Nonlinear Functional Analysis and Applications Vol. 12, No. 4 (2007), pp. 635-644

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright © 2007 Kyungnam University Press

CRITICAL POINT THEORY ON QUASI-METRIC SPACES

Grațiela Cicortaș

University of Oradea, Department of Mathematics and Computer Science, University Street 1, 410087 Oradea, Romania e-mail: cicortas@uoradea.ro

Abstract. In this paper we extend the notions of weak slope and critical point for quasimetric spaces. We study properties of critical set. We establish deformation and stability results.

1. Preliminaries

Let X be a non-empty set. Recall that a quasi-metric on X is a nonnegative function ρ on $X \times X$ such that

(i) for every $x, y \in X$, $\rho(x, y) = 0$ iff x = y

(*ii*) for every $x, y \in X$, $\rho(x, y) = \rho(y, x)$

(iii) there exists a finite constant $C \ge 1$ such that for every $x, y, z \in X$

$$\rho(x,z) \le C[\rho(x,y) + \rho(y,z)].$$

We call (X, ρ) a quasi-metric space. Let us remark that (iii) is equivalent with (iii)' there exists a finite constant \widetilde{C} such that for every $x, y, z \in X$

$$\rho(x, z) \le C \max\{\rho(x, y), \rho(y, z)\}.$$

For example, if ||x - y|| denotes the usual euclidean distance between $x, y \in \mathbb{R}^n$, then $\rho(x, y) = ||x - y||^n$ satisfies $\rho(x, z) \leq 2^n \max\{\rho(x, y), \rho(y, z)\} \leq 2^n [\rho(x, y) + \rho(y, z)], \forall x, y, z \in \mathbb{R}^n$, so it is a quasi-metric on \mathbb{R}^n .

It is known that quasi-metric spaces are metrizable. The proof was given by Gustavsson in [13]. An important result concerning quasi-metrics was given by Macias and Segovia in [14], which proved that any quasi-metric on X produces

 $^{^0\}mathrm{Received}$ December 3, 2006.

 $^{^02000}$ Mathematics Subject Classification: 58E05, 54E35.

 $^{^0{\}rm Keywords:}$ Quasi-metric, weak slope, critical point.

Grațiela Cicortaș

an uniform structure on $X \times X$ with a countable basis generating a metrizable topology on X and were able to introduce non-trivial Lipschitz functions on quasi-metric spaces. A more explicit construction of the metric induced by a quasi-metric was given by Aimar, Iaffei and Nitti in [1] without the use of uniformities. They also introduced a generalization of quasi-metric spaces and proved that any generalized quasi-metric space is metrizable.

Let (X, ρ) be a quasi-metric space. Denote by $B_r(x)$ the ball with center in x and radius $r: B_r(x) = \{y \in X | \rho(x, y) < r\}$. A subset A of X is open if $\forall x \in A, \exists \varepsilon > 0$ such that $B_{\varepsilon}(x) \subset A$. Remark that for C > 1 it does not follows that $B_r(x)$ is open. Following [14], there exists a quasi-metric ρ' on X such that ρ and ρ' are equivalent in the sense that there exist two positive constants c_1, c_2 satisfying $c_1\rho(x, y) \leq \rho'(x, y) \leq c_2\rho(x, y), \forall x, y \in X$ and the balls corresponding to ρ' are open sets in the topology induced by ρ' . Then, without loss of generality, we can always assume that the balls $B_r(x)$ are open.

We mention that if ρ is a quasi-metric on X, it is standard to verify that $\tilde{\rho} = \frac{\rho}{1+\rho}$ is also a quasi-metric on X. Then we can always replace ρ by a bounded quasi-metric.

2. ρ -weak slope and ρ -strong slope

In this section we extend some definitions and results developed by Corvellec, Degiovanni and Marzocchi in [6]-[12].

Through (X, ρ) denotes a quasi-metric space.

