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Abstract. Some sharp discrete inequalities in normed linear spaces are obtained. New

reverses of the generalised triangle inequality are also given.

1. INTRODUCTION
Let (X, ||-]|) be a normed linear space over the real or complex number field

K. The mapping f : X — R, f(x) = %HLBHQ is obviously convex on X and
then there exists the following limits:
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<x, y>z o t—0— 2t ’
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for any two vectors in X. The mapping (-, -), ((-,-);) will be called the superior
semi-inner product (inferior semi-inner product) associated to the norm ||-|| .
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The following fundamental calculus rules are valid for these semi-inner prod-
ucts (see for instance [4, p. 27-32]):

(w,2), = |l2||* forz € X; (1.1)
(Az,y), =A(z,y), for A>0andz,y€ X; (1.2)
(z,\y), = Az,y), for A>0and z,y€ X; (1.3)
(A, y>p—)\<;v y>q for A <0 and z,y € X; (1.4)

(az,By), = af(z,y), fora,B € R withaf>0andz,y€ X; (1.5)
(=2, 9), = (2, —y), = — (z,y), forz,yeX; (1.6)

where p,q € {s,i} and p # q.
The following inequality is valid:

2
ly + ta||* = |y||*
o

> (z,y), 2 (z,1); (1.7)

Ny sl — )
- 2s

for any z,y € X and s < 0 < t.
An important result is the following Schwarz inequality:

‘(x,y)l)‘ < |zl lly|l for each =,y € X. (1.8)

Also, the following properties of sub(super)-additivity should be noted:
(1 4+ 22,Y) 50y < (2) (X1, 9) 505y T (T2, Y) 55) (1.9)

for each z1, 20,y € X.
Another important property of “quasi-linearity” holds as well:

(0x +y,2), = oz]* + (y,2), (1.10)

for any z,y € X and « a real number, where p = s or p = i.
Finally, we mention the continuity property:

[+ 2,2}, = (z,2), | < Nyl (1.11)

for each z,y,z € X and p= s or p = 1.
One of the most used inequalities in normed spaces is the triangle inequality
for several vectors, i.e.,

n n
x| <> Nyl (1.12)
j=1 Jj=1

for any z; € X, j e {1,...,n}.
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The main aim of this paper is to point out some inequalities for norms of
the vectors x; and Z?Zl xj, including some reverses of the triangle inequality
in the multiplicative form, i.e., lower bounds for the quantity

|52
2=t gl
provided that not all z; are zero and satisfy some appropriate conditions.
For classical results related to the reverse of the triangle inequality in

normed spaces see [3], [7], [9] and [8]. For more recent results, see [5], [6],
[1] and [2].

2. THE RESULTS

The following lemma is of interest itself as well.

Lemma 2.1. Let (X, ||-||) be a normed linear space. If z,a € X, then
1 2 2
(w,a); = 5 (llall* = = = af*) (2.1)
If |la|| > ||z — al|, then the constant & cannot be replaced by a larger quantity.

Proof. Utilising the semi-inner product properties, we have by (1.7) that
2 2 2 2 2 2
oa), — tin S5zl ol Jat (<Dl = Jal® _ ol = o —a
R 2s - 2 (—1) 2
and the inequality (2.1) is proved.
Now, assume that ||a|| > ||z — a|| and there exists a C' > 0 with the property

that

(z.a), 2 C (Jlal = llz = all) . (2.2)

Obviously a # 0, and if we choose x = €a, € € (0,1), then [|al]| > ||z — a]| since
|z — al| = (1 —¢€)||a|| . Replacing z by ea in (2.2) we get

llal® > € (Jlal* - (1= )? Jla]?)

giving

e>C (26 — 52) ,
for any € € (0,1). This is in fact 1 > C' (2 — ¢) and if we let ¢ — 0+, we get
C<3. O

Remark 2.2. As a coarser, but maybe more useful inequality, we can state
that

(z,a); > % ]l (lall =z = all), (2.3)
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provided ||a|| > ||z — a| .
We observe that (2.3) follows from (2.1) since, for |la|| > ||z —a|, the
triangle inequality gives:

1 2 2)_
> (llal* = llo = af*) =

>

(lall = {lz = all) (lall + [z = all)

(lall = llz = all) [l -

It is an open question whether the constant 3 in (2.3) is sharp.

N~ N~

The following result may be stated.

Theorem 2.3. Let (X, ||-||) be a normed space and x; € X, j € {1,...,n},
a € X\ {0}. Then for any p; > 0,5 € {1,...,n} with Z;L:lpj =1 we have

2 2
> piws| llall + 5D pj e —all® > 5 . (2.4)
i=1 j=1

The constant % in the right hand side of (2.4) is best possible in the sense that
1t cannot be replaced by a larger quantity.

