Nonlinear Functional Analysis and Applications Vol. 14, No. 4 (2009), pp. 589-604

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \bigodot 2009 Kyungnam University Press

COMMON FIXED POINT OF MULTI-STEP ITERATION SCHEME WITH ERRORS FOR FINITE FAMILY OF ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS

Gurucharan Singh Saluja¹ and Hemant Kumar Nashine²

¹Department of Mathematics & Information Technology Govt. College of Science, Raipur (Chhattisgarh), India. e-mail: saluja_1963@rediffmail.com

²Department of Mathematics, Disha Institute of Management and Technology, Satya Vihar, Vidhansabha-Chandrakhuri Marg (Baloda Bazar Road), Mandir Hasaud, Raipur-492001(Chhattisgarh), India. e-mail: hemantnashine@rediffmail.com

Abstract. In this paper, we study sufficient and necessary condition for finite step iterative sequences with errors for finite family of asymptotically quasi-nonexpansive mappings in Banach space to converge to common fixed point. These results improve and extend the corresponding results of Ghosh and Debnath [4], Khan and Takahashi [6], Petryshyn and Williamson [8], Liu [9, 10], Shahzad and Udomene [14], Xu and Noor [17] and many others.

1. INTRODUCTION AND PRELIMINARIES

Let K be a nonempty subset of a real normed space E. Let T be a self mapping of K. Then T is said to be asymptotically nonexpansive with sequence $\{u_n\} \subset [0,\infty)$ if $\lim_{n\to\infty} u_n = 0$ and

$$||T^{n}x - T^{n}y|| \le (1 + u_{n})||x - y||$$

for all $x, y \in K$ and $n \ge 1$; and is said to be asymptotically quasi-nonexpansive with sequence $\{u_n\} \subset [0,\infty)$ if $F(T) = \{x \in K : Tx = x\} \neq \emptyset$, $\lim_{n\to\infty} u_n = 0$ and

 $||T^n x - x^*|| \le (1 + u_n) ||x - x^*||$

 $^{^0\}mathrm{Received}$ Auguest 4, 2008. Revised February 2, 2009.

 $^{^02000}$ Mathematics Subject Classification: 47H09, 47H10.

 $^{^0{\}rm Keywords}:$ Asymptotically quasi-nonexpansive mapping, common fixed point, multi-step iterative sequences with errors.

for all $x \in K, x^* \in F(T)$ and $n \ge 1$. The mapping T is called nonexpansive if

$$||Tx - Ty|| \le ||x - y||$$

for all $x, y \in K$, and is called quasi-nonexpansive if $F(T) \neq \emptyset$ and

$$||Tx - x^*|| \le ||x - x^*||$$

for all $x \in K$ and $x^* \in F(T)$.

It is therefore clear that a nonexpansive mapping with a nonempty fixed point set is quasi-nonexpansive and an asymptotically nonexpansive mapping with a nonempty fixed point set is asymptotically quasi-nonexpansive but converse does not hold in general.

The class of asymptotically nonexpansive maps was introduced by Goebel and Kirk [2] as an important generalization of the class of nonexpansive maps. They established that if K is a nonempty closed convex bounded subset of a uniformly convex Banach space E and T is an asymptotically nonexpansive self mapping of K, then T has a fixed point. In the year 1973, Goebel and Kirk [3] extended their own result to the broader class of uniformly L-Lipschitzian mappings with $L < \lambda$, where λ is sufficiently near 1.

Iterative techniques for approximating fixed points of nonexpansive mappings and their generalizations (asymptotically nonexpansive mappings etc.) have been studied by many authors (see e.g. Chidume [1], Rhoades [12], Schu [13], Tan and Xu [15]), using the Mann iteration process [7] or the Ishikawa iteration process [5].

In the year 1973, Petryshyn and Williamson [8] established a necessary and sufficient condition for the Mann iterative sequence to converge to a fixed point for quasi-nonexpansive mappings. Subsequently, Ghosh and Debnath [4] extended Petryshyn and Williamson's results and established some necessary and sufficient conditions for an Ishikawa-type iterative sequence to converge to a fixed point for quasi-nonexpansive mappings. Further, Qihou [9, 10, 11] extended the above results and established some sufficient and necessary conditions for Ishikawa iterative sequences or Ishikawa iterative sequences with errors for asymptotically quasi-nonexpansive mappings to converge to a fixed point. Recently, Shahzad and Udomene [14] established a sufficient and necessary conditions for the convergence of the Ishikawa type iterative sequences involving two asymptotically quasi-nonexpansive mappings to a common fixed point of the mappings defined on a nonempty closed convex subset of a Banach space and a sufficient condition for the convergence of the Ishikawa type iterative sequences involving two uniformly continuous asymptotically quasinonexpansive mappings to a common fixed point of the mappings defined on a nonempty closed convex subset of a uniformly convex Banach space.