Definition 2.1. Let $f: X \to \mathbb{R}$ be continuous and $x \in X$. Define

 $|df|(x) = \sup\{\sigma \ge 0 \mid \exists \delta > 0, \exists \mathcal{H} : B_{\delta}(x) \times [0, \delta] \to X \text{ continuous, such that} \\ \rho(\mathcal{H}(y, t), y) \le t, \ f(\mathcal{H}(y, t)) \le f(y) - \sigma t, \ \forall \ y \in B_{\delta}(x), \ \forall \ t \in [0, \delta] \}.$

We call |df|(x) the ρ -weak slope of f at x.

Let us consider

$$\overline{\rho}((x,t),(x',t')) = \sqrt{\rho(x,x')^2 + (t-t')^2}$$

For $(x,t), (x',t'), (x'',t'') \in X \times \mathbb{R}$ arbitrary, we can write

$$\overline{\rho}((x,t),(x'',t'')) = \sqrt{\rho(x,x'')^2 + (t-t'')^2}$$

$$\leq \sqrt{C^2(\rho(x,x') + \rho(x',x''))^2 + ((t-t') + (t'-t''))^2}$$

$$\leq \sqrt{C^2\rho(x,x')^2 + (t-t')^2} + \sqrt{C^2\rho(x',x'')^2 + (t'-t'')^2}$$

$$\leq C[\overline{\rho}((x,t),(x',t')) + \overline{\rho}((x',t'),(x'',t''))].$$

We conclude that $\overline{\rho}$ is a quasi-metric on $X \times \mathbb{R}$. Denote

$$epi(f) = \{(x,\xi) \in X \times \mathbb{R} | f(x) \le \xi\}$$

and define

$$\mathcal{G}_f(x,\xi) = \xi$$

Then $\overline{\rho}$ is a quasi-metric on epi(f).

Let $f: X \to \mathbb{R}$ be continuous. Then we follow step by step the proof of [12, Proposition 2.3] and we obtain:

$$|d\mathcal{G}_f|(x, f(x)) = \begin{cases} \frac{|df|(x)}{\sqrt{1 + (|df|(x))^2}}, & |df|(x) < +\infty\\ 1, & |df|(x) = +\infty. \end{cases}$$

This result allows to define the ρ -weak slope for a lower ρ -semicontinuous function $f: X \to \mathbb{R} \cup \{+\infty\}$ by taking

$$|df|(x) = \begin{cases} \frac{|d\mathcal{G}_f|(x, f(x))}{\sqrt{1 - (|d\mathcal{G}_f|(x, f(x)))^2}}, & |d\mathcal{G}_f|(x, f(x)) < 1\\ +\infty, & |d\mathcal{G}_f|(x, f(x)) = 1. \end{cases}$$

Let $f : X \to \mathbb{R} \cup \{+\infty\}$ be lower semicontinuous. If $(x_n), x_n \in X$ is a sequence converging to $x \in X$ such that $(f(x_n))$ converges to f(x), then $|df|(x) \leq \liminf_n |df|(x_n)$; we conclude that the ρ -weak slope is lower semicontinuous.

Definition 2.2. Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be lower semicontinuous. Define the ρ -strong slope of f at $x \in X$ by taking

$$|\nabla f|(x) = \begin{cases} 0, & \text{if } x \text{ is a local minimum of } f \\ \limsup_{y \to x} \frac{f(y) - f(x)}{\rho(y, x)}, & \text{otherwise.} \end{cases}$$

Then $|df|(x) \leq |\nabla f|(x), \forall x \in X$. Moreover, for a C^1 -Finsler manifold and $f \in C^1(X, \mathbb{R})$ it follows that $|df|(x) = |\nabla f|(x) = ||(df)_x||, \forall x \in X$. The proof is analog to [12, Theorem 2.11] and [12, Corollary 2.12].

3. ρ -critical points

Critical point theory on metric spaces was developed by Corvellec, Degiovanni and Marzocchi in [6]-[12].

