INSTABILITY OF NON-NEGATIVE SOLUTIONS FOR A BOUNDARY VALUE PROBLEM WITH A INDEFINITE WEIGHT FUNCTION

M. Alimohammady ${ }^{1}$ and M. Koozegar ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Mazandaran, Babolsar 47416-1468, Iran, e-mail: amohsen@umz.ac.ir
${ }^{2}$ Department of Mathematics, University of Mazandaran, Babolsar 47416-1468, Iran,

Abstract

We consider the stability of non-negative solution of the following equation: $$
\left\{\begin{array}{rlrl} -\triangle(a u) & = & \lambda m(x) u(x)(u(x)-1) & \\ B \in \Omega \\ B u & =0, & & x \in \partial \Omega . \end{array}\right.
$$

If $\triangle(a u)=\operatorname{div} \nabla(a u), \Omega$ is a bounded domain in $R^{N}(N \geq 1)$ with smooth boundary $B u(x)=\alpha h(x) u+(1-\alpha) \frac{\partial u}{\partial n}$ for $\alpha \in[0.1], h: \partial \Omega \rightarrow \mathbb{R}^{+}$with $h=1$ when $\alpha=1, \lambda>0$, then the weight $m(x)$ satisfies $m(x) \in C(\Omega), m(x) \geq m_{0}>0$ for all $x \in \Omega$ and $a: \Omega \rightarrow \mathbb{R}^{+}$ satisfy certain conditions which guaranty the existence of the weak solution of this equation. We prove that every nontrivial non-negative solution is unstable under certain conditions.

1. Introduction

In this paper, we study the stability of nontrivial non-negative solutions to the elliptic boundary value problem

$$
\begin{array}{rlrl}
-\triangle(a u) & =\lambda m(x) u(x)(u(x)-1) & & x \in \Omega \\
B u & =0, & x \in \partial \Omega \tag{1.2}
\end{array}
$$

where $\triangle(a u)=\operatorname{div} \nabla(a u), \Omega$ is a bounded domain in $R^{N}(N \geq 1)$ with smooth boundary

$$
B u(x)=\alpha h(x) u+(1-\alpha) \frac{\partial u}{\partial n}
$$

[^0]for $\alpha \in[0,1], h: \partial \Omega \rightarrow \mathbb{R}^{+}$with $h=1$ when $\alpha=1$, i.e., the boundary condition may be of Dirichlet, Neumann or mixed type. $\lambda>0$ is a constant, the weight $m(x)$ satisfies $m(x) \in C(\Omega), m(x) \geq m_{0}>0$ for all $x \in \Omega$, and a satisfy certain conditions which guaranty the existence of the weak solution of (1.1)-(1.2).

This problem (without weight $m(x), a(x)$) was studied by several authors. Shivaji and co-authors have shown that every nontrivial solution of (1) with Dirichlet boundary condition $u \mid \partial \Omega=0$ is unstable[4]. Moreover in this case Tertikas [7] proved it by using sub and super-solution. In [4] the corresponding equation with p-Laplacian is studied. Also Afrouzi and Rasouli in [2] have studied this problem (with indefinite weight and $a(x)=1$).

The purpose of this paper is to extend under certain conditions but for $\triangle(a u)$. We shall prove the instability of nontrivial non-negative solution u by showing that the principle eigenvalue μ_{1} (see [1]), of the corresponding linearized equation about u is negative. Then the instability of u follows from the well-known principle of linearized stability (see [6]). We shall prove the instability of positive solution u by showing that the principle eigenvalue μ_{1} of the linearized equation about u is negative. Instability of u then follows from the well-known principle of linearized stability (see [5]).

Definition 1.1. a) The equation (1) holds in the weak sense for some $u \in X$ and $\lambda>0$ and $m(x) \geq m_{0}>0$ if the following integral identity

$$
\int_{\Omega} \nabla(a u) \nabla v d x=\lambda \int_{\Omega}[m(x) u(x)(u(x)-1)] v d x
$$

is fulfilled for any $v \in X$.
b) A solution u of (1) is called linearly stable if the principle eigenvalue μ_{1} of its linearization is positive, otherwise is linearly unstable. For a solution we require that $u \in C^{1}(\bar{\Omega})$ satisfies in $\nabla u \in C^{1}(\Omega)$.

