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Abstract. We establish common fixed point results for noncommuting nonlinear gener-

alized I-nonexpansive mappings in the setup of nonstarshaped set of q-normed space. As

application, various invariant approximation results are also obtained. Our results inprove,

extend and generalize various existing known results in the literature.

1. Introduction and preliminaries

Let X be a linear space. A q-norm on X is a real-valued function ‖.‖q on
X with 0 < q ≤ 1, satisfying the following conditions :
(a) ‖x‖q ≥ 0 and ‖x‖q = 0 iff x = 0,
(b) ‖λx‖q = | λ |q‖x‖q,
(c) ‖x + y‖q ≤ ‖x‖q + ‖y‖q,
for all x, y ∈ X and all scalars λ. The pair (X, ‖.‖q) is called a q-normed
space. It is a metric space with dq(x, y) = ‖x − y‖q for all x, y ∈ X, defining
a translation invariant metric dq on X. If q = 1, we obtain the concept of a
normed linear space. It is well-known that the topology of every Housdorff
locally bounded topological linear space is given by some q-norm, 0 < q ≤ 1.
The spaces lq and Lq[0, 1], 0 < q ≤ 1 are q-normed space. A q-normed space
is not necessarily a locally convex space. Recall that, if X is a topological

0Received May 13, 2006. Revised November 6, 2006.
02000 Mathematics Subject Classification: 41A50, 47H10.
0Keywords and phrases: Best approximant, contractive jointly continuous family, con-

tractive weakly jointly continuous family, starshaped set, R−weakly commuting map, R−
subweakly commuting maps, q-normed space.



364 Hemant Kumar Nashine

linear space, then its continuous dual space X∗ is said to separate the points
of X, if for each x 6= 0 in X, there exists an I ∈ X∗ such that Ix 6= 0. In this
case the weak topology on X is well-defined. We mention that, if X is not
locally convex, then X∗ need not separates the points of X. For example, if
X = Lq[0, 1], 0 < q < 1, then X∗ = {0} ( [15], page 36 and 37). However, there
are some non-locally convex spaces (such as the q-normed space lq, 0 < q < 1)
whose dual separates the points [10].

Let X be a metric space and let C be a nonempty subset of X. Let x ∈ X.
An element y ∈ C is called a best C-approximant to x ∈ X if

dist(x,C) = inf{d(x, z) : z ∈ C}.
The set of best C-approximants to x is denoted by PC(x0) and is defined

as PC(x0) = {y ∈ C : d(x, y) = dist(x,C)}. The map T : C → X is said to
be completely continuous if {xn} converges weakly to x implies that {Txn}
converges strongly to T x. Let I : C → C be a mapping. A mapping T : C →
C is called an I-contraction if there exists 0 ≤ k < 1 such that d(T x, T y) ≤
kd(Ix, Iy) for any x, y ∈ C. If k = 1, then T is called I-nonexpansive. The
set of fixed points of T (resp. I) is denoted by F (T ) (resp. F (I)) and closure
of T by cl(T ). A point x ∈ C is a common fixed point of I and T if x =
Ix = T x. The pair (I, T ) is called (1) commuting if IT x = T Ix for all
x ∈ C; (2) R−weakly commuting if for all x ∈ C there exists R > 0 such
that d(T Ix, IT x) ≤ Rd(T x, Ix). If R = 1, then the maps are called weakly
commuting. The set C is p−starshaped with p ∈ F (I) if the segment [p, x] =
{(1 − k)p + kx} joining p to x, is contained in C for all x ∈ C. Suppose C
is p−starshaped with p ∈ F (I) and is both T − and I− invariant. Then
T and I are called R-subweakly commuting on C [18] if there exists R ∈
(0,∞) such that d(T Ix − IT x) ≤ R dist(Ix, [T x, p]) for all x ∈ C. It is
well-known that commuting maps are R-subweakly commuting maps and R-
subweakly commuting maps are R-weakly commuting but not conversely in
general (see [17, 18]).

We give the definition providing the notion of contractive jointly continuous
family introduced by Dotson [4].