Let (X, ρ) be a quasi-metric space and let $f : X \to \mathbb{R}$ be continuous.

Definition 3.1. A point $x \in X$ is called ρ -critical point of f if |df|(x) = 0. A real number c is a ρ -critical value of f if there exists $x \in X$ such that |df|(x) = 0 and f(x) = c.

Grațiela Cicortaș

An useful tool in critical point theory is the Palais-Smale condition.

Definition 3.2. We say that f satisfies the Palais-Smale condition at level $c \ (c \in \mathbb{R} \text{ fixed})$, denoted by $(PS)_c$, if every sequence (x_n) in X such that $|df|(x_n) \to 0$ and $f(x_n) \to c$ has a subsequence (x_{n_k}) convergent in X (to a ρ -critical point of f).

Denote by K[f] the ρ -critical set of f. Define the ρ -critical set of level c by $K_c[f] = K[f] \cap f^{-1}(c)$; the set of sublevel c of f is $X_c[f] = \{x \in X | f(x) \le c\}$. **Theorem 3.3.** The ρ -critical set K[f] is closed in X.

Proof. Let $x_0 \in X \setminus K[f]$ be fixed. Then $|df|(x_0) \neq 0$. Let $\sigma > 0$ such that $|df|(x_0) > \sigma$. Because |df| is a lower semicontinuous function we can take U_0 an open neighborhood of x_0 in X such that $|df|(x) > \sigma$, $\forall x \in U_0$. Then

Remark 3.4. Let (X, ρ) be a quasi-metric space and $f : X \to \mathbb{R}$ be a continuous function. If x_0 is a local minimum point of f, then x_0 is a ρ -critical point of f.

 \square

4. An embedding theorem

Theorem 4.1. For any quasi-metric space (X, ρ) , there exists a Banach space E and $h: X \to E$ such that for any $x_1, x_2 \in X$ we have

$$\|h(x_1) - \frac{1}{C}h(x_2)\| = \rho(x_1, x_2) = \|\frac{1}{C}h(x_1) - h(x_2)\|.$$

Proof. We can assume that ρ is a bounded quasi-metric. Consider the set

 $E = \{f : X \to \mathbb{R} | f \text{ bounded } \}$

endowed with the norm

 $|df|(x) \neq 0, \forall x \in U_0.$

$$\|f\| = \sup_{x \in X} |f(x)|.$$

Let $x \in X$ be arbitrary. Define

$$f_x: X \to \mathbb{R}, \ y \mapsto f_x(y) = \rho(x, y)$$

$$h: X \to E, x \mapsto h(x) = f_x.$$

We deduce that $||h(x_1) - Ch(x_2)|| = \sup_{y \in X} |\rho(x_1, y) - C\rho(x_2, y)| \le C\rho(x_1, x_2),$

 $\forall x_1, x_2 \in X.$ For $y = x_1$ it results that $||h(x_1) - Ch(x_2)|| \ge C\rho(x_1, x_2).$ We conclude that $||h(x_1) - Ch(x_2)|| = C\rho(x_1, x_2).$

The inequality $||Ch(x_1) - h(x_2)|| \ge C\rho(x_1, x_2)$ can be proved analogous. \Box

5. Change of quasi-metric

It is interesting to know the relationship between weak slopes of a given function in a fixed point with respect to equivalent quasi-metrics.

Theorem 5.1. Let ρ and ρ' quasi-metrics on X such that there exist positive constants c_1, c_2 satisfying $c_1\rho(x, y) \leq \rho'(x, y) \leq c_2\rho(x, y), \forall x, y \in X$. If $f: X \to \mathbb{R}$ is a continuous function, then

$$\frac{1}{c_2}|df|(x) \le |\widetilde{df}|(x) \le \frac{1}{c_1}|df|(x)$$

at any point $x \in X$.