Proof. We apply Lemma 2.1 on stating that
<:Ej7 CL>Z- +

for each j € {1,...,n}.
Multiplying with p; > 0 and summing over j from 1 to n, we get

n n n

1 2o Ly o
> opjlepa);+ 5D pille —al® > 5 llal* ;. (2.5)
j=1 j=1 j=1

Utilising the superadditivity property of the semi-inner product (-,-), in the
first variable (see [4, p. 29]) we have

<ijxj,a> > " pjlzj,a),. (2.6)
j=1 i J=l

By the Schwarz inequality applied for qu:l pjr; and a, we also have

n n
> pjj|| lall = <ijxj,a> : (2.7)
Jj=1 j=1 i

Therefore, by (2.5)—(2.7) we deduce the desired inequality (2.4).
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Now assume that there exists a D > 0 with the property that

n n

1 2 2
> i llall+ 5 > pi 2~ al = D lall®, (28)
i=1 j=1

for any n > 1, z; € X, p; >0, j € {1,...,n} with 3% ;p; = 1 and a €

X\ {0} .

If in (2.8) we choose n =1, py =1, x1 = €a, ¢ € (0,1), then we get

1
2 2 2 2
ellall”+5 @ =e)llal” = Dlal”,
giving
1
a+§u—@22D,

for any € € (0,1). Letting ¢ — 0+, we deduce D < % and the proof is
complete. O

The following result may be stated as well:

Proposition 2.4. Let zj,a € X with a # 0 and ||z; —a|| < ||a| for each
je{l,...,n}. Then for any p; > 0,5 € {1,...,n} with Z?lej =1 we have

n n n
1 1
> il lall +5 > sl ey —all = 5 llal Dpsllasll- (29)
j=1 j=1 j=1
Proof. From (2.3) we have

1 1
{25, a); + 5 llzsll llzs = all = 5 llaf flz;]

for any j € {1,...,n}.
The proof follows in the same manner as in Theorem 2.3 and we omit the
details. ]

The following reverse of the generalised triangle inequality may be stated:

Theorem 2.5. Let x; € X\ {0} and a € X\ {0} such that ||a|| > ||x; — al| for
each j € {1,...,n}. Then for any p; > 0,5 € {1,...,n} with E?lej =1 we

have

SR T

D S 1 G L1 (PR,
> pillzill — 21<i<n 5] llall

The constant 5 is best possible in (2.10).
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Proof. Let us denote

for each j € {1,...,n}. Therefore

<x]7a>12§pij”7 jE{l,,n}

Multiplying with p; and summing over j from 1 to n we obtain

n n

1
> pjlag,a), > 5022%’ ;1] (2.11)
j=1 j=1

and since:

n n n
> i llall > <ijwjaa> > pj(wj,a);, (2.12)
j=1 j=1 j=1

i
hence by (2.11) and (2.12) we deduce the desired result (2.10).
Now, assume that there exists a constant £ > 0 such that

] e
> =15 llz;ll 1<j<n [l | {]all
provided ||a|| > ||z; —al, j € {1,...,n}.
If we choose 1 =--- =, =¢ca, e € (0,1), and p; = ... = p, = %,thenwe
get
2 2 12
(1~
NP i 1
e |lall
giving
1>E((2—¢)
for any € € (0,1). Letting ¢ — 04, we deduce E < % and the proof is
complete. O

The following result may be stated as well:
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Proposition 2.6. Let zj,a € X\ {0}, j € {1,...,n} such that ||z; —al <
lall. Then for any p; > 0,5 € {1,...,n} with }3_, pj = 1 we have

n . .
szzlpﬂju (Jlall — maxi<j<n [|z; — al)
> i1 pj llzill — 2 all

Proof. From (2.3) we have

(>0). (2.14)

<xj7 a>i 1

> L min (all = 2y - all
25 1I<nj1£1n a Tj—a

= jal l; — al
= (- iz, s o

Now the proof follows the same steps as in that of Theorem 2.3 and the details
are omitted. g

Remark 2.7. If |la|| = 1 and ||z; — a|| < 1, then (2.10) has a simpler form:
HzﬂzlpﬂjH 1 1— ||lz; — af?
Womt POl L Ly Sl el o) o)
> =1 Py llzsll — 2 1<i<n ;|
while (2.14) becomes
[Same (s
> i1 pjllzsll — 2

A different approach for bounding the semi-inner product is incorporated
in the following:

— - >0). 2.1
s [l ~al ) (20 (2.16)

Lemma 2.8. Let (X, ||-||) be a normed space. If x,a € X, then

(z,a); = [la]l (llall = |z — al]) . (2.17)
The inequality (2.17) is sharp.
Proof. If a = 0, then obviously (2.17) holds with equality. For a # 0, consider

7_ (x,a) := lim —||a + sz - ||aH
s—0— S
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Observe that

2 2
lla + sz||” — llal

= i 2.1
{z,a); = lim P (2.18)
(ot [l bl

=7 (2,a) |a].