Inspired and motivated by the above facts, we introduce and study a multistep iterative scheme with errors for a finite family of asymptotically quasinonexpansive mappings. This scheme can be viewed as an extension for two step iterative schemes of Shahzad and Udomene [14]. The scheme may be defined as follows:

Let K be a nonempty closed convex subset of a Banach space E and let $T_1, T_2, \dots, T_N \colon K \to K$ be asymptotically quasi-nonexpansive mappings, the following iteration scheme is studied:

$$x_{n}^{1} = \alpha_{n}^{1} T_{1}^{n} x_{n} + \beta_{n}^{1} x_{n} + \gamma_{n}^{1} u_{n}^{1}$$

$$x_{n}^{2} = \alpha_{n}^{2} T_{2}^{n} x_{n}^{1} + \beta_{n}^{2} x_{n} + \gamma_{n}^{2} u_{n}^{2}$$
...
$$x_{n+1} = x_{n}^{N} = \alpha_{n}^{N} T_{N}^{n} x_{n}^{N-1} + \beta_{n}^{N} x_{n} + \gamma_{n}^{N} u_{n}^{N}$$
(1)

with $x_1 \in K$, $n \ge 1$, where $\{\alpha_n^i\}$, $\{\beta_n^i\}$, $\{\gamma_n^i\}$, for all $1 \le i \le N$ are sequences in [0,1] with $\alpha_n^i + \beta_n^i + \gamma_n^i = 1$ for all $i = 1, 2, \dots, N$, and $\{u_n^1\}, \{u_n^2\}, \dots, \{u_n^N\}$ are bounded sequences in K.

For N = 2, $T_1 = T_2 = T$, $\beta_n = \alpha_n^1$, $\alpha_n = \alpha_n^2$ and $\gamma_n^1 = \gamma_n^2 = 0$, then (1) reduces to the scheme for a mapping defined by Liu [9]:

 $x_1 = x \in K$

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n [(1 - \beta_n)x_n + \beta_n T^n x_n], \quad n \ge 1$$

where $\{\alpha_n\}, \{\beta_n\}$ are sequences in [0, 1].

For N = 2, $T_1, T_2: K \to K$, $T_1 = T$, $T_2 = S$, $\beta_n = \alpha_n^1$, $\alpha_n = \alpha_n^2$ and $\gamma_n^1 = \gamma_n^2 = 0$, then (1) reduces to the scheme for two mappings defined by Shahzad and Udomene [14]:

$$x_1 = x \in K$$
$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n S^n[(1 - \beta_n)x_n + \beta_n T^n x_n], \quad n \ge 1$$
where $\{\alpha_n\}, \{\beta_n\}$ are sequences in $[0, 1]$.

For N = 2, $T_1, T_2: K \to K$, $T_1 = T_2 = T$, and $y_n = x_n^1$, then (1) reduces to the scheme with errors for a mapping defined by Liu [10]:

$$x_1 = x \in \mathbf{K}$$
$$y_n = \alpha_n^1 T^n x_n + \beta_n^1 x_n + \gamma_n^1 u_n^1$$
$$x_{n+1} = x_n^2 = \alpha_n^2 T^n y_n + \beta_n^2 x_n + \gamma_n^2 u_n^2$$

where $\{\alpha_n^1\}$, $\{\alpha_n^2\}$, $\{\beta_n^1\}$, $\{\beta_n^2\}$, $\{\gamma_n^1\}$, $\{\gamma_n^2\}$ are sequences in [0, 1] with $\alpha_n^1 + \beta_n^1 + \gamma_n^1 = 1 = \alpha_n^2 + \beta_n^2 + \gamma_n^2$ and $\{u_n^1\}$, $\{u_n^2\}$ are bounded sequences in K.

