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Abstract. The purpose of this paper is to prove the existence of fixed point for a mapping

T define on closed subset of Banach space X which belongs to the class S(a, b, c)-contraction,

where a, b, c are nonnegative real numbers such that a + b + c < 1. Also, we deal with the

problem of approximation of fixed point and its stability via generalized Ishikawa iteration

process of rank 3 introduced by Sahu [36] in a Banach space. Our result generalizes several

results in this direction.

1. Introduction

Let C be a nonempty subset of a metric space (X, d) and T be a mapping
from C into itself. Then T is said to be
(i) contraction [1] if there exists a number k ∈ (0, 1) such that

d(Tx, Ty) ≤ kd(x, y) (1.1)

for all x, y ∈ C.

(ii) Kannan type mapping [19] if there exists a number k ∈ (0, 1
2) such

that

d(Tx, Ty) ≤ k{d(x, Tx) + d(y, Ty)} (1.2)
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for all x, y ∈ C.

(iii) Chatterjea type mapping [5] if there exists a number k ∈ (0, 1
2)

such that

d(Tx, Ty) ≤ k{d(x, Ty) + d(y, Tx)} (1.3)

for all x, y ∈ C.

(iv) Reich type mapping [30] if there exist nonnegative numbers a, b, c
satisfying a + b + c < 1 such that

d(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty) (1.4)

for all x, y ∈ C.

(v) Hardy and Rogers type mapping [14] if there exist nonnegative
numbers ai (i = 1, 2, · · · , 5) satisfying

∑5
i=1 ai < 1 such that

d(Tx, Ty) ≤ a1d(x, y) + a2d(x, Tx) + a3d(y, Ty)
+a4d(x, Ty) + a5d(y, Tx) (1.5)

for all x, y ∈ C.

(vi) Zamfirescu type mapping [40] if there exist real numbers a, b, c
satisfying 0 < a < 1, 0 < b, c < 1

2 such that for all pair of x, y ∈ C
at least one of the following is true:

(z1) d(Tx, Ty) ≤ ad(x, y),

(z2) d(Tx, Ty) ≤ b{d(x, Tx) + d(y, Ty)},
(z3) d(Tx, Ty) ≤ c{d(x, Ty) + d(y, Tx)}.

(vii) Quasi-contractive mapping [11] if there exists a constant 0 ≤ k < 1
such that

d(Tx, Ty) ≤ k max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty), d(y, Tx)} (1.6)

for all x, y ∈ C.

(viii) Gregus type mapping [13] if there exists a constant k ∈ (0, 1) such
that

d(Tx, Ty) ≤ kd(x, y) + (1− k)max{d(x, Tx), d(y, Ty)} (1.7)

for all x, y ∈ C.
(x) Nearly Lipschitzian mapping [37] if for a fix sequence {an} in

[0,∞) with an → 0, there exists a constant kn ≥ 0 such that

d(Tnx, Tny) ≤ kn{d(x, y) + an} (1.8)

for all x, y ∈ C and n ∈ N.

(xi) T ∈ S(a, L) [38] if there exist constants a ∈ (0, 1) and L ≥ 0
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satisfying

d(Tx, Ty) ≤ ad(x, y) + Lmax{d(x, Tx), d(y, Ty)} (1.9)

for all x, y ∈ C.

Banach [1] introduced the first contractive definition in a complete metric
space in the year 1922, which is known as Banach contraction principle. It
deals with the dual question in fixed point theory:

(1) Existence and Uniqueness: Equation Tx = x has exactly one solution
i.e., T has one fixed point in C.

In 1968, Kannan [19] proved a fixed point theorem for discontinuous map-
ping. Following Kannan’s paper, a lot of papers are devoted to obtain fixed
points for various classes of contractive type mappings, that do not require the
continuity of mappings for example,(see [3]–[4], [5], [11], [13], [19], [20], [30],
[36], [37]–[38]). Although the mappings appearing in these papers are more
general that either Banach’s or Kannan’s contractive mappings. Note that
although condition (1.1) implies the continuity of the mapping T , condition
(1.2) to (1.9) may hold even if the mapping is not continuous.

(2) Convergence of Iteration: Banach contraction principle also gives a
constructive procedure for obtaining better and better approximations to the
fixed point. This procedure is called an iteration process. By definition, this
is a method such that we choose an arbitrary x0 in a given set X and calculate
recursively a sequence x1, x2, · · · from a relation of the form

xn+1 = Txn n = 0, 1, 2, · · · . (1.10)

The iteration procedure (1.10) is commonly known as Picard iteration. The
Picard iteration process can be used to approximate the unique fixed point for
contraction mapping.