Proof. Consider $\sigma > 0$ such that $|df|(x) > \sigma$. By definition, there exist $\delta > 0$ and $\mathcal{H} : B_{\delta}(x) \times [0, \delta] \to X$ continuous such that $\rho(\mathcal{H}(y, t), y) \leq t$ and $f(\mathcal{H}(y, t)) \leq f(y) - \sigma t, \ \forall \ y \in B_{\delta}(x), \ \forall \ t \in [0, \delta]$. Take $\widetilde{\delta}$ such that $0 < \widetilde{\delta} < c_2 \delta$ and define $\widetilde{\mathcal{H}} : \widetilde{B}_{\widetilde{\delta}}(x) \times [0, \widetilde{\delta}] \to X, \ \widetilde{\mathcal{H}}(y, t) = \mathcal{H}(y, \frac{t}{c_2})$. Then we obtain the following inequalities:

$$\rho'(\widetilde{\mathcal{H}}(y,t),y) = \rho'(\mathcal{H}(y,\frac{t}{c_2}),y) \le c_2 \cdot \rho(\mathcal{H}(y,\frac{t}{c_2}),y) \le c_2 \cdot \frac{t}{c_2} = t$$
$$f(\widetilde{\mathcal{H}}(y,t)) = f(\mathcal{H}(y,\frac{t}{c_2})) \le f(y) - \sigma \cdot \frac{t}{c_2}.$$

We conclude that $|df|(x) \ge \frac{\sigma}{c_2}$ for any σ and, consequently, it follows that

$$|\widetilde{df}|(x) \ge \frac{1}{c_2} |df|(x)|$$

Take now $\sigma > 0$ such that $|\widetilde{df}|(x) > \sigma$. Then there exist $\widetilde{\delta} > 0$ and a continuous function $\widetilde{\mathcal{H}} : \widetilde{B}_{\widetilde{\delta}}(x) \times [0, \widetilde{\delta}] \to X$ such that $\rho(\widetilde{\mathcal{H}}(y, t), y) \leq t$ and $f(\widetilde{\mathcal{H}}(y, t)) \leq f(y) - \sigma t, \forall y \in \widetilde{B}_{\widetilde{\delta}}(x), \forall t \in [0, \widetilde{\delta}]$. Let δ be a positive number satisfying $c_1 \delta < \widetilde{\delta}$. Define $\mathcal{H} : B_{\delta}(x) \times [0, \delta] \to X$ by taking $\mathcal{H}(y, t) = \widetilde{\mathcal{H}}(y, c_1 t)$. Then the following inequalities are verified:

$$\rho(\mathcal{H}(y,t),y) = \rho(\widetilde{\mathcal{H}}(y,c_1t),y) \le \frac{1}{c_1} \cdot \rho'(\widetilde{\mathcal{H}}(y,c_1t),y) \le \frac{1}{c_1} \cdot c_1t = t$$

 $f(\mathcal{H}(y,t)) = f(\mathcal{H}(y,c_1t)) \leq f(y) - \sigma \cdot c_1t.$ These inequalities implies $|df|(x) \geq c_1\sigma$; σ being arbitrary, it follows that $|df|(x) \geq c_1|\tilde{df}|(x).$

We prove now the change of quasi-metric principle, following the metric case given by Corvellec in [6]-[8].

Let (X, ρ) be a quasi-metric space.

Theorem 5.2. Let A be a nonempty subset of X and $\beta : [0,\infty) \to (0,\infty)$ continuous.