Let F = {fα}α∈X a family of functions from [0, 1] into C such that fα(1) = α
for each α ∈ C. The family F is said to be contractive, if there exists a function
φ : (0, 1) → (0, 1) such that for all α, β ∈ C and all t ∈ (0, 1), we have

d(fα(t)− fβ(t)) ≤ φ(t)d(α− β).

The family F is said to be jointly continuous(resp. jointly weakly continuous)
if t → t0 in [0, 1] and α → α0 in X(resp. if t → t0 in [0, 1] and α →w α0 in C),
then fα(t) → fα0(t0) (resp. fα(t) →w fα0(t0)) in X; here → and →w denotes
the strong and weak convergence respectively.
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Now, we give the property (Γ) on contractive jointly continuous family F .
A self mapping T of C is said to satisfy the property (Γ), if for any t ∈ [0, 1],

for all x ∈ C and for all fx ∈ F , we have T (fx(t)) = fT x(t).

During the last four decades several interesting and valuable results as appli-
cation of fixed point theorems were studied extensively in the field of invariant
approximation theory.

In 1963, Meinardus [11] was the first who observed the general principle
and employed a fixed point theorem to establish the existence of an invari-
ant approximation. Afterwards in 1969, Brosowski [2] obtained the following
generalization of Meinardus’s result.
Theorem 1.1. Let X be a normed space and T : X → X be a linear and
nonexpansive operator. Let C be a T −invariant subset of X and x0 ∈ F (T ).
If PC(x0), the set of best approximants of x0 in C, is nonempty compact and
convex, then there exists a y in PC(x0) which is also a fixed point of T .

On the other hand, Subrahmanyam [23] obtained the following generaliza-
tion of the above mentioned theorem of Meinardus [11].

Theorem 1.2. Let X be a normed space. If T : X → X is a nonexpansive
operator with a fixed point x0, leaving a finite dimensional subspace C of X
invariant, then there exists a best approximant of x0 in C which is also a fixed
point of T .

In 1981, Smoluk [22] observed that the finite dimensionality in the result of
Subrahmanyam can be replaced by the linearity and compactness of T . Later,
Habiniak [5] noted that the linearity of T in Smoluk′s result is redundant.

In 1979, Singh [19] observed that the linearity of mapping T and the con-
vexity of the set PC(x0) of best approximant of x0 in Theorem 1.1, can be
relaxed and proved the following extension of it.

Theorem 1.3. Let X be a normed space, T : X → X be a nonexpansive map-
ping, C be a T −invariant subset of X and x0 ∈ F (T ). If PC(x0) is nonempty
compact and starshaped, then there exists a best approximant of x0 in C which
is also a fixed point of T .

In a subsequent paper, Singh [20] also observed that only the nonexpansive-
ness of T on PC(x0)∪{x0} is necessary for the validity of Theorem 1.3. Further
in 1982, Hicks and Humpheries [6] had shown that Theorem 1.3 remain true,
if T : C → C is replaced by T : ∂C → C, where ∂C, denotes the boundary
of C. Furthermore, Sahab, Khan and Sessa [16] generalized the result of Hicks
and Humpheries [6]and Theorem 1.3 using two mappings, one linear and other
nonexpansive for commuting mappings and established the following result of
common fixed point for best approximant in setup of normed space. They
took this idea from Park [13].
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Theorem 1.4. Let I and T be self maps of X with x0 ∈ F (I)∩F (T ), C ⊂ X
with T : ∂C → C, and p ∈ F (I). If PC(x0), the set of best approximant is
compact and p−starshaped, I(PC(x0)) = PC(x0), I is continuous and linear
on PC(x0), I and T are commuting on PC(x0) and T is I−nonexpansive on
PC(x0) ∪ {x0}, then I and T have a common fixed point in PC(x0).

Recently, Al-Thagafi [1] generalized result of Sahab, Khan and Sessa [16]
and proved some results on invariant approximations for commuting map-
pings. More recently, with the introduction of non-commuting maps to this
area, O’Regan and Shahzad [14], and Shahzad [17, 18] further extended Al-
Thagafi’s results and obtained a numbere of results regarding invariant approx-
imation. All the above mentioned results are obtained on starshaped domain
and linearity or affinness condition of mapping.