On the other hand, the following fixed point iteration processes have been
extensively studied by many authors for approximating either the fixed points
of nonlinear mappings (when these mappings are already known to have fixed
points) or solution of nonlinear operator equations (see e.g. [3]–[10], [18], [21],
[31], [32]):

(MS) Mann iteration process (see [21]) is defined as follows: For C a convex
subset of a Banach space X and T a nonlinear mapping of C into itself, the
sequence {xn} is generated from x0 ∈ C is defined by:

xn+1 = (1− αn)xn + αnTxn, n ≥ 0, (1.11)

where {αn} is real sequence in [0, 1] which satisfies the conditions:
(A1) 0 ≤ αn < 1, n ≥ 0,
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(A2)
∞∑

n=0

αn = ∞.

In some application’s condition (A2) is replaced by
∞∑

n=0

αn(1− αn) = ∞.

(IS) Ishikawa iteration process (see [18]) is defined as follows: With C and
T as in (1.11) the sequence {xn} is generated from x0 ∈ C is defined by:

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn, n ≥ 0, (1.12)

where {αn} and {βn} are two real sequences in [0, 1] which satisfies the con-
ditions:

(B1) 0 ≤ αn ≤ βn < 1,
(B2) lim

n→∞βn = 0,

(B3)
∞∑

n=0

αnβn = ∞.

The iteration schemes (1.11) and (1.12) may exhibits different behaviors for
different classes of nonlinear mappings (see [32]).

Recently, Sahu [36] introduced the generalized Ishikawa iteration process of
rank r as below:

(GIS) Let C be a nonempty subset of a normed space X and T : C → X be
a nonlinear operator. Further, let r be a positive integer and let {an,i}, i =
1, 2, 3, · · · , r be a real sequence in [0, 1].

For x0 ∈ C, the generalized Ishikawa iterative sequence (of rank r) {xn}∞n=0

is given by:

xn+1 = (1− an,1)xn + an,1Tyn,1

yn,i = (1− an,i+1)xn + an,i+1Tyn,i+1, i = 1, 2, · · · , r − 1,

yn,r = xn ∀ n ≥ 0, (1.13)

In particular, we underline that whenever referring to three steps iteration
process mean the procedure defined for rank 3 and defined as follows:

For x0 ∈ C

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTzn,

zn = (1− γn)xn + γnTxn, ∀ n ≥ 0, (1.14)

where {αn}, {βn} and {γn} are three real sequences in [0, 1].
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In particular, if we put γn = 0 in (1.14) then the sequence is the Ishikawa
iteration process (1.12) and we put βn = γn = 0 in (1.14) then the sequence
is the Mann iteration process (1.11).

On the other hand, Harder and Hicks [17] mentioned that the study of stabil-
ity of iterative scheme is useful in both theoretical and numerical investigation.

Definition 1.1. Let X be an arbitrary Banach space and C be a nonempty
subset of X. Let T : C → C be a self mapping and F (T ) is a set of fixed point
which is nonempty i.e. F (T ) = {x : Tx = x} 6= φ. A mapping f(T, ·) : C → C
is said to be an iterative process (or scheme), when f(T, ·) is considered as a
procedure, involving T , which yields a sequence of points {xn} ⊂ C defined by:

xn+1 = f(T, ·), ∀n ≥ 0, (1.15)

where x0 ∈ C is given.

Example 1.2. By setting f(T, ·) = Txn then (1.15) reduces to the Picard
iteration scheme. The iteration scheme also includes the Mann (1.11), the
Ishikawa (1.12) and the generalized Ishikawa iteration process of rank 3, (1.14).

Definition 1.3. Let X be an arbitrary Banach space and C be a nonempty
subset of X. Let T : C → C be a self mapping and F (T ) is a set of fixed point
which is nonempty i.e. F (T ) = {x : Tx = x} 6= φ. Consider the fixed point
iteration process defined by (1.15). Suppose that the sequence {xn} converges
strongly to a fixed point p ∈ F (T ). Let {yn} be any sequence in C and define
by

εn = ‖yn+1 − f(T, yn)‖ ∀n ≥ 0.