There exists a quasi-metric $\tilde{\rho}$ on X which is equivalent to ρ on X and satisfy the following properties:

(i) if $f: X \to \mathbb{R}$ is continuous, then

$$|\widetilde{df}|(x) = \frac{|df|(x)}{\beta(\rho(x,A))}, \ \forall \ x \in X.$$

(ii) if $f: X \to \mathbb{R}$ is lower semicontinuous, then

$$|\widetilde{\nabla f}|(x) = \frac{|\nabla f|(x)}{\beta(\rho(x,A))}, \ \forall \ x \in X.$$

Proof. The construction of $\tilde{\rho}$ is standard: for $x, y \in X$ denote by Γ_{xy} the set of all C^1 -paths $[0,1] \to X$ from x to y and define

$$\widetilde{\rho}(x,y) = \inf_{\alpha \in \Gamma_{xy}} \int_0^1 \beta(\rho(\alpha(t),A)) \|\alpha'(t)\| dt,$$

where $\rho(x_0, A) = \inf_{a \in A} \rho(x_0, a)$. See [8, Theorem 3]. This is a quasi-metric on X, equivalent to ρ on X.

(i) Let x be fixed in X and let ε be a positive number. Assume that $|df|(x) > \sigma > 0$. Then there exist $\delta > 0$ and $\mathcal{H}: B_{\delta}(x) \times [0, \delta] \to X$ continuous

such that $\|\mathcal{H}(y,t) - \frac{1}{C}y\| \leq t$, $f(\mathcal{H}(y,t)) \leq f(y) - \sigma t$. Take $\delta > 0$ such that $\beta(\rho(y,A)) \leq \beta(\rho(x,A)) + \varepsilon$ for $y \in B_{2\delta}(x)$ and take $\widetilde{\delta} > 0$ such that $\widetilde{B}_{\widetilde{\delta}}(x) \subset B_{\delta}(x)$ and $\widetilde{\delta} < \delta(\beta(\rho(x,A)) + \varepsilon)$.

Define $\widetilde{\mathcal{H}}: \widetilde{B}_{\widetilde{\delta}}(x) \times [0, \widetilde{\delta}] \to X$ by

$$\widetilde{\mathcal{H}}(y,t) = \mathcal{H}\left(y, \frac{t}{\beta(\rho(x,A)) + \varepsilon}\right).$$

For $(y,t) \in \widetilde{B}_{\widetilde{\delta}}(x)$ and $s \in [0,1]$ consider the path $\alpha(s) = y + s(\widetilde{H}(y,t) - \frac{1}{C}y)$. Then

$$\widetilde{\rho}(\widetilde{H}(y,t),y) \le \int_0^1 \beta(\rho(\alpha(s),A)) \|\alpha'(s)\| ds \le t$$

and

$$f(\widetilde{H}(y,t)) \le f(y) - \frac{\sigma t}{\beta(\rho(x,A)) + \varepsilon}$$

which shows that

$$|\widetilde{df}|(x) \ge \frac{\sigma}{\beta(\rho(x,A)) + \varepsilon}.$$

We conclude that

$$|\widetilde{df}|(x) \ge \frac{|df|(x)}{\beta(\rho(x,A))}$$

Conversely, let x be fixed in X and let ε be a positive number such that $\beta(\rho(x, A)) > \varepsilon$. Take $\delta > 0$ such that $\beta(\rho(x, A)) - \varepsilon \leq \beta(\rho(y, A))$ for $y \in B_{3\delta}(x)$ and take $\sigma > 0$ such that $|\tilde{df}|(x) > \sigma > 0$.

Let $\widetilde{\delta} > 0$ and $\widetilde{\mathcal{H}} : \widetilde{B}_{\widetilde{\delta}}(x) \times [0, \widetilde{\delta}] \to X$ be continuous such that $\widetilde{\rho}(\widetilde{H}(y, t), y) \leq t$ and $f(\widetilde{H}(y, t)) \leq f(y) - \sigma t$, where $\widetilde{B}_{2\widetilde{\delta}}(x) \subset B_{\delta}(x)$.