For N = 2, $T_1, T_2: K \to K$, $T_1 = T$, $T_2 = S$ and $y_n = x_n^1$, then (1) reduces to the scheme with errors for two mappings defined by Shahzad and Udomene [14]:

$$x_1 = x \in K$$
$$y_n = \alpha_n^1 T^n x_n + \beta_n^1 x_n + \gamma_n^1 u_n^1$$
$$x_{n+1} = x_n^2 = \alpha_n^2 S^n y_n + \beta_n^2 x_n + \gamma_n^2 u_n^2$$

where $\{\alpha_n^1\}$, $\{\alpha_n^2\}$, $\{\beta_n^1\}$, $\{\beta_n^2\}$, $\{\gamma_n^1\}$, $\{\gamma_n^2\}$ are sequences in [0, 1] with $\alpha_n^1 + \beta_n^1 + \gamma_n^1 = 1 = \alpha_n^2 + \beta_n^2 + \gamma_n^2$ and $\{u_n^1\}$, $\{u_n^2\}$ are bounded sequences in K.

The purpose of this paper is to establish a sufficient and necessary condition for strong convergence of the multistep iteration scheme with errors for a finite family of asymptotically quasi-nonexpansive mappings in Banach space. These results extend the related result of Shahzad and Udomene [14] and many others.

In order to prove our main results, the following lemmas have been used:

Lemma 1.1. Let $\{a_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ and $\{r_n\}_{n=1}^{\infty}$ be sequences of nonnegative real numbers satisfying

 $a_{n+1} \leq (1+r_n)a_n + \beta_n, \ \forall n \in N.$ Let $\sum_{n=1}^{\infty} r_n < \infty, \ \sum_{n=1}^{\infty} \beta_n < \infty.$ Then (i) $\lim_{n \to \infty} a_n \text{ exists.}$ (ii) If $\lim_{n \to \infty} \inf_{n \to \infty} a_n = 0$, then $\lim_{n \to \infty} a_n = 0$.

Lemma 1.2. ([16]) Let p > 1 and R > 1 be two fixed numbers and E a Banach space. Then E is uniformly convex if and only if there exists a continuous, strictly increasing and convex function $g: [0, \infty) \to [0, \infty)$ with g(0) = 0 such that

 $\|\lambda x + (1-\lambda)y\|^p \leq \lambda \|x\|^p + (1-\lambda)\|y\|^p - W_p(\lambda)g(\|x-y\|)$ for all $x, y \in B_R(0) = \{x \in E : \|x\| \leq R\}$, and $\lambda \in [0,1]$, where $W_p(\lambda) = \lambda(1-\lambda)^p + \lambda^p(1-\lambda)$.

2. Main Results

Theorem 2.1. Let E be a real Banach space and K be a nonempty closed convex subset of E. Let $T_1, T_2, \dots, T_N \colon K \to K$ be asymptotically quasinonexpansive mappings with sequences $\{r_n^i\}$ such that $\sum_{n=1}^{\infty} r_n^i < \infty$, for all $1 \leq i \leq N$ and $F = \bigcap_{i=1}^N F(T_i) \neq \phi$. Let $\{\alpha_n^i\}, \{\beta_n^i\}$ and $\{\gamma_n^i\}$ are sequences in [0,1] with $\alpha_n^i + \beta_n^i + \gamma_n^i = 1$ for all $i = 1, 2, \dots, N$. From arbitrary $x_1 \in K$, define the sequence $\{x_n\}$ iteratively by (1), where $\{u_n^i\}$ are bounded sequences in K with $\sum_{n=1}^{\infty} u_n^i < \infty$. Then

Common fixed point of multi-step iteration scheme

(i) For $x^* \in F$ and for some sequences $\{b_n^i\}$ and $\{d_n^i\}$ for all $i = 1, 2, \dots, N$, $n \ge 1$, of numbers satisfy $\sum_{n=1}^{\infty} b_n^i < \infty$ and $\sum_{n=1}^{\infty} d_n^i < \infty$ such that

$$||x_{n+1} - x^*|| = ||x_n^N - x^*|| \le (1 + b_n^{N-1})||x_n - x^*|| + d_n^{N-1},$$

(ii) There exists a constant M > 0 such that

$$||x_{n+m} - x^*|| \le M ||x_n - x^*||$$

for all $n, m \ge 1$ and $x^* \in F$.

Proof. (i) Let $x^* \in F$. Then from (1) we have

$$\begin{aligned} \|x_n^1 - x^*\| &= \|\alpha_n^1 T_1^n x_n + \beta_n^1 x_n + \gamma_n^1 u_n^1\| \\ &\leq \alpha_n^1 \|T_1^n x_n - x^*\| + \beta_n^1 \|x_n - x^*\| + \gamma_n^1 \|u_n^1 - x^*\| \\ &\leq \alpha_n^1 (1 + r_n^1) \|x_n - x^*\| + \beta_n^1 \|x_n - x^*\| + \gamma_n^1 \|u_n^1 - x^*\| \\ &\leq (1 - \beta_n^1) (1 + r_n^1) \|x_n - x^*\| + \beta_n^1 (1 + r_n^1) \|x_n - x^*\| \\ &+ \gamma_n^1 \|u_n^1 - x^*\| \\ &\leq (1 + r_n^1) \|x_n - x^*\| + \gamma_n^1 \|u_n^1 - x^*\| \\ &\leq (1 + r_n^1) \|x_n - x^*\| + d_n^0, \end{aligned}$$