Here it is important to remark that Dotson [3] proved the existence of
fixed point for nonexpansive mapping in the setup of starshaped. He further
extended his result without starshapedness under non-convex condition [4].
This idea was utilized by Mukherjee and Som [12] to prove existence of fixed
point as best approximant. In this way, they extended the result of Singh [19]
without starshapedness condition. In a paper, Khan and Khan [7] extended a
fixed point theorem of Dotson [4] and generalized a invariant approximation
result of Smoluk [22] in the setting of q- normed space. Further, Khan, Hussain
and Thaheem [8] extended the results of Khan and Khan [7] and generalized
the result of Singh [19] by using the concept of nonconvexity of Dotson [4].
More recently, Khan, Latif, Bano and Hussain [9] proved some results on
invariant approximations for commuting mappings in non-starshaped set of
q-normed space and extended and generalized the results of Al-Thagafi [1],
Habiniak [5], Khan, Hussain and Thaheem [8], Sahab, Khan and Sessa [16]
and Singh [19].

The purpose of this paper is to find existance results on common fixed
point for noncommuting nonlinear generalized I-nonexpansive mappings to
a domain which is not necessarily starshaped in q-normed space. As appli-
cation, various invariant approximation result are also obtained. Our results
improve, extend, generalize, and compliment those of Al-Thagafi [1], Dot-
son [3, 4], Habiniak [5], Khan and Khan [7], Khan, Hussain and Thaheem [8],
Khan, Latif, Bano and Hussain [9], Mukherjee and Som [12], O’Regan and
Shahzad [14], Sahab, Khan and Sessa [16], Shahzad [17, 18] and Singh [19].

2. Main results

The following result of O’Regan and Shahzad [14] is needed in the sequel:
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Theorem 2.1 ([14]). Let C be a closed subset of a metric space (X, d) and T
and I be R-weakly commuting self-maps of C such that T (C) ⊆ I(C). Suppose
there exists λ ∈ (0, 1) such that

d(T x, T y) ≤ λ max{d(Ix, Iy), d(T x, Ix), d(T y, Iy), d(T x, Iy), d(T y, Ix)]}

for all x, y ∈ C. If cl(T (C)) is complete and either T or I is continuous, then
F (T ) ∩ F (I) ∩ C is singleton.

We first prove common fixed theorem for noncommuting nonlinear general-
ized I-nonexpansive mappings in the set which is not necessarily starshaped
of q-normed space.

Theorem 2.2. Let C be a subset of q-normed space X and T and I be self-
mappings of C such that T (C) ⊂ I(C). Suppose C has a contractive family of
functions F = {fα}α∈C . If I satisfies the property (Γ) on C, T and I satisfy

‖T Ix− IT x‖q ≤ R ‖fT x(k)− Ix‖q (2.1)

for all x ∈ C, R > 0, and

‖T x− T y‖q ≤ max{‖Ix− Iy‖q, dist(fT x(k), Ix), dist(fT y(k), Iy),

dist(fT y(k), Ix), dist(fT x(k), Iy)}
(2.2)

for all x 6= y ∈ C, k ∈ (0, 1), then C ∩ F (T ) ∩ F (I) 6= φ, provided one of the
following conditions holds:

(i) C is closed, cl(T (C)) is compact, I and T are continuous, and family
F is jointly continuous,

(ii) X is complete with separating dual X∗, C is weakly compact, I and T
are weakly continuous, and family F is weakly jointly continuous,

(iii) X is complete with separating dual X∗, C is weakly compact, T is
completely continuous, I is continuous, and family F is jointly con-
tinuous,

(iv) X is complete with separating dual X∗, C is weakly compact, I is demi-
compact, T and I are continuous, and family F is jointly continuous.