If lim
n→∞ εn = 0 if and only if lim

n→∞ yn = p, then iterative scheme (1.15) is said

to be T -stable (see [17]).

We say that an iterative scheme (1.15) is almost T -stable or almost stable

with respect to T if
∞∑

n=0

‖yn+1− f(T, yn)‖ < ∞ implies that yn → p as n →∞

(see [28]).

It is clear that iterative scheme f(T, ·) which is T -stable is almost T -stable,
but converse is not true (see [28]).

Stability of iterative scheme for various type of nonlinear mappings has been
studied during last two decades (see e.g. [2], [16], [22]–[29], [33]–[35]).

In this view, we have the following natural question:
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Question 1.4. Is it possible to discuss approximation and stability result for
generalized Ishikawa iteration process of rank 3 for S(a, b, c)-contraction (see
the Definition 2.2) in a Banach space?

In this paper, we give an affirmative answer of Question 1.4. We established
existence, convergence and stability theorem for S(a, b, c)-contraction by using
generalized Ishikawa iteration process of rank 3 in a Banach space. Our result
extends the result of Banach [1], Kannan [19] and Lucimer [20] and many
others in these directions.

2. Preliminaries

For our main result we need the following definitions and lemmas.

Definition 2.1. Let C be a nonempty subset of a Banach space X, and T be
a self mapping from C into itself such that

‖Tx− Ty‖ ≤ a‖x− y‖+ b[‖x− Tx‖+ ‖y − Ty‖] (2.1)

for x, y ∈ C, where 0 ≤ a, b ≤ 1. Any mapping T satisfying (2.1) is said to be
T ∈ D(a, b) (see [20]).

Definition 2.2. Let C be a nonempty subset of a Banach space X, and T be
a self mapping from C into itself such that T satisfies the inequality

‖Tx− Ty‖ ≤ a‖x− y‖+ b‖x− Tx‖+ c‖y − Ty‖ (2.2)

for x, y ∈ C, and a, b, c, are nonnegative real numbers such that a + b + c < 1.
A mapping T satisfying (2.2) is said to be an S(a, b, c)-contraction or T ∈
S(a, b, c).

The following example support the definition 2.2, but it is not a contraction.

Example 2.3. Let H = (−∞,∞) with the usual norm and C = [0, 1]. Define
T : C → C by

Tx =
{

1
2 , for x ∈ [0, 1)
1
4 for x = 1.

It is easy to see that T ∈ S(a, b, c) with a = 1
2 , b = 1

4 , c = 1
5 for all x, y ∈ C.

Lemma 2.4. (Weng [39]) Let {ψn} be a nonnegative real sequence such that

ψn+1 ≤ (1− ξn)ψn + σn

where ξn ∈ [0, 1] and
∞∑

n=0

ξn = ∞ and O(ξn) = σn. Then ψn → 0 as n →∞.
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Lemma 2.5. Let C be a nonempty subset of a Banach space X, and T ∈
S(a, b, c) such that a + b + c < 1. If F (T ) = {x : x = Tx} 6= φ, then F (T ) is
a singleton.

Proof. Let x1, x2 ∈ F (T ) such that x1 6= x2. Since T satisfy (2.2), we have

‖x1 − x2‖ = ‖Tx1 − Tx2‖
≤ a‖x1 − x2‖ + b‖x1 − Tx1‖+ c‖x2 − Tx2‖.

Therefore, we have

‖x1 − x2‖ ≤ a‖x1 − x2‖
which is a contradiction. Therefore, F (T ) is a singleton. ¤

Lemma 2.6. Let C be a nonempty subset of a Banach space X and T ∈
S(a, b, c) with a + 2b < 1. Then

‖Tx− p‖ ≤ δ‖x− p‖
where δ = a+b

1−b , ∀x ∈ C and p ∈ F (T ).

Proof. From (2.2), we have

‖Tx− Tp‖ ≤ a‖x− p‖+ b‖x− Tx‖+ c‖p− Tp‖
≤ a‖x− p‖+ b[‖x− p‖+ ‖p− Tx‖],

which implies that

‖Tx− Tp‖ ≤ a + b

1− b
‖x− p‖

= δ‖x− p‖,
where δ = a+b

1−b < 1. Hence, we have

‖Tx− p‖ ≤ δ‖x− p‖,
for all x ∈ C and p ∈ F (T ). ¤

Theorem 2.7. Let C be a nonempty closed subset of a Banach space X and
T ∈ S(a, b, c) with a + b + c < 1. Then T has a unique fixed point.