For $\tilde{s} = \sup\{s \in [0,1] | \alpha(s) \in B_{3\delta}(x), \alpha \in \Gamma_{y,\tilde{H}(y,t)}\}$, it follows that

$$\begin{split} \int_0^s \beta(\rho(\alpha(s), A)) \|\alpha'(s)\| ds &\geq (\beta(\rho(x, A)) - \varepsilon) \|\alpha(\widetilde{s}) - \frac{1}{C}y\| \\ &\geq (\beta(\rho(x, A)) - \varepsilon) \|\widetilde{H}(y, t) - \frac{1}{C}y\|. \end{split}$$

This inequality implies

$$(\beta(\rho(x,A)) - \varepsilon) \| \widetilde{H}(y,t) - \frac{1}{C}y \| \le \widetilde{\rho}(\widetilde{H}(y,t),y) \le t.$$

Now we can take $\overline{\delta} > 0$ such that $(\beta(\rho(x, A)) - \varepsilon)\overline{\delta} \leq \widetilde{\delta}$ and $B_{\overline{\delta}}(x) \subset \widetilde{B}_{\widetilde{\delta}}(x)$ and we define $\mathcal{H} : B_{\overline{\delta}}(x) \times [0, \overline{\delta}] \to X$ by

$$\mathcal{H}(y,t) = \tilde{H}(y,(\beta(\rho(x,A)) - \varepsilon)t.$$

Then $\|\widetilde{H}(y,t) - \frac{1}{C}y\| \leq t$ and $f(H(y,t)) \leq f(y) - \sigma(\beta(\rho(x,A)) - \varepsilon)t$, which shows that $|\widetilde{df}|(x) \geq \sigma(\beta(\rho(x,A)) - \varepsilon)$ and consequently $|\widetilde{df}|(x) \geq \sigma\beta(\rho(x,A))$. (*ii*) We follow [10, Theorem 2.2] and the same rule as in (*i*).

6. Deformation theorems

Useful tools in classical critical point theory are the well known deformation lemmas; see Palais [17], Chang [4]. For the case of metric spaces, the problem was studied by Corvellec, Degiovanni and Marzocchi in [8], [9].

In the context of quasi-metric spaces, the deformation theorems have the following formulation:

Theorem 6.1. Let (X, ρ) be a quasi-metric space. Let $f : X \to \mathbb{R}$ and $\sigma : X \to [0, \infty)$ be continuous such that $|df|(x) \neq 0$ implies $|df|(x) > \sigma(x) > 0$. Then there exist $\tau : X \to [0, \infty)$ and $\eta : X \times [0, \infty) \to X$ continuous such that the following properties are satisfied:

- (i) $\tau(x) = 0$ if and only if |df|(x) = 0;
- (*ii*) $\rho(\eta(x,t),x) \le t$;
- (*iii*) if $\tau(x) \leq t$, then $\eta(x,t) = \eta(x,\tau(x))$;
- (iv) if $t \le \tau(x)$, then $f(\eta(x,t)) \le f(x) \sigma(x)t$.

In particular, $\eta(x,t) = x$ if and only if |df|(x) = 0.

Theorem 6.2. Let (X, ρ) be a quasi-metric space. Let $f : X \to \mathbb{R}$ be a continuous function such that the following assumptions are satisfied:

(i) for any a < c < b, the set $f^{-1}[a, c]$ is complete;

(ii) for any a < c < b, f satisfies the (PS) condition on $f^{-1}[a, c]$;

(*iii*) $K[f] \cap f^{-1}(a, b) = \emptyset;$

(iv) $K_a[f] = \emptyset$ or the connected components of $K_a[f]$ are single points. Then $X_a[f] \cup K_a[f]$ is a deformation retract of $X_b[f]$.

For the proofs we use Theorem 5.2 and follow step by step [8, Theorem 1] and [8, Theorem 4].

7. STABILITY OF CRITICAL VALUES

An interesting problem is the stability under perturbation of ρ -critical values; more precisely, we want to know if two enough close continuous functions on a quasi-metric space have close critical values.

This problem was first analyzed by Marino and Prodi in [15] for C^2 -functions on complete Riemann manifolds. The *G*-Riemann-Hilbert case, where *G* is a compact Lie group, is studied in [2]. The case of Finsler manifolds appears in [18] respectively in [3] and the metric case in [5].