where $d_n^0 = \gamma_n^1 ||u_n^1 - x^*||$. Since $\sum_{n=1}^{\infty} \gamma_n^1 < \infty$, then $\sum_{n=1}^{\infty} d_n^0 < \infty$. Next, we note that

$$\begin{split} \|x_n^2 - x^*\| &= \|\alpha_n^2 T_2^n x_n^1 + \beta_n^2 x_n + \gamma_n^2 u_n^2\| \\ &\leq \alpha_n^2 \|T_2^n x_n^1 - x^*\| + \beta_n^2 \|x_n - x^*\| + \gamma_n^2 \|u_n^2 - x^*\| \\ &\leq \alpha_n^2 (1 + r_n^2) \|x_n^1 - x^*\| + \beta_n^2 \|x_n - x^*\| + \gamma_n^2 \|u_n^2 - x^*\| \\ &\leq \alpha_n^2 (1 + r_n^2) [(1 + r_n^1) \|x_n - x^*\| + d_n^0] + \beta_n^2 \|x_n - x^*\| \\ &+ \gamma_n^2 \|u_n^2 - x^*\| \\ &\leq [(1 + r_n^1) (1 + r_n^2) \alpha_n^2 + \beta_n^2] \|x_n - x^*\| + \alpha_n^2 (1 + r_n^2) d_n^0 \\ &+ \gamma_n^2 \|u_n^2 - x^*\| \\ &\leq (\alpha_n^2 + \beta_n^2) (1 + r_n^1) (1 + r_n^2) \|x_n - x^*\| + \alpha_n^2 (1 + r_n^2) d_n^0 \\ &+ \gamma_n^2 \|u_n^2 - x^*\| \\ &\leq (1 + r_n^1 + r_n^2 + r_n^1 r_n^2) \|x_n - x^*\| + \alpha_n^2 (1 + r_n^2) d_n^0 + \gamma_n^2 \|u_n^2 - x^*\| \\ &\leq (1 + r_n^1 + r_n^2 + r_n^1 r_n^2) \|x_n - x^*\| + \alpha_n^2 (1 + r_n^2) d_n^0 + \gamma_n^2 \|u_n^2 - x^*\| \\ &\leq (1 + b_n^1) \|x_n - x^*\| + d_n^1, \end{split}$$

where $d_n^1 = \alpha_n^2 (1 + r_n^2) d_n^0 + \gamma_n^2 ||u_n^2 - x^*||$ and $b_n^1 = (1 + r_n^1 + r_n^2 + r_n^1 r_n^2)$. Since $\sum_{n=1}^{\infty} d_n^0 < \infty$, $\sum_{n=1}^{\infty} \gamma_n^2 < \infty$, $\sum_{n=1}^{\infty} r_n^i < \infty$ for i = 1, 2, and so $\sum_{n=1}^{\infty} d_n^1 < \infty$

and $\sum_{n=1}^{\infty} b_n^1 < \infty$. Similarly, we have

$$\begin{split} \|x_n^3 - x^*\| &= \|\alpha_n^3 T_n^3 x_n^2 + \beta_n^3 x_n + \gamma_n^3 u_n^3\| \\ &\leq \alpha_n^3 \|T_n^3 x_n^2 - x^*\| + \beta_n^3 \|x_n - x^*\| + \gamma_n^3 \|u_n^3 - x^*\| \\ &\leq \alpha_n^3 (1 + r_n^3) \|x_n^2 - x^*\| + \beta_n^3 \|x_n - x^*\| + \gamma_n^3 \|u_n^3 - x^*\| \\ &\leq \alpha_n^3 (1 + r_n^3) [(1 + b_n^1) \|x_n - x^*\| + d_n^1] + \beta_n^3 \|x_n - x^*\| \\ &+ \gamma_n^3 \|u_n^3 - x^*\| \\ &\leq [\alpha_n^3 (1 + r_n^3) (1 + b_n^1) + \beta_n^3] \|x_n - x^*\| + \alpha_n^3 (1 + r_n^3) d_n^1 \\ &+ \gamma_n^3 \|u_n^3 - x^*\| \\ &\leq (\alpha_n^3 + \beta_n^3) (1 + b_n^1) (1 + r_n^3) \|x_n - x^*\| + \alpha_n^3 (1 + r_n^3) d_n^1 \\ &+ \gamma_n^3 \|u_n^3 - x^*\| \\ &\leq (1 + b_n^1) (1 + r_n^3) \|x_n - x^*\| + d_n^2 \\ &\leq (1 + b_n^2) \|x_n - x^*\| + d_n^2, \end{split}$$