Proof. Choose a sequence kn ∈ (0, 1) with {kn} → 1 as n → ∞. Define for
each n ≥ 1 and for all x ∈ C, a mapping Tn by

Tnx = fT x(kn).
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Then, each Tn is well defined from C into C for each n and Tn(C) ⊂ I(C) for
each n, since T (C) ⊂ I(C). The property (Γ) of I and (2.1) imply that

‖TnIx− ITnx‖q = ‖fT Ix(kn)− IfT x(kn)‖q

= ‖fT Ix(kn)− fIT x(kn)‖q

≤ [φ(kn)]q‖T Ix− IT x‖q

≤ [φ(kn)]qR‖fT x(kn)− Ix‖q

= [φ(kn)]qR‖Tnx− Ix‖q

for all x ∈ C. Thus Tn and I are [φ(kn)]qR− weakly commuting. Also by
(2.2),

‖Tnx− Tny‖q = ‖fT x(kn)− fT y(kn)‖q

≤ [φ(kn)]q‖T x− T y‖q

≤ [φ(kn)]q max{‖Ix− Iy‖q, dist(fT x(kn), Ix), dist(fT y(kn), Iy),

dist(fT y(kn), Ix), dist(fT x(kn), Iy)}

≤ [φ(kn)]q max{‖Ix− Iy‖q, ‖Tnx− Ix‖q, ‖Tny − Iy‖q,

‖Tny − Ix‖q, ‖Tnx− Iy‖q}
for all x, y ∈ C.

(i) Since cl(T (C)) is compact, cl(Tn(C)) is also compact. It follows from
Theorem 2.1, for each n ≥ 1, there exists xn ∈ C such that xn = Tnxn =
Ixn. As cl(T (C)) is compact and {T xn} is sequence in it, so {T xn} has a
subsequence {T xm} converging, e.g., to y ∈ cl(T (C)) .

xm = Tmxm = fT xm(km)

converges to y. By the continuity of T , {T xm} converges to T y. But T xm

tends to y by the assumption. So, by the jointly continuity of F , we have

Tmxm = fT xm(km) → fT y(1) = T y, as m →∞
Thus, T y = y. Also from the continuity of I, we have

Iy = I(limxm) = lim Ixm = lim xm = y, as m →∞
i.e., Iy = y. Hence C ∩ F (T ) ∩ F (I) 6= φ.

(ii) As in (i) there exists xn ∈ C such that xn = Tnxn = Ixn. Since C
is weakly compact, there is a subsequence {xm} of {xn} converging weakly
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to some w ∈ C as m → ∞. But, I is weakly continuous so we have Iw =
w. Now, T xm →w T w and hence xm = fT xm(km) → fT w(1) = T w. Also
since xm → w and the weak topology is Hausdorff, we get T w = w. Hence
C ∩ F (T ) ∩ F (I) 6= φ.

(iii) As in (i) there exists xn ∈ C such that xn = Tnxn = Ixn. Since C is
weakly compact, there is a subsequence {xm} of {xn} converging weakly to
some y ∈ C as m → ∞. Since T is completely continuous, T xm → T y as
m →∞. Now using the joint continuity of F and km → 1, we get

xm = fT xm(km) → fT y(1) = T y as m →∞.

Thus T xm → T 2y as m →∞ and consequently T 2y = T y implies that T z =
z, where z = T y. But, since Ixm = xm → T y = z, using the continuity of I
and the uniqueness of the limit, we have Iz = z. Hence C ∩F (T )∩F (I) 6= φ.

(iv) Suppose that (xn) is a bounded sequence and (T xn − xn) converges
strongly to 0. By demicompactness of I, (xn) has a subsequence (xm) con-
verges strongly to x(say) in C and hence xm = T xm → Ix implies that x = Ix.
Also T xm → T x. Further, from the joint continuity of F and km → 1, we
have xm = fT xm(km) → fT x(1) = T x as m →∞. Since the strong topology
is Hausdorff, we get T x = x. Hence C ∩F (T )∩F (I) 6= φ. This completes the
proof. ¤

Immediate consequences of the Theorem 2.2 are as follows:

Corollary 2.3. Let C be a subset of q-normed space X, and T and I self-
mappings of C such that T (C) ⊂ I(C). Suppose C has a contractive family
F = {fα}α∈C . If I satisfies the property (Γ) on C, T and I satisfy (2.1) for
R > 0 and T is I-nonexpansive on C, then C ∩ F (T ) ∩ F (I) 6= φ under each
of the conditions of Theorem 2.2.