2. Main ReSult

We now state our main result, i.e., instability of nonnegative solutions.
Lemma 2.1. Suppose that $[\triangle(a u)]_{v}$ is Gateaux differential of $\triangle(a u)$ in direct of v. Then

$$
\begin{equation*}
[\triangle(a u)]_{v}=\triangle(a v) \tag{2.1}
\end{equation*}
$$

Proof. First, we note that

$$
\begin{aligned}
F(u) & =\triangle(a u) \\
& =\nabla \cdot \nabla(a u) \\
& =\nabla(a \nabla u+u \nabla a) \\
& =\nabla(a \nabla u)+\nabla(u \nabla a) \\
& =\nabla a \nabla u+a \triangle u+\nabla u \nabla a+u \triangle a \\
& =2 \nabla a \nabla u+a \triangle u+u \triangle a .
\end{aligned}
$$

Then,

$$
F(u+t v)=2 \nabla a(\nabla u+t \nabla v)+a(\Delta u+t \triangle v)+(u+t v) \triangle a
$$

so,

$$
\begin{aligned}
\left.\frac{d}{d t} F(u+t v)\right|_{t=0} & =2 \nabla a \nabla v+a \triangle v+v \triangle a \\
& =\triangle(a v)
\end{aligned}
$$

Theorem 2.2. If $\nabla a \nabla v>0$ for any $v \in X$, then every nontrivial solution of (1.1)-(1.2) is linearly unstable.

Proof. Let u_{0} be any non-trivial non-negative solution of (1.1)-(1.2), $f(u(x))=$ $u(x)(u(x)-1), g(u(x))=f(u(x))-f(0)+\left|f^{\prime}(0)\right| u(x)=u^{2}(x)$. Then $g(0)=0, g^{\prime}(u)=2 u, g^{\prime \prime}(u)=2>0$. Therefore, $g^{\prime}(u)>0$ for $u>0$ and $g(u)>0$ for $u>0$. Now (1.1)-(1.2) can be rewritten as

$$
\begin{align*}
-\triangle(a u) & =\lambda m(x)\{g(u(x))-u(x)\}, & & x \in \Omega, \tag{2.2}\\
B u(x) & =0, & & x \in \partial \Omega . \tag{2.3}
\end{align*}
$$

Let u_{0} be any nontrivial non-negative solution of (2.2), (2.3). Then the linearized equation about u_{0} is

$$
\begin{align*}
-\triangle(a \phi)-\lambda m(x)\left\{g^{\prime}\left(u_{0}\right)-1\right\} \phi & =\mu \phi & x \in \Omega, \tag{2.4}\\
B u(x) & =0, & x \in \partial \Omega . \tag{2.5}
\end{align*}
$$

Let μ_{1} be the principle eigenvalue and $\psi(x)(\geq 0)$ be a corresponding eigenfunction. Multiplying $(2.2) g^{\prime}\left(u_{0}\right) \psi(x)-(2.4) g\left(u_{0}\right)$ and integrating over Ω, we obtain

$$
\begin{align*}
-\mu_{1} \int_{\Omega} \psi(x) u_{o}^{2} d x= & \int_{\Omega}\left[u_{o}^{2} \triangle(a \psi)-2 u_{o} \psi(x) \triangle\left(a u_{o}\right)\right] d x \tag{2.6}\\
& +\lambda \int_{\Omega} m(x) \psi(x) u_{o}^{2} d x
\end{align*}
$$

But by Green's first identity

$$
\begin{align*}
\int_{\Omega} u_{o}^{2} \triangle(a \psi) d x= & \int_{\partial \Omega} u_{o}^{2} \frac{\partial(a \psi)}{\partial n} d s-\int_{\Omega} 2 u_{o} \nabla u_{o} \nabla(a \psi) d x \tag{2.7}\\
= & \int_{\partial \Omega} u_{o}^{2} \frac{\partial(a \psi)}{\partial n} d s-\int_{\Omega} 2 u_{o} a \nabla u_{o} \nabla \psi d x \\
& -\int_{\Omega} 2 u_{o} \psi \nabla u_{o} \nabla a d x
\end{align*}
$$

and

$$
\begin{align*}
\int_{\Omega} 2 u_{o} \psi \triangle\left(a u_{o}\right) d x= & \int_{\partial \Omega} 2 u_{o} \psi \frac{\partial\left(a u_{o}\right)}{\partial n} d s-\int_{\Omega} 2 \nabla\left(u_{o} \psi\right) \nabla\left(a u_{o}\right) d x \tag{2.8}\\
= & \int_{\partial \Omega} 2 u_{o} \psi \frac{\partial\left(a u_{o}\right)}{\partial n} d s-\int_{\Omega} 2 u_{o} \psi \nabla u_{o} \nabla a d x \tag{2.9}\\
& -\int_{\Omega} 2 a \psi\left|\nabla u_{o}\right|^{2} d x-\int_{\Omega} u_{o}^{2} \nabla a \nabla \psi d x \\
& -\int_{\Omega} 2 a u_{o} \nabla u_{o} \nabla \psi d x
\end{align*}
$$