Proof. For x0 ∈ C, let {xn} be a sequence defined by (1.10) and T ∈ S(a, b, c),
then by (2.2),we have

‖xn+1 − xn‖ = ‖Txn − Txn−1‖
≤ a‖xn − xn−1‖+ b‖xn−1 − Txn−1‖+ c‖xn − Txn‖
≤ a‖xn − xn−1‖+ b‖xn−1 − xn‖+ c‖xn − xn+1‖,
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which implies that

‖xn+1 − xn‖ ≤ (a + b)
(1− c)

‖xn − xn−1‖
= k‖xn − xn−1‖, (2.3)

where k = a+b
1−c < 1 and by induction, we have

‖xn+1 − xn‖ ≤ kn‖x1 − x0‖, n = 0, 1, 2, ·.
Thus for any numbers n,m ∈ N, m > 0, we have

‖xn+m − xn‖ ≤
m+n−1∑

j=n

‖xj+1 − xj‖

≤
m+n−1∑

j=n

kj‖x1 − x0‖

≤ kn

1− k
‖x0 − x1‖. (2.4)

Since 0 ≤ k < 1, it results that kn

1−k → 0 as n →∞, which together with (2.4)
shows that sequence {xn} is a Cauchy sequence in C. Since C is closed subset
of a Banach space X, therefore {xn} converges to some p ∈ C. Also, we know
that

‖p− Tp‖ ≤ ‖xn+1 − p‖+ ‖xn+1 − Tp‖
≤ ‖xn+1 − p‖+ ‖Txn − Tp‖
≤ ‖xn+1 − p‖+ a‖xn − p‖+ b‖xn − Txn‖+ c‖p− Tp‖,

which implies that

‖p− Tp‖ ≤ 1 + b

1− c
‖xn+1 − p‖+

a + b

1− c
‖xn − p‖.

Letting n →∞, then we have Tp = p. Hence T has a fixed point. Uniqueness
of fixed point follows from Lemma 2.5. ¤

3. Main Result

In this section, we prove convergence and stability of the generalized Ishikawa
iterative process of rank 3 in Banach space.

Theorem 3.1. Let C be a nonempty closed convex subset of a Banach space
X and T ∈ S(a, b, c) with a + 2b < 1. Suppose that F (T ) = {x : x = Tx} 6= φ
and x0 ∈ C be arbitrary. Let {αn}, {βn} and {γn} are three real sequences in
[0, 1] satisfying the following condition:
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(i)
∞∑

n=0

αn = ∞.

Let {xn} be a sequence in C defined by (1.14) and {fn} be an arbitrary sequence
in C defined by

εn = ‖fn+1 − (1− αn)fn + αnTsn‖ (3.1)

sn = (1− βn)fn + βnTun,

un = (1− γn)fn + γnTfn, ∀ n ≥ 0. (3.2)

Then we have the following:
(a) {xn} converges strongly to a unique fixed point p of T .
(b) ‖fn+1 − p‖ ≤ [1− αn(1− δ)]‖fn − p‖+ εn.
(c) lim

n→∞ fn = p if and only if lim
n→∞ εn = 0.

Proof. (a) By Theorem 2.7, T has a unique fixed point say p ∈ C. Using
Lemma 2.6 and (1.14), we have

‖zn − p‖ = ‖(1− γn)xn + γnTxn − p‖
≤ (1− γn)‖xn − p‖+ γn‖Txn − p‖
≤ (1− γn)‖xn − p‖+ γnδ‖xn − p‖
≤ [1− γn(1− δ)]‖xn − p‖. (3.3)

Using Lemma 2.6, (1.14) and (3.3), we have

‖yn − p‖ = ‖(1− βn)xn + βnTzn − p‖
≤ (1− βn)‖xn − p‖+ βn‖Tzn − p‖
≤ (1− βn)‖xn − p‖+ βnδ‖zn − p‖
≤ (1− βn)‖xn − p‖
+ βnδ[1− γn(1− δ)]‖xn − p‖
≤ [1− βn + βnδ(1− γn(1− δ))]‖xn − p‖. (3.4)