Corollary 2.4. Let C be a subset of q-normed space X, and T and I self-
mappings of C such that T (C) ⊂ I(C). Suppose C has a contractive family
F = {fα}α∈C and I satisfies the property (Γ) on C. If T and I are commu-
tative and satisfy (2.2) for all x, y ∈ C, k ∈ (0, 1), then C ∩ F (T ) ∩ F (I) 6= φ
under each of the conditions of Theorem 2.2.

Remark 2.5. In the light of the comment given by Dotson [4] and Khan,
Latif, Bano and Hussain [9] that if C ⊆ X is p−starshaped and fα(t) =
(1−t)p+tα, (α ∈ C, t ∈ [0, 1]), then {fα}α∈C is a contractive jointly continuous
family with φ(t) = t. Thus the class of subsets of X with the property of
contractiveness and jointly continuity contains the class of starshaped sets
which in turns contains the class of convex sets. If for a subset C of X, there
exists a contractive jointly continuous family F = {fα}α∈C , then we say that
C has the property of contractiveness and joint continuity.



370 Hemant Kumar Nashine

Corollary 2.6. Let C be a subset of q-normed space X, and T and I self-
mappings of C such that T (C) ⊂ I(C). Suppose C is p-starshaped, and I is
affine with p ∈ F (I). If T and I are R-subweakly commuting and satisfy, for
all x, y ∈ C,

‖T x− T y‖q ≤ max{‖Ix− Iy‖q, dist([T x, p], Ix), dist([T y, p], Iy),

dist([T y, p], Ix), dist([T x, p], Iy)}
(2.3)

then C ∩ F (T ) ∩ F (I) 6= φ provided one of the following conditions holds:
(i) C is closed, cl(T (C)) is compact, and pair {T , I} is continuous,
(ii) X is complete with separating dual X∗, C is weakly compact, and pair

{T , I} is weakly continuous,
(iii) X is complete with separating dual X∗, C is weakly compact, T is

completely continuous, and I is continuous,
(iv) X is complete with separating dual X∗, C is weakly compact, I is

demicompact, and pair {T , I} is continuous.

Corollary 2.7. Let C be a subset of q-normed space X, and T and I self-
mappings of C such that T (C) ⊂ I(C). Suppose C is p-starshaped, and I is
affine with p ∈ F (I). If T and I are R-subweakly commuting and satisfy, for
all x, y ∈ C,

‖T x− T y‖q ≤ max{‖Ix− Iy‖q, dist([T x, p], Ix), dist([T y, p], Iy),

1
2 [dist([T y, p], Ix) + dist([T x, p], Iy)]}

(2.4)

then C ∩ F (T ) ∩ F (I) 6= φ under each of the conditions of Theorem 2.6.

Corollary 2.8. Let C be a subset of q-normed space X, and T and I self-
mappings of C such that T (C) ⊂ I(C). Suppose C is p-starshaped, and I is
affine with p ∈ F (I). If T and I are R-subweakly commuting and T is I-
nonexpansive on C, then C ∩ F (T ) ∩ F (I) 6= φ under each of the conditions
of Theorem 2.6.

Corollary 2.9. Let C be a subset of q-normed space X, and T and I self-
mappings of C such that T (C) ⊂ I(C). Suppose C is p-starshaped, and I
is affine with p ∈ F (I). If T and I are commuting and satisfy (2.3), for all
x, y ∈ C, then C ∩ F (T ) ∩ F (I) 6= φ under each of the conditions of Theorem
2.6.

Following Al-Thafgafi [1], we define D = PC(x0)∩DIC(x0), where DIC(x0) =
{x ∈ C : Ix ∈ PC(x0)}.
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Theorem 2.10. Let X be a q-normed space and T , I : X → X. Let C be
subset of X such that T (∂C ∩ C) ⊂ C and x0 ∈ F (T ) ∩ F (I). Assume D is
closed, has a contractive jointly continuous family F = {fα}α∈D, I(D) = D,
I satisfies the property (Γ), pair {T , I} is continuous on D, and cl(T (D)) is
compact. If I is nonexpansive on PM (x0) ∪ {x0}, T and I satisfy (2.1) for
x ∈ D, R > 0, and satisfy, for all x ∈ D ∪ {x0},

‖T x−T y‖q ≤





‖Ix− Ix0‖q, if y = x0,

max{‖Ix− Iy‖q, dist(Ix, fT x(k)), dist(Iy, fT y(k)),

dist(Ix, fT y(k)), dist(Iy, fT x(k))}, if y ∈ D,

(2.5)

where k ∈ (0, 1), then PC(x0) ∩ F (T ) ∩ F (I) 6= φ.