By using (2.7)-(2.8) in (2.6), we get

$$
\begin{align*}
-\mu_{1} \int_{\Omega} \psi(x) u_{o}^{2} d x= & \lambda \int_{\Omega} m(x) \psi(x) u_{o}^{2} d x \tag{2.10}\\
& +\int_{\partial \Omega}\left[u_{o}^{2} \frac{\partial(a \psi)}{\partial n}-2 u_{o} \psi \frac{\partial\left(a u_{o}\right)}{\partial n}\right] d s \\
& +\int_{\Omega} 2 a \psi\left|\nabla u_{o}\right|^{2} d x \\
& +\int_{\Omega} u_{o}^{2} \nabla a \nabla \psi d x
\end{align*}
$$

We notice that for $\alpha=1$ (then $h=1$), $B u_{0}=u_{0}=0$ on $s \in \partial \Omega$, so $g\left(u_{o}\right)=u_{o}=0$ and $\psi=0$ on $s \in \partial \Omega$. Hence,

$$
\begin{equation*}
\int_{\partial \Omega}\left[u_{o}^{2} \frac{\partial(a \psi)}{\partial n}-2 u_{o} \psi \frac{\partial\left(a u_{o}\right)}{\partial n}\right] d s=0 \tag{2.11}
\end{equation*}
$$

But for $\alpha \neq 1$,

$$
\begin{align*}
\int_{\partial \Omega}\left[u_{o}^{2} \frac{\partial(a \psi)}{\partial n}-2 u_{o} \psi \frac{\partial\left(a u_{o}\right)}{\partial n}\right] d s & \left.=\int_{\partial \Omega}\left[u_{o}^{2} \frac{-\alpha h a \psi}{1-\alpha}-2 u_{o} \psi \frac{-\alpha a h u_{0}}{1-\alpha}\right)\right] d s \\
& =\int_{\partial \Omega}\left(\frac{\alpha h a \psi(s)}{1-\alpha}\right) u_{o}^{2} d s \tag{2.12}
\end{align*}
$$

But $\alpha \geq 0, h>0, \psi \geq 0$ for $s \in \partial \Omega$ and $u_{o}^{2}>0$. If $\alpha \neq 1$

$$
\int_{\partial \Omega}\left[u_{o}^{2} \frac{\partial(a \psi)}{\partial n}-2 u_{o} \psi \frac{\partial\left(a u_{o}\right)}{\partial n}\right] d s \geq 0
$$

also, since $\psi>0$ on Ω,

$$
\int_{\Omega} 2 a \psi\left|\nabla u_{o}\right|^{2} d x>0
$$

Our assumption implies that

$$
\int_{\Omega} u_{o}^{2} \nabla \psi \nabla a d x \geq 0
$$

By (2.9),

$$
-\mu_{1} \int_{\Omega} \psi(x) u_{o}^{2} d x>\lambda \int_{\Omega} m(x) \psi(x) u_{o}^{2} d x
$$

Since $m(x) \geq m_{0}>0$ for $x \in \Omega$, we have

$$
-\mu_{1} \int_{\Omega} \psi(x) u_{o}^{2} d x>\lambda \int_{\Omega} m_{0} \psi(x) u_{o}^{2} d x
$$

Hence,

$$
\begin{equation*}
-\mu_{1} \int_{\Omega} \psi(x) u_{0}^{2} d x>0 \tag{2.13}
\end{equation*}
$$

which implies that $\mu_{1}<0$ and the result follows from [5].

References

[1] G. A. Afrouzi and K. J. Brown, On principle eigenvalues for boundary value problems with indefinite weight and robin boundary condition., Proc. Amer. Math. Soc., 127(1999), 125-130.
[2] G. A. Afrouzi and S. H. Rasouli, Instability of nonnegative solution for a boundary value problem with indefinite weight function, Global J. Pure. Appl. Math 1(2005), 9-12.
[3] K. J. Brown and R. Shivaji, Instability of nonnegative solution for a class of semipositone problems, Proc. Amer. Math. Soc., 112(1991), 121-124.
[4] J. Karatson and P. L. Simon, On the linearized stability of positive solutions of quasilinear problems with p-convex or p-concave nonlinearity, Nonlinear Anal. TMA, 47(2001), 4513-4520.
[5] C. Maya and R. Shivaji, Instability of nonnegative solutions for a class of semilinear elliptic boundary value problem, J. Comput. Appl. Math., 88(1998), 125-8.
[6] DH. Satinger, Monotone methods in nonlinear elliptic and parabolic boundary value problem, Indiana Univ. Math. J. 21(1972), 979-1000.
[7] A. Tertikas, Stability and instability of positive solutions of semi-positive problems, Proc. Amer. Math. Soc., 114(1992), 1035-1040.

[^0]: ${ }^{0}$ Received April 7, 2008. Revised May 27, 2009.
 ${ }^{0} 2000$ Mathematics Subject Classification: 35P20, 35J70, 35BJ20.
 ${ }^{0}$ Keywords: Positive solution, weak solution, instability, indefinite weight function.