where $b_n^2 = b_n^1 + r_n^3 + b_n^1 r_n^3$ and $d_n^2 = \alpha_n^3 (1 + r_n^3) d_n^1 + \gamma_n^3 || u_n^3 - x^* ||$. Since $\sum_{n=1}^{\infty} b_n^1 < \infty$, $\sum_{n=1}^{\infty} r_n^3 < \infty$, $\sum_{n=1}^{\infty} d_n^1 < \infty$ and $\sum_{n=1}^{\infty} \gamma_n^3 < \infty$, so $\sum_{n=1}^{\infty} b_n^2 < \infty$ and $\sum_{n=1}^{\infty} d_n^2 < \infty$. By continuing the above process, there exist nondecreasing sequences $\{d_n^{l-1}\}$ and $\{b_n^{l-1}\}$ such that $\sum_{n=1}^{\infty} d_n^{l-1} < \infty$ and $\sum_{n=1}^{\infty} b_n^{l-1} < \infty$ and

$$||x_n^i - x^*|| \le (1 + b_n^{i-1})||x_n - x^*|| + d_n^{i-1}, \quad \forall n \ge 1, \quad \forall i = 1, 2, \cdots, N.$$

Thus

$$||x_{n+1} - x^*|| = ||x_n^N - x^*|| \le (1 + b_n^{N-1})||x_n - x^*|| + d_n^{N-1}, \quad \forall n \in N.$$

This completes the proof of (i).

(ii) Since $1 + x \le e^x$ for all x > 0. Then from (i) it can be obtained that

$$\begin{aligned} \|x_{n+m} - x^*\| \\ &\leq (1 + b_{n+m-1}^{N-1}) \|x_{n+m-1} - x^*\| + d_{n+m-1}^{N-1} \\ &\leq e^{b_{n+m-1}^{N-1}} \|x_{n+m-1} - x^*\| + d_{n+m-1}^{N-1} \\ &= e^{(b_{n+m-1}^{N-1} + b_{n+m-2}^{N-1})} \|x_{n+m-2} - x^*\| + e^{b_{n+m-1}^{N-1}} d_{n+m-2}^{N-1} + d_{n+m-1}^{N-1} \\ &= e^{(b_{n+m-1}^{N-1} + b_{n+m-2}^{N-1})} \|x_{n+m-2} - x^*\| + e^{b_{n+m-1}^{N-1}} (d_{n+m-1}^{N-1} + d_{n+m-2}^{N-1}) \\ &\cdots \\ &= e^{\sum_{k=n}^{n+m-1} b_k^{N-1}} \|x_n - x^*\| + e^{\sum_{k=n}^{n+m-1} b_k^{N-1}} \cdot \sum_{k=n}^{n+m-1} d_k^{N-1} \end{aligned}$$

Common fixed point of multi-step iteration scheme

$$= M . \|x_n - x^*\| + M . \sum_{k=n}^{n+m-1} d_k^{N-1},$$

where $M = e^{\sum_{k=n}^{\infty} b_k^{N-1}}$. This completes the proof of (ii).

Theorem 2.2. Let *E* be a real Banach space and *K* be a nonempty closed convex subset of *E*. Let $T_1, T_2, \dots, T_N \colon K \to K$ be *N* asymptotically quasinonexpansive mappings ($\{T_i : i = 1, 2, \dots, N\}$ need not be continuous) with sequences $\{r_n^i\}$ such that $\sum_{n=1}^{\infty} r_n^i < \infty$, for all $1 \le i \le N$ and $F = \bigcap_{i=1}^N F(T_i) \ne \phi$. Let $\{\alpha_n^i\}$, $\{\beta_n^i\}$ and $\{\gamma_n^i\}$ are sequences in [0, 1] with $\alpha_n^i + \beta_n^i + \gamma_n^i = 1$ for all $i = 1, 2, \dots, N$. From arbitrary $x_1 \in K$, define the sequence $\{x_n\}$ iteratively by (1), where $\{u_n^i\}$ are bounded sequences in *K* with $\sum_{n=1}^{\infty} u_n^i < \infty$. Then $\{x_n\}$ converges strongly to a common fixed point of the mappings $\{T_1, T_2, \dots, T_N\}$ if and only if

$$\liminf_{n \to \infty} d(x_n, F) = 0$$

where d(y, A) denotes the distance of y to the set A; that is, $d(y, A) = \inf\{||y - z|| : \forall z \in A\}.$