On the other hand, since the function R 5 s — |ja + sz|| € Ry is convex on
R, hence
la+ (=1) z[| — [l

T (2,a) > =) = llall = llz = all - (2.19)
Consequently, by (2.18) and (2.19) we get (2.17).
Now, let x = ea, e € (0,1), a # 0. Then
(w,a); =< all*, lall = [z = al = lla] = (1 = &) lla]l = < |all

which shows that the equality case in (2.17) holds true for the nonzero quan-
s 2 .
tities € ||a||”. The proof is complete. O

The following reverse of the generalised triangle inequality may be stated.

Theorem 2.9. Let a,xz; € X\ {0} for j € {1,...,n} with the property that
llal| > ||xj —al| for j € {1,...,n}. Then for any p; > 0,5 € {1,...,n} with
Z?Zl p; = 1 we have

M > min {‘W”_”xﬂ_“”} (>0). (2.20)

i pillzll T 1sisn [l
The inequality (2.20) is sharp.
Proof. On making use of Lemma 2.8, we have:

(g, a); lal (\aH — Il — aH)

5 5

> |lalln,

for each j € {1,...,n}, where

)= min {Ilall — ||z; —all}.
1<j<n [l

Now utilising the same argument explained in the proof of Theorem 2.5, we
get the desired inequality (2.20).

If we choose in (2.20) 21 =+ =2, =¢ca,e € (0,1),a# 0, and p; = ... =
pn = 1 then we have equality, and the proof is complete. O
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Remark 2.10. The above result may be stated in a simpler way, i.e., if
pe€(0,1), a and z; € X\ {0}, j € {1,...,n} are such that

(il =) lall = {lz; — all = pllz;ll (= 0) (2.21)
for each j € {1,...,n}, then

n n
> pjxg|| = 0> psllall. (2.22)
=1 j=1

3. OTHER RELATED RESULTS TO THE TRIANGLE INEQUALITY

The following result may be stated:
Theorem 3.1. Let (X, ||-||) be a normed linear space and z1,...,x, nonzero
vectors in X and pj > 0 with 377 p; = 1. If 7, := Y1 pjzj # 0 and there
exists a number r > 0 with
<xj7 jp>z‘ .
———L > foreach jeE{l,...,n}, (3.1)
[l | 1125 ||

then
n n
> pjag| = pi sl (3.2)
J=1 Jj=1

If p; > 0 for each j € {1,...,n}, then the equality holds in (3.2) if and only
if the equality case hold in (3.1) for each j € {1,...,n}.

Proof. From (3.1) on multiplying with p; > 0 we have
(pjwj; Tp); = rpj ||| |5

for any j € {1,...,n}.
Summing over j from 1 to n and taking into account the superadditivity
property of the interior semi-inner product, we have

n n n
<ijzj,wp> > (piws Ty = rl|Zpl Dyl (3.3)
j=1 j=1 j=1

i

and since
2

n n
<ij$jvl’p> = 1> pjz;| #0
=1 i l=t
hence by (3.3) we get (3.2).

The equality case is obvious and the proof is complete. O
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For the system of vectors z1, ...,z € X, we denote by Z its gravity center,
ie.,

1 n
T = E Z x;.
=1
The following corollary is obvious.

Corollary 3.2. Let x1,...,z, € X\ {0} be such that & # 0. If there exists a
number r > 0 such that

<xja j>z .

———L >7r foreach j€{l,...,n}, (3.4)

[l | 1]l

then the following reverse of the generalised triangle inequality holds:

n n
Dozl =Y gl (3.5)
j=1 j=1

The equality holds in (3.5) if and only if the case of equality holds in (3.4) for
each j € {1,...,n}.

The following refinements of the generalised triangle inequality may be
stated as well:

Theorem 3.3. Let zi,Zp,pi, @ € {1,...,n} be as in Theorem 3.1. If there
exists a number R with 1 > R > 0 and such that

R > <xj7j;p>s
e

for each je{l,...,n}, (3.6)

then
RY pjllzsl > (> piaj | - (3.7)
j=1 j=1

If p; > 0 for each j € {1,...,n}, then the equality holds in (3.7) if and only
if the equality case holds in (3.6) for each j € {1,...,n}.

The proof is similar to the one in Theorem 3.1 on taking into account
that the superior semi-inner product is a subadditative functional in the first
variable.

Corollary 3.4. Let zj, j € {1,...,n} be as in Corollary 3.2. If there exists
an R with 1> R >0 and

R> C@WE%

h j 1,... 3.8
- H.Z']H ”i’” fO/r eac -] e { Y 7n}7 < )
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then the following refinement of the generalised triangle inequality holds:

RY lzjll > Y- (3.9)
j=1 i=1

The equality hold in (3.9) if and only if the case of equality holds in (3.8) for
each j € {1,...,n}.

1]
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