Proof. Let x ∈ D. Then, x ∈ PC(x0) and hence ‖x−x0‖q = dist(x0, C). Note
that for any k ∈ (0, 1),

‖kx0 + (1− k)x− x0‖q = (1− k)q‖x− x0‖q < dist(x0, C).

It follows that the line segment {kx0 + (1 − k)x : 0 < k < 1} and the set
C are disjoint. Thus x is not in the interior of C and so x ∈ ∂C ∩ C. Since
T (∂C ∩ C) ⊂ C, T x must be in C. Also since Ix ∈ PC(x0), x0 = T x0 = Ix0

and T and I satisfy (2.5), we have

‖T x− x0‖q = ‖T x− T x0‖q ≤ ‖Ix− Ix0‖q = ‖Ix− x0‖q = dist(x0, C).

Thus, T x ∈ PC(x0). As I is nonexpansive on PC(x0) ∪ {x0}, we have

‖IT x− x0‖q ≤ ‖T x− T x0‖q ≤ ‖Ix− Ix0‖q = ‖Ix− x0‖q = dist(x0, C).

Thus IT x ∈ PC(x0) and so T x ∈ DIC(x0). Hence T x ∈ D. Consequently,
T (D) ⊂ D = I(D). Now Theorem 2.2 guarantees that

PC(x0) ∩ F (T ) ∩ F (I) 6= φ.

This completes the proof. ¤
Theorem 2.11. Let X be a q-normed space and T , I : X → X. Let C be
subset of X such that T (∂C ∩ C) ⊂ C and x0 ∈ F (T ) ∩ F (I). Assume D is
closed, has a contractive jointly continuous family F = {fα}α∈D, I(D) = D,
I satisfies the property (Γ), pair {T , I} is continuous on D, and cl(T (D)) is
compact. If T and I are commuting on D and satisfy (2.5) for all x ∈ D∪{x0},
k ∈ (0, 1), then PC(x0) ∩ F (T ) ∩ F (I) 6= φ.

Proof. Let x ∈ D. As in the proof of Theorem 2.10, we obtain T x ∈ PC(x0).
Moreover, since T commutes with I on D and T and I satisfy (2.5),

‖IT x− x0‖q = ‖T Ix− T x0‖q ≤ ‖I2x− Ix0‖q = ‖I2x− x0‖q = dist(x0, C).
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Thus IT x ∈ PC(x0) and so T x ∈ DIC(x0). Hence T x ∈ D. Consequently,
T (D) ⊂ D = I(D). Now Theorem 2.2 guarantees that PC(x0)∩F (T )∩F (I) 6=
φ. This completes the proof. ¤
Theorem 2.12. Let X be a q-normed space and T , I : X → X. Let C be
subset of X such that T (∂C∩C) ⊂ I(C) ⊂ C and x0 ∈ F (T )∩F (I). Assume
D is closed, has a contractive jointly continuous family F = {fα}α∈D, I
satisfies the property (Γ), pair {T , I} is continuous on D, I(C)∩D ⊂ I(D) ⊂
D and cl(T (D)) is compact. If T and I are commuting on D and satisfy (2.5)
for all x ∈ D ∪ {x0}, then PC(x0) ∩ F (T ) ∩ F (I) 6= φ.

