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Abstract. We consider the stability of non-negative solution of the following equation:
{
−4(au) = λm(x)u(x)(u(x)− 1) x ∈ Ω,

Bu = 0, x ∈ ∂Ω.

If 4(au) = div∇(au), Ω is a bounded domain in RN (N ≥ 1) with smooth boundary

Bu(x) = αh(x)u + (1 − α) ∂u
∂n

for α ∈ [0.1], h : ∂Ω → R+ with h = 1 when α = 1, λ > 0,

then the weight m(x) satisfies m(x) ∈ C(Ω), m(x) ≥ m0 > 0 for all x ∈ Ω and a : Ω → R+

satisfy certain conditions which guaranty the existence of the weak solution of this equation.

We prove that every nontrivial non-negative solution is unstable under certain conditions.

1. Introduction

In this paper, we study the stability of nontrivial non-negative solutions to
the elliptic boundary value problem

−4(au) = λm(x)u(x)(u(x)− 1) x ∈ Ω, (1.1)
Bu = 0, x ∈ ∂Ω, (1.2)

where4(au) = div∇(au), Ω is a bounded domain in RN (N ≥ 1) with smooth
boundary

Bu(x) = αh(x)u + (1− α)
∂u

∂n
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for α ∈ [0, 1], h : ∂Ω → R+ with h = 1 when α = 1, i.e., the boundary
condition may be of Dirichlet, Neumann or mixed type. λ > 0 is a constant,
the weight m(x) satisfies m(x) ∈ C(Ω), m(x) ≥ m0 > 0 for all x ∈ Ω, and a
satisfy certain conditions which guaranty the existence of the weak solution of
(1.1)-(1.2).

This problem (without weight m(x), a(x)) was studied by several authors.
Shivaji and co-authors have shown that every nontrivial solution of (1) with
Dirichlet boundary condition u | ∂Ω = 0 is unstable[4]. Moreover in this case
Tertikas [7] proved it by using sub and super-solution. In [4] the corresponding
equation with p-Laplacian is studied. Also Afrouzi and Rasouli in [2] have
studied this problem (with indefinite weight and a(x) = 1).

The purpose of this paper is to extend under certain conditions but for
4(au). We shall prove the instability of nontrivial non-negative solution u
by showing that the principle eigenvalue µ1(see [1]), of the corresponding lin-
earized equation about u is negative. Then the instability of u follows from
the well-known principle of linearized stability (see [6]). We shall prove the
instability of positive solution u by showing that the principle eigenvalue µ1 of
the linearized equation about u is negative. Instability of u then follows from
the well-known principle of linearized stability (see [5]).

Definition 1.1. a) The equation (1) holds in the weak sense for some u ∈ X
and λ > 0 and m(x) ≥ m0 > 0 if the following integral identity

∫

Ω
∇(au)∇vdx = λ

∫

Ω
[m(x)u(x)(u(x)− 1)]vdx

is fulfilled for any v ∈ X.

b) A solution u of (1) is called linearly stable if the principle eigenvalue µ1

of its linearization is positive, otherwise is linearly unstable. For a solution
we require that u ∈ C1(Ω) satisfies in ∇u ∈ C1(Ω).

2. Main result

We now state our main result, i.e., instability of nonnegative solutions.

Lemma 2.1. Suppose that [4(au)]v is Gateaux differential of 4(au) in direct
of v. Then

[4(au)]v = 4(av) (2.1)
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Proof. First, we note that

F (u) = 4(au)
= ∇.∇(au)
= ∇(a∇u + u∇a)
= ∇(a∇u) +∇(u∇a)
= ∇a∇u + a4u +∇u∇a + u4a

= 2∇a∇u + a4u + u4a.

Then,

F (u + tv) = 2∇a(∇u + t∇v) + a(4u + t4v) + (u + tv)4a

so,

d

dt
F (u + tv) |t=0 = 2∇a∇v + a4v + v4a

= 4(av)

¤

Theorem 2.2. If ∇a∇v > 0 for any v ∈ X, then every nontrivial solution of
(1.1)-(1.2) is linearly unstable.