We denote by $H_q(B, A)$ the q^{th} relative singular homology group of the pair (B, A) with real coefficients, where $A \subset B$ and q is a nonnegative integer. $H_*(B, A)$ denotes the graded group $(H_q(B, A))_q$.

We mention that for a deformation retract A' of A we have $H_n(A, A') = 0$, $\forall n$. Moreover, if $A'' \subset A' \subset A$ and A' is a deformation retract of A, then, for any nonnegative integer n, we have $H_n(A, A'') = H_n(A', A'')$. (See, for instance, [16].)

We need the following lemma (see [15]):

Lemma 7.1. Let A, X, B, A', Y, B' be topological spaces such that $A \subset X \subset B \subset A' \subset Y \subset B'$. Assume that $H_n(B, A) = 0$ and $H_n(B', A') = 0$, for any n. Then there exist an injective homomorphism $h : H_n(A', A) \to H_n(Y, X)$.

Theorem 7.2. Let (X, ρ) be a quasi-metric space. Let $f, g: X \to \mathbb{R}$ continuous functions such that $c \in \mathbb{R}$ is the only ρ -critical value of f in $[c - \varepsilon, c + \varepsilon]$, where $\varepsilon > 0$. Assume that for any x in $[c - \varepsilon, c + \varepsilon)$, the set $f^{-1}[c - \varepsilon, x]$ is complete, f satisfies the (PS)-condition on $f^{-1}[c - \varepsilon, x]$ and g satisfies the (PS)-condition on $g^{-1}[c - \varepsilon, x]$.

If there exist m such that $H_m(X_{c+\varepsilon}[f], X_{c-\varepsilon}[f]) \neq 0$ and $\delta = \delta_{\varepsilon} > 0$ such that

$$|f(x) - g(x)| \le \delta, \ \forall x \in X,$$

then there exists a ρ -critical value of g in the interval $[c - (\varepsilon - \delta), c + (\varepsilon - \delta)]$.

Proof. We follow the idea of [15, Teorema 4.1] and [5, Theorem 4.1]. If $\varepsilon > 2\delta$, the inequality $|f(x) - g(x)| \le \delta$ implies

$$X_{c-\varepsilon}[f] \subset X_{c-(\varepsilon-\delta)}[g] \subset X_{c-(\varepsilon-2\delta)}[f] \subset X_{c+(\varepsilon-2\delta)}[f] \subset X_{c+(\varepsilon-\delta)}[g] \subset X_{c+\varepsilon}[f].$$

Because $[c - \varepsilon, c + \varepsilon] \cap f(K[f]) = \{c\}$, Theorem 6.2 shows that $X_{c-\varepsilon}[f]$ is a deformation retract of $X_{c-(\varepsilon-2\delta)}[f]$ and $X_{c+(\varepsilon-2\delta)}[f]$ is a deformation retract of $X_{c+\varepsilon}[f]$. Then $H_n(X_{c-(\varepsilon-2\delta)}[f], X_{c-\varepsilon}[f]) = H_n(X_{c+\varepsilon}[f], X_{c+(\varepsilon-2\delta)}[f]) = 0$, for any n. Apply Lemma 7.1 and find an injective homomorphism

$$h: H_n(X_{c+(\varepsilon-2\delta)}[f], X_{c-\varepsilon}[f]) \to H_n(X_{c+(\varepsilon-\delta)}[g], X_{c-(\varepsilon-\delta)}[g]).$$

On the other hand,

$$H_n(X_{c+(\varepsilon-2\delta)}[f], X_{c-\varepsilon}[f]) = H_n(X_{c+\varepsilon}[f], X_{c-\varepsilon}[f]),$$

for any n, $X_{c+(\varepsilon-2\delta)}[f]$ being a deformation retract of $X_{c+\varepsilon}[f]$.