Again from Lemma 2.6, (1.14) and (3.4), we have

‖xn+1 − p‖ = ‖(1− αn)xn + αnTyn − p‖
≤ (1− αn)‖xn − p‖+ αn‖Tyn − p‖
≤ (1− αn)‖xn − p‖+ αnδ‖yn − p‖
≤ (1− αn)‖xn − p‖
+ αnδ[1− βn + βnδ(1− γn(1− δ))]‖xn − p‖
≤

[
1− αn(1− δ)[1 + βnδ + βnγnδ2]

]
‖xn − p‖. (3.5)
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It may be noted that for δ ∈ [0, 1) and ηn ∈ [0, 1], the following inequality is
always true

1 ≤ 1 + δηn ≤ 1 + δ. (3.6)

Using (3.5) and (3.6), we have

‖xn+1 − p‖ ≤ (1− αn(1− δ))‖xn − p‖. (3.7)

Set ψn = ‖xn − p‖ and ξn = (1− αn(1− δ)) for all n ≥ 0. Using Lemma 2.4,
(i) and (3.7), we conclude immediately that ψn → 0 as n → ∞. Therefore,
sequence {xn} converges strongly to unique fixed point of T . This completes
the proof of (a).
(b) Using (3.1), we have

‖fn+1 − p‖ = ‖fn+1 − (1− αn)fn + αnTsn + (1− αn)fn + αnTsn − p‖
≤ ‖(1− αn)fn + αnTsn − p‖+ εn. (3.8)

Set Pn = (1− αn)fn + αnTsn. Using Lemma 2.6 and (3.2), we have

‖un − p‖ = ‖(1− γn)fn + γnTfn − p‖
≤ (1− γn)‖fn − p‖+ γn‖Tfn − p‖
≤ (1− γn)‖fn − p‖+ γnδ‖fn − p‖
≤ [1− γn(1− δ)]‖fn − p‖. (3.9)

Using Lemma 2.6, (3.2) and (3.9), we have

‖sn − p‖ = ‖(1− βn)fn + βnTun − p‖
≤ (1− βn)‖fn − p‖+ βn‖Tun − p‖
≤ (1− βn)‖fn − p‖+ βnδ‖un − p‖
≤ (1− βn)‖fn − p‖
+ βnδ[1− γn(1− δ)]‖fn − p‖
≤ [1− βn + βnδ(1− γn(1− δ))]‖fn − p‖. (3.10)

Again from Lemma 2.6, (3.2) and (3.10), we have

‖Pn − p‖ = ‖(1− αn)fn + αnTsn − p‖
≤ (1− αn)‖fn − p‖+ αn‖Tsn − p‖
≤ (1− αn)‖xn − p‖+ αnδ‖sn − p‖
≤ (1− αn)‖xn − p‖
+ αnδ[1− βn + βnδ(1− γn(1− δ))]‖fn − p‖
≤

[
1− αn(1− δ)[1 + βnδ + βnγnδ2]

]
‖fn − p‖. (3.11)
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From (3.6) and (3.11), we have

‖Pn − p‖ ≤ (1− αn(1− δ))‖fn − p‖. (3.12)

From (3.8) and (3.12), we have

‖fn+1 − p‖ ≤ (1− αn(1− δ))‖fn − p‖+ εn. (3.13)

This completes the proof of (b).
(c) Suppose lim

n→∞ fn = p. Using triangle inequality, (3.1) and (3.12), we infer
that

εn = ‖fn+1 − Pn‖
≤ ‖fn+1 − p‖+ ‖Pn − p‖
≤ ‖fn+1 − p‖+ (1− αn(1− δ))‖fn − p‖ → 0 as n →∞.

Conversely, suppose that lim
n→∞ εn = 0. Set ψn = ‖fn−p‖ and ξn = (1−αn(1−

δ)) for all n ≥ 0 and σn = εn . Using Lemma 2.4, (i) and (3.13), we conclude
immediately that ψn → 0 as n → ∞. Therefore, sequence {fn} converges
strongly to unique fixed point of T . This completes the proof of (c). ¤
Remark 3.2. Theorem 3.1 provides an affirmative answer of question 1.4.

Remark 3.3. (1) A contraction mapping (1.1) is in a class S(a, 0, 0), hence
Theorem 3.1 is true for contraction mapping.
(2) The Kannan type mapping (1.2) is in a class S(0, b, c), where b = c ∈ (0, 1

2),
hence Theorem 3.1 is true for Kannan type mapping.
(3) T ∈ D(a, b) is in a class S(a, b, b), hence Theorem 3.1 is true for T ∈
D(a, b).
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