Proof. Let x ∈ D. As in Theorem 2.11, we obtain T x ∈ D, that is, T (D) ⊂ D
and x ∈ ∂C∩C and so T (D) ⊂ T (∂C∩C) ⊂ I(C). Thus, we can choose y ∈ C
such that T x = Iy. Because Iy = T x ∈ PC(x0), it follows that y ∈ DIC(x0).
Consequently, T (D) ⊂ I(DIC(x0)) ⊂ PC(x0). Therefore, T (D) ⊂ I(C) ∩D ⊂
I(D) ⊂ D. Now Theorem 2.2 guarantees that PC(x0)∩F (T )∩F (I) 6= φ. This
completes the proof. ¤
Remark 2.13. We observe that I(PC(x0)) ⊂ PC(x0) implies PC(x0) ⊂ DIC(x0)
and hence D = PC(x0). Consequently, Theorem 2.10, 2.11 and 2.12 remain
valid when D = PC(x0). Hence we obtain the following results.

Corollary 2.14. Let X be a q-normed space and T , I : X → X. Let C
be subset of X such that T (∂C ∩ C) ⊂ C and x0 ∈ F (T ) ∩ F (I). Assume
D = PC(x0) is closed, p-starshaped with p ∈ F (I), I is affine, I(D) = D, and
cl(T (D)) is compact. If the pair {T , I} is continuous, R-subweakly commuting
for x ∈ D, R > 0, and satisfy, for all x, y ∈ D ∪ {x0},

‖T x−T y‖q ≤





‖Ix− Ix0‖q, if y = x0,

max{‖Ix− Iy‖q, dist([T x, p], Ix), dist([T y, p], Iy),

dist([T y, p], Ix), dist([T x, p], Iy)}, if y ∈ D,

(2.6)

then PC(x0) ∩ F (T ) ∩ F (I) 6= φ.

Corollary 2.15. Let X be a q-normed space and T , I : X → X. Let C
be subset of X such that T (∂C ∩ C) ⊂ C and x0 ∈ F (T ) ∩ F (I). Assume
D = PC(x0) is closed, p-starshaped with p ∈ F (I), I is affine, I(D) = D, and
cl(T (D)) is compact. If the pair {T , I} is continuous, R-subweakly commuting
for x ∈ D, R > 0, and satisfy, for all x, y ∈ D ∪ {x0},

‖T x−T y‖q ≤





‖Ix− Ix0‖q, if y = x0,

max{‖Ix− Iy‖q, dist([T x, p], Ix), dist([T y, p], Iy),

1
2 [dist([T y, p], Ix) + dist([T x, p], Iy)]}, if y ∈ D,

(2.7)
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then PC(x0) ∩ F (T ) ∩ F (I) 6= φ.

Corollary 2.16. Let X be a q-normed space and T , I : X → X. Let C be
subset of X such that T (∂C ∩ C) ⊂ C and x0 ∈ F (T ) ∩ F (I). Assume D =
PC(x0) is closed, has a contractive jointly continuous family F = {fα}α∈D,
I(D) = D, I satisfies the property (Γ), pair {T , I} is continuous on D,
and cl(T (D)) is compact. If I is nonexpansive, T is continuous, T and I
commuting for x ∈ D, and T and I satisfy (2.5), for all x ∈ D ∪ {x0},
k ∈ (0, 1), then D ∩ F (T ) ∩ F (I) 6= φ.

Corollary 2.17. Let X be a q-normed space and T , I : X → X. Let C be
subset of X such that T (∂C ∩ C) ⊂ C and x0 ∈ F (T ) ∩ F (I). Assume D =
PC(x0) is closed, has a contractive jointly continuous F = {fα}α∈D, I(D) =
D, cl(T (D)) is compact, I satisfies the property (Γ), and I is nonexpansive
on D. If T and I satisfy (2.1) for x ∈ D, R > 0, and T is I-nonexpansive,
for all x ∈ D ∪ {x0}, k ∈ (0, 1), then D ∩ F (T ) ∩ F (I) 6= φ.

Remark 2.18. We can obtain similar invariant approximation results from
Theorem 2.10, 2.11 and 2.12, using Theorem 2.2(ii), (iii) and (iv).

Remark 2.19. With Remark 2.5, Theorem 2.2 extends and generalizes the
Theorem 2.2 of O’Regan and Shahzad [14] and Theorem 2.2 of Shahzad [18]
using non-linear map I, and without R-subsweakly commuting maps in the
set which is not necessarily starshaped in q-normed space.