Proof. Suppose $\{x_n\}$ converges strongly to a common fixed point z of $\{T_1, T_2, \dots, T_N\}$. Then

$$\liminf_{n \to \infty} d(x_n, F) = 0.$$

Conversely, suppose $\{T_1, T_2, \dots, T_N\}$. Then from Theorem 2.1 (i), we have

$$\|x_{n+1} - x^*\| \le (1 + b_n^{N-1}) \|x_n - x^*\| + d_n^{N-1}, \quad \forall n \in \mathbb{N}, \quad \forall x^* \in F.$$
(2)

Since $\sum_{n=1}^{\infty} u_n^i < \infty$, $\sum_{n=1}^{\infty} r_n^i < \infty$ for all $1 \le i \le N$, we know that $\sum_{n=1}^{\infty} b_n^{N-1} < \infty$ and $\sum_{n=1}^{\infty} d_n^{N-1} < \infty$. So from (2), we obtain

$$d(x_{n+1}, F) \le (1 + b_n^{N-1})d(x_n, F) + d_n^{N-1}$$

Since $\liminf_{n\to\infty} d(x_n, F) = 0$ and from Lemma 2.1, we have

$$\lim_{n \to \infty} d(x_n, F) = 0.$$

Next we will show that $\{x_n\}$ is a Cauchy sequence. For all $\varepsilon > 0$, from Theorem 2.1 (ii), it can be known that there must exists a constant M > 0, such that

$$||x_{n+m} - x^*|| \le M. ||x_n - x^*|| + M. \sum_{k=n}^{n+m-1} d_k^{N-1}, \ \forall m, n \in N, \ \forall x^* \in F.$$
(3)

Since $\lim_{n\to\infty} d(x_n, F) = 0$ and $\sum_{n=1}^{\infty} d_n^{N-1} < \infty$, there must exists a constant N_1 , such that when $n \ge N_1$

595

$$d(x_n, F) < \frac{\varepsilon_1}{3M}$$
 and $\sum_{k=n}^{n+m-1} d_k^{N-1} < \frac{\varepsilon_1}{6M}.$

So there must exists $w^* \in F$, such that

$$d(x_{N_1}, w^*) = ||x_{N_1} - w^*|| < \frac{\varepsilon_1}{3M}$$

From (3), it can be obtained that when $n \ge N_1$

$$\begin{aligned} \|x_{n+m} - x_n\| &\leq \|x_{n+m} - w^*\| + \|x_n - w^*\| \\ &\leq M \|x_{N_1} - w^*\| + M \|x_{N_1} - w^*\| + 2M \sum_{k=N_1}^{\infty} d_n^{N-1} \\ &\leq M \cdot \frac{\varepsilon_1}{3M} + M \cdot \frac{\varepsilon_1}{3M} + 2M \cdot \frac{\varepsilon_1}{6M} \\ &< \varepsilon_1, \end{aligned}$$

that is,

$$\|x_{n+m} - x_n\| < \varepsilon_1.$$

This shows that $\{x_n\}$ is a Cauchy sequence and so is convergent from the completeness of E. Let $\lim_{n\to\infty} x_n = y^*$. Then $y^* \in K$. It remains to show that $y^* \in F$. Let $\varepsilon_2 > 0$ be given. Then there exists a natural number N_2 such that

$$||x_n - y^*|| < \frac{\varepsilon_2}{2(2+r_1^i)}, \quad \forall n \ge N_2.$$

Since $\lim_{n\to\infty} d(x_n, F) = 0$, there must exists a natural number $N_3 \ge N_2$ such that for all $n \ge N_3$, we have