Proof. Let u0 be any non-trivial non-negative solution of (1.1)-(1.2), f(u(x)) =
u(x)(u(x) − 1), g(u(x)) = f(u(x)) − f(0)+ | f ′(0) | u(x) = u2(x). Then
g(0) = 0, g′(u) = 2u, g′′(u) = 2 > 0. Therefore, g′(u) > 0 for u > 0 and
g(u) > 0 for u > 0. Now (1.1)-(1.2) can be rewritten as

−4(au) = λm(x){g(u(x))− u(x)}, x ∈ Ω, (2.2)
Bu(x) = 0, x ∈ ∂Ω. (2.3)

Let u0 be any nontrivial non-negative solution of (2.2), (2.3). Then the lin-
earized equation about u0 is

−4(aφ)− λm(x){g′(u0)− 1}φ = µφ x ∈ Ω, (2.4)
Bu(x) = 0, x ∈ ∂Ω. (2.5)

Let µ1 be the principle eigenvalue and ψ(x)(≥ 0) be a corresponding eigen-
function. Multiplying (2.2) g′(u0)ψ(x)− (2.4)g(u0) and integrating over Ω, we
obtain

−µ1

∫

Ω
ψ(x)u2

odx =
∫

Ω
[u2

o4(aψ)− 2uoψ(x)4(auo)]dx (2.6)

+λ

∫

Ω
m(x)ψ(x)u2

odx
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But by Green,s first identity

∫

Ω
u2

o4(aψ)dx =
∫

∂Ω
u2

o

∂(aψ)
∂n

ds−
∫

Ω
2uo∇uo∇(aψ)dx (2.7)

=
∫

∂Ω
u2

o

∂(aψ)
∂n

ds−
∫

Ω
2uoa∇uo∇ψdx

−
∫

Ω
2uoψ∇uo∇adx,

and ∫

Ω
2uoψ4(auo)dx =

∫

∂Ω
2uoψ

∂(auo)
∂n

ds−
∫

Ω
2∇(uoψ)∇(auo)dx (2.8)

=
∫

∂Ω
2uoψ

∂(auo)
∂n

ds−
∫

Ω
2uoψ∇uo∇adx (2.9)

−
∫

Ω
2aψ | ∇uo |2 dx−

∫

Ω
u2

o∇a∇ψdx

−
∫

Ω
2auo∇uo∇ψdx.

By using (2.7)-(2.8) in (2.6), we get

−µ1

∫

Ω
ψ(x)u2

odx = λ

∫

Ω
m(x)ψ(x)u2

odx (2.10)

+
∫

∂Ω
[u2

o

∂(aψ)
∂n

− 2uoψ
∂(auo)

∂n
]ds

+
∫

Ω
2aψ | ∇uo |2 dx

+
∫

Ω
u2

o∇a∇ψdx.

We notice that for α = 1 (then h = 1), Bu0 = u0 = 0 on s ∈ ∂Ω, so
g(uo) = uo = 0 and ψ = 0 on s ∈ ∂Ω. Hence,

∫

∂Ω
[u2

o

∂(aψ)
∂n

− 2uoψ
∂(auo)

∂n
]ds = 0. (2.11)

But for α 6= 1,

∫

∂Ω
[u2

o

∂(aψ)
∂n

− 2uoψ
∂(auo)

∂n
]ds =

∫

∂Ω
[u2

o

−αhaψ

1− α
− 2uoψ

−αahu0

1− α
)]ds

=
∫

∂Ω
(
αhaψ(s)
1− α

)u2
ods. (2.12)
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But α ≥ 0, h > 0,ψ ≥ 0 for s ∈ ∂Ω and u2
o > 0. If α 6= 1

∫

∂Ω
[u2

o

∂(aψ)
∂n

− 2uoψ
∂(auo)

∂n
]ds ≥ 0

also, since ψ > 0 on Ω,
∫

Ω
2aψ | ∇uo |2 dx > 0.

Our assumption implies that
∫

Ω
u2

o∇ψ∇adx ≥ 0.

By (2.9),

−µ1

∫

Ω
ψ(x)u2

odx > λ

∫

Ω
m(x)ψ(x)u2

odx.

Since m(x) ≥ m0 > 0 for x ∈ Ω, we have

−µ1

∫

Ω
ψ(x)u2

odx > λ

∫

Ω
m0ψ(x)u2

odx.

Hence,

−µ1

∫

Ω
ψ(x)u2

0dx > 0, (2.13)

which implies that µ1 < 0 and the result follows from [5]. ¤
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