Remark 2.20. Corollary 2.6 extends Theorem 2.2 of O’Regan and Shahzad [14]
and Theorem 2.2 of Shahzad [18] to q-normed space.

Remark 2.21. With Remark 2.5, Corollary 2.4 extends and generalizes Corol-
lary 2.4 of O’Regan and Shahzad [14] using non-linear generalized I-nonexpansive
maps in the set which is not necessarily starshaped in q-normed space.

Remark 2.22. Theorem 2.2, Corollary 2.3 and Corollary 2.4 extend and
generalize the result of Dotson [3], and Habiniak [5] using non-linear non-
commuting generalized I-nonexpansive maps in the set which is not necessarily
starshaped in q-normed space.

Remark 2.23. Theorem 2.2, Corollary 2.3 and Corollary 2.4 extend and gen-
eralize the result of Dotson [4] using non-commuting generalized I-nonexpansive
maps in q-normed space.

Remark 2.24. Corollary 2.6- Corollary 2.9 improve and generalize the re-
sults of Dotson [3], and Habiniak [5] using non-commuting generalized I-
nonexpansive maps in q-normed space.
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Remark 2.25. With Remark 2.5, Theorem 2.2 extends and generalizes the
Theorem 2.2 of Al-Thagafi [1] in the sense that the map I is not necessar-
ily linear and non-commuting generalized I-nonexpansive maps defined in a
domain which is not necessarily starshaped in q-normed is used in place of
commuting I-nonexpansive maps in q-normed space.

Remark 2.26. With Remark 2.5, Theorem 2.1 - Corollary2.9 generalize The-
orem 3.1 and 3.4 and Theorem 2.10 - 2.12 generalize Theorem 4 of Khan and
Khan [7] using two maps, non-linear noncommting generalized I-nonexpansive
maps in the domain which is not necessarily starshaped in q-normed space.

Remark 2.27. With Remark 2.5, Theorem 2.10 - 2.12 generalize Theorem
3.2 of Khan, Hussain and Thaheem [8] using two maps and noncommuting
generalized I-nonexpansive maps.

Remark 2.28. With Remark 2.5 and 2.18, Theorem 2.10-2.12 generalize The-
orem 3.7, Corollary 3.8 and Theorem 3.10 of Khan and Khan [7] using non-
commuting generalized I-nonexpansive maps.

Remark 2.29. With Remark 2.5 and 2.18, Theorem 2.10 generalizes the
Corollary 2.3, Theorem 2.4 and Theorem 2.5 of Khan, Latif, Bano and Hus-
sain [9] in the sense that the non-commuting generalized I-nonexpansive maps
is used in place of commuting I-nonexpansive maps.

Remark 2.30. With Remark 2.5 and 2.18, Theorem 2.11 and 2.12 generalize
the Corollary 2.3 and Theorem 2.4 of Khan, Latif, Bano and Hussain [9] in the
sense that the generalized I-nonexpansive maps is used in place of commuting
I-nonexpansive maps.

Remark 2.31. With Remark 2.5, Theorem 2.10 extends and generalizes The-
orem 3.2 of Al-Thagafi [1] and Theorem 3 of Sahab, Khan and Sessa [16] and
theorem of Singh [19] in the sense that the map I is not necessarily linear and
non-commuting generalized I-nonexpansive maps defined in a domain which
is not necessarily starshaped in q-normed space is used in place of relatively
nonexpansive commutative maps.

Remark 2.32. With Remark 2.5, Theorem 2.11 and 2.12 extend and gener-
alize Theorem 3.2 of Al-Thagafi [1], Theorem 3 of Sahab, Khan and Sessa [16]
and theorem of Singh [19, 20, 21] in the sense that the map I is not neces-
sarily linear and generalized I-nonexpansive maps defined in a domain which
is not necessarily starshaped in q-normed space is used in place of linear I-
nonexpansive maps.

Remark 2.33. Our Theorem 2.10 - Cor 2.17 generalize Theorem 2 of Mukher-
jee and Som [12] in the sense that generalized I-nonexpansive mappings is used
in place of nonexpansive mapping in q-normed space.
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