$$d(x_n, F) < \frac{\varepsilon_2}{3(2+r_1^i)}$$

and in particular we have

$$d(x_{N_3}, F) < \frac{\varepsilon_2}{3(2+r_1^i)}.$$

Therefore, there exists $z^* \in F$ such that

$$||x_{N_3} - z^*|| < \frac{\varepsilon_2}{2(2+r_1^i)}.$$

Consequently, we have

$$\begin{split} \|T_{i}y^{*} - y^{*}\| &= \|T_{i}y^{*} - z^{*} + z^{*} - x_{N_{3}} + x_{N_{3}} - y^{*}\| \\ &\leq \|T_{i}y^{*} - z^{*}\| + \|z^{*} - x_{N_{3}}\| + \|x_{N_{3}} - y^{*}\| \\ &\leq (1 + r_{1}^{i})\|y^{*} - z^{*}\| + \|z^{*} - x_{N_{3}}\| + \|x_{N_{3}} - y^{*}\| \\ &\leq (1 + r_{1}^{i})[\|y^{*} - x_{N_{3}}\| + \|x_{N_{3}} - z^{*}\|] + \|z^{*} - x_{N_{3}}\| + \|x_{N_{3}} - y^{*}\| \\ &\leq (2 + r_{1}^{i})\|y^{*} - x_{N_{3}}\| + (2 + r_{1}^{i})\|x_{N_{3}} - z^{*}\| \\ &< (2 + r_{1}^{i}) \cdot \frac{\varepsilon_{2}}{2(2 + r_{1}^{i})} + (2 + r_{1}^{i}) \cdot \frac{\varepsilon_{2}}{2(2 + r_{1}^{i})} \\ &< \varepsilon_{2}. \end{split}$$

This implies that $y^* \in F(T_i)$ for all $i = 1, 2, \dots, N$. Hence we conclude that $y^* \in F = \bigcap_{i=1}^N F(T_i)$, that is, y^* is a common fixed point of the mappings $\{T_1, T_2, \dots, T_N\}$. Thus $\{x_n\}$ converges strongly to a common fixed point of the mappings $\{T_1, T_2, \dots, T_N\}$. This completes the proof. \Box

Remark 2.3. Theorem 2.2 extends Theorem 3.2 of Shahzad and Udomene [14] to the case of multistep iterative sequences with errors for finite family of asymptotically quasi-nonexpansive mappings.

Remark 2.4. Theorem 2.2 also extends and improves Theorem 1.1 and Theorem 1.1' of Petryshyn and Williamson [8] and Theorem 3.1 of Ghosh and Debnath [4] to the case of multistep iterative sequences with errors for finite family of more general class of quasi-nonexpansive mappings. The continuity of mapping is relaxed in Theorem 2.2 as compared to [8, 4].

Remark 2.5. Theorem 2.2 also extends Liu [9, Theorem 1] and Liu [10, Theorem 1] to the case of multistep iterative sequences with errors for finite family of asymptotically quasi-nonexpansive mappings.

Theorem 2.6. Let E be a real uniformly convex Banach space and K be a nonempty closed convex subset of E. Let $T_1, T_2, \dots, T_N \colon K \to K$ be N uniformly continuous asymptotically quasi-nonexpansive mappings with sequences $\{r_n^i\}$ such that $\sum_{n=1}^{\infty} r_n^i < \infty$, for all $1 \leq i \leq N$ and $F = \bigcap_{i=1}^N F(T_i) \neq \phi$. Let $\{x_n\}$ be the sequence defined by (1) with $\sum_{n=1}^{\infty} \gamma_n^i < \infty$ and $\{\alpha_n^i\} \subseteq [\varepsilon, 1 - \varepsilon]$ for all $i = 1, 2, \dots, N$, for some $\varepsilon \in (0, 1)$. Then

$$\|x_n - T_i^n x_n\| = 0$$

for all $i = 1, 2, \dots, N$.

Proof. Let $x^* \in F = \bigcap_{i=1}^N F(T_i)$. Then by Theorem 2.1 (i) and Lemma 1.1, $\lim_{n\to\infty} \|x_n - x^*\|$ exists. Let $\lim_{n\to\infty} \|x_n - x^*\| = a$. If a = 0, then by the continuity of each T_i the conclusion follows. Now suppose that a > 0. Firstly,

we are now to show that $\lim_{n\to\infty} ||T_N^n x_n - x_n|| = 0$. Since $\{x_n\}$ and $\{u_n^i\}$ are bounded for all $i = 1, 2, \dots, N$, there exists R > 0 such that

$$x_n - x^* + \gamma_n^i (u_n^i - x_n), T_i^n x_n^{i-1} - x^* + \gamma_n^i (u_n^i - x_n) \in B_R(0)$$

for all $n \ge 1$ and for all $i = 1, 2, \dots, N$. Using Lemma 1.2, we have $||x_n^N - x^*||^2$