Now, we can use the assumption $H_m(X_{c+\varepsilon}[f], X_{c-\varepsilon}[f]) \neq 0$ and it follows that

$$H_m(X_{c+(\varepsilon-\delta)}[g], X_{c-(\varepsilon-\delta)}[g]) \neq 0$$

and $[c - (\varepsilon - \delta), c + (\varepsilon - \delta)] \cap g(K[g]) \neq \emptyset.$

Remark that the above theorem assures the existence of at least one ρ -critical point of g. Moreover, if f has p ρ -critical values, in the corresponding hypothesis, g has at least p ρ -critical points.

The assumption $|f(x) - g(x)| \leq \delta = \frac{\varepsilon}{M}, \forall x \in X$, where M > 2, implies $X_{c-\varepsilon}[f] \subset X_{c-(\varepsilon-\delta)}[g] \subset X_{c-\frac{\varepsilon}{2}}[g] \subset X_{c-(\frac{\varepsilon}{2}-\delta)}[f] \subset X_{c+(\frac{\varepsilon}{2}-\delta)}[f] \subset X_{c+\frac{\varepsilon}{2}}[g] \subset X_{c+(\varepsilon-\delta)}[g] \subset X_{c+\varepsilon}[f]$. Then the shortest interval which appears in the conclusion of Theorem 7.2 is $[c - \frac{\varepsilon}{2}, c + \frac{\varepsilon}{2}]$.

References

- H. Aimar, B. Iaffei and L. Nitti, On the Macias-Segovia metrization of quasi-metric spaces, Rev. Univ. Mat. Argent. 41(1998), 67-75.
- [2] D. Andrica and G. Cicortaş, A stability property of critical values and applications, Nonlinear Funct. Analysis Appl. 7 (2002), 429-436.
- [3] D. Andrica and G. Cicortaş, A stability property of critical values in equivariant context, Nonlinear Funct. Analysis Appl. 7 (2002), 509-516.
- Kc. Chang, Solutions of asymptotically linear operator equations via Morse theory, Commun. Pure Appl. Math. 34 (1981), 693-712.

Grațiela Cicortaș

- [5] G. Cicortaş, Perturbation theorems on Morse theory for continuous functions, Balkan J. Geom. Appl. 10 (2005), no. 2, 51-57.
- J-N. Corvellec, Morse theory for continuous functionals, J. Math. Anal. Appl. 196 (1995), 1050-1072.
- J-N. Corvellec, Quantitative deformation theorems and critical point theory, Pacific J. Math. 187 (1999), 263-279.
- [8] J-N. Corvellec, On the second deformation lemma, Topol. Methods Nonlinear Anal. 17 (2001), 55-66.
- J-N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation properties for continuous functionals and critical point theory, Topol. Methods Nonlinear Anal. 1 (1993), 151-171.
- [10] J-N. Corvellec and A.Hantoute, Homotopical stability of isolated critical points of continuous functionals, Set Valued Anal. 10 (2002), 143-164.
- [11] M. Degiovanni, On Morse theory for continuous functionals, Conf. Semin. Mat. Univ. Bari 290 (2003), 1-22.
- [12] M. Degiovanni and M. Marzocchi, A critical point theory for nonsmooth functions, Ann. Math. Pura Appl.(4) 167 (1994), 73-100.
- [13] J. Gustavsson, Metrization of quasi-metric spaces, Math. Scandinavica 35(1974), 56-60.
- [14] R. Macias and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. Math. 33(1979), 257-270.
- [15] A. Marino and G. Prodi, *Metodi perturbativi nella teoria di Morse*, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 11 (Suppl.) (1975), 1-32.
- [16] W. S. Massey, A Basic Course in Algebraic Topology, Springer-Verlag, New York, 1991.
- [17] R. Palais, Lusternik-Schnirelmann theory on Banach manifolds, Topology 5 (1966), 115-132.
- [18] M. Reeken, Stability of critical values and isolated critical continua, Manuscripta Math. 12 (1974), 163-193.