$
\begin{cases}x^{\prime \prime}+\lambda t^{-\frac{5}{3}}(1-t)^{-\frac{3}{7}}\left(x^{-6}+x^{\frac{1}{2}}+y^{\frac{1}{2}}+y^{2}\right)=0, & 0<t<1 \\ y^{\prime \prime}+\lambda t^{-\frac{1}{3}}(1-t)^{-\frac{5}{7}}\left(x^{\frac{1}{2}}+2 x+y^{2}+y^{-2}\right)=0, & 0<t<1 \\ x(0)=0=x(1)-\frac{5}{6} x\left(\frac{2}{3}\right) \\ y(0)=0=y(1)-\frac{8}{7} x\left(\frac{2}{7}\right) & \end{cases}
$$

Let $g_{1}(x)=x^{-6}, g_{2}(y)=y^{-2}, a_{1}(t)=t^{-\frac{5}{3}}(1-t)^{-\frac{3}{7}}, a_{2}(t)=t^{-\frac{1}{3}}(1-t)^{-\frac{5}{7}}$, $h_{1}(x, y)=x^{\frac{1}{2}}+y^{\frac{1}{2}}+y^{2}, h_{2}(x, y)=x^{\frac{1}{2}}+2 x+y^{2}$. Then all conditions of Theorem 3.1 are satisfied. According to Theorem 3.1, the system (3.24 ${ }_{\lambda}$ ) has at least two positive solutions for sufficiently small $\lambda>0$.

## References

[1] C. P. Gupta and Sergej I. Trofimchuk, Existence of a solution of a three-point boundary value problem and spectral radius of a related linear operator, Nonlinear Anal., 34(1998), 489-507.
[2] D. O'Regan, Existence principles and theory for singular Dirichlet boundary value problems, Differential Equations Dynam. Systems, 3(1995), 289-304.
[3] Haiyan Lü, Huimin Yu and Yansheng Liu, Positive solutions for singular boundary value problems of a coupled system of differential equations, J. Math Anal. Appl., 302(2005), 14-29.
[4] J. R. L. Webb, Positive solutions of some three point boundary value problems via fixed point index, Nonlinear Anal., 47(2001), 4319-4332.
[5] Ki Sik Ha and Yong-hoon Lee, Existence of multiple positive solutions of singular boundary value problems. Nonlinear Anal., 1997, 28(8), 429-1438.
[6] Ma Ruyun, Existence of solutions of nonlinear m-point boundary-value problems, J. Math. Anal. Appl., 256(2001), 556-567.
[7] R. Dalmasso, Positive solutions of singular boundary value problems, Nonlinear Anal., 27(6)(1996), 645-652.
[8] ] R. P. Agarwal and D. O'Regan, Multiple solutions for a coupled system of boundary value problems, Dynam. Contin. Discrete Impuls. Systems 7 (2000), 97-106.
[9] R.P. Agarwal and D. O'Regan, A coupled system of boundary value problems, Appl. Anal. 69(1998), 381-385.
[10] R.P. Agarwal and D. O'Regan, Nonlinear superlinear singular and nonsingular second order boundary value problems, J. Diff. Equ., 143(1998), 60-95.
[11] W. Feng and J. R. L. Webb, Solvability of a m-point nonlinear boundary value problem with nonlinear growth, J. Math. Anal. Appl., 212(1997), 467-480.
[12] X. Liu, Nontrivial solutions of singular nonlinear m-point boundary value problems, J. Math. Anal. Appl., 284(2003), 576-590.
[13] X. Xu, Positive solutions for singular m-point boundary value problems with positive parameter, J. Math. Anal. Appl., 291(2004), 352-367.
[14] X. Xu, Multiplicity results for positive solutions of some semi-positone three-point boundary value problems, J. Math. Anal. Appl., 291(2004), 673-689.
[15] X. Xu, Positive solutions of generalized Emden-Fowler equation, Nonlinear Analysis, 53(2003), 23-44.
[16] Zhongxin Zhang and Junyu Wang, The upper and lower solution method for a class of singular nonlinear second order three-point boundary value problems, J. Comput. Appl., 147(2002), 41-52.


[^0]:    ${ }^{0}$ Received: April 29, 2006.
    ${ }^{0} 2000$ Mathematics Subject Classification: 34B15, 34B25.
    ${ }^{0}$ Keywords:Singular three-point boundary value problem system, multiple positive solutions, the fixed point index.