$$\begin{aligned} &= \|\alpha_n^N T_n^N x_n^{N-1} + \beta_n^N x_n + \gamma_n^N u_n^N - x^* \|^2 \\ &= \|\alpha_n^N (T_N^n x_n^{N-1} - x^* + \gamma_n^N (u_n^N - x_n)) + (1 - \alpha_n^N) (x_n - x^* + \gamma_n^N (u_n^N - x_n)) \|^2 \\ &\leq \alpha_n^N \|T_N^n x_n^{N-1} - x^* + \gamma_n^N (u_n^N - x_n) \|^2 \\ &+ (1 - \alpha_n^N) \|x_n - x^* + \gamma_n^N (u_n^N - x_n) \|^2 - W_2(\alpha_n^N) g(\|T_N^n x_n^{N-1} - x_n) \| \\ &\leq \alpha_n^N (\|T_N^n x_n^{N-1} - x^*\| + \gamma_n^N \|u_n^N - x_n\|)^2 - W_2(\alpha_n^N) g(\|T_N^n x_n^{N-1} - x_n\|) \\ &\leq \alpha_n^N [(1 + b_n^{N-2}) \|x_n - x^*\| + d_n^{N-2} + \gamma_n^N \|u_n^N - x_n\|]^2 \\ &+ (1 - \alpha_n^N) [(1 + b_n^{N-2}) \|x_n - x^*\| + d_n^{N-2} + \gamma_n^N \|u_n^N - x_n\|]^2 \\ &- W_2(\alpha_n^N) g(\|T_N^n x_n^{N-1} - x_n\|) \\ &\leq [(1 + b_n^{N-2}) \|x_n - x^*\| + d_n^{N-2} + \gamma_n^N \|u_n^N - x_n\|]^2 \\ &- W_2(\alpha_n^N) g(\|T_N^n x_n^{N-1} - x_n\|) \\ &\leq [(1 + b_n^{N-2}) \|x_n - x^*\| + d_n^{N-2} + \gamma_n^N \|u_n^N - x_n\|]^2 \\ &- W_2(\alpha_n^N) g(\|T_N^n x_n^{N-1} - x_n\|) \\ &\leq [\|x_n - x^*\| + \lambda_n^{N-2}]^2 - W_2(\alpha_n^N) g(\|T_N^n x_n^{N-1} - x_n\|), \end{aligned}$$

where $\lambda_n^{N-2} = d_n^{N-2} + \gamma_n^N ||u_n^N - x_n||$. Observe that $\varepsilon^3 \leq W_2(\alpha_n^N)$, it implies that

$$\varepsilon^{3}g(\|T_{N}^{n}x_{n}^{N-1}-x_{n}\|) \leq \|x_{n}-x^{*}\|^{2}-\|x_{n+1}-x^{*}\|^{2}+\rho_{n}^{N-2},$$

$$\begin{split} \rho_n^{N-2} &= 2\lambda_n^{N-2} + (\lambda_n^{N-2})^2.\\ \text{Since } \sum_{n=1}^\infty d_n^{N-2} < \infty \text{ and } \sum_{n=1}^\infty \gamma_n^{N-2} < \infty, \text{ we get } \sum_{n=1}^\infty \rho_n^{N-2} < \infty. \text{ This implies that} \end{split}$$

$$\lim_{n \to \infty} g(\|T_N^n x_n^{N-1} - x_n\|) = 0.$$

Since g is strictly increasing and continuous at 0, it follows that

$$\lim_{n \to \infty} \|T_N^n x_n^{N-1} - x_n\| = 0.$$

Since $T_N, \forall N$ is asymptotically quasi-nonexpansive, note that

$$\begin{aligned} x_n - x^* \| &\leq \|x_n - T_N^n x_n^{N-1}\| + \|T_N^n x_n^{N-1} - x^*\| \\ &= \|x_n - T_N^n x_n^{N-1}\| + (1 + r_n^N) \|x_n - x^*\| \end{aligned}$$

for all $n \ge 1$. Thus

Common fixed point of multi-step iteration scheme

$$a = \lim_{n \to \infty} \|x_n - x^*\|$$

$$\leq \liminf_{n \to \infty} \|x_n^{N-1} - x^*\|$$

$$\leq \limsup_{n \to \infty} \|x_n^{N-1} - x^*\|$$

$$\leq a$$

and therefore $\lim_{n\to\infty} ||x_n^{N-1} - x^*|| = a$. Using the same argument in the proof above, we have

$$\begin{aligned} \|x_{n}^{N-1} - x^{*}\|^{2} \\ &\leq \alpha_{n}^{N-1} \|T_{N}^{n} x_{n}^{N-2} - x^{*} + \gamma_{n}^{N-1} (u_{n}^{N-1} - x_{n})\|^{2} \\ &+ (1 - \alpha_{n}^{N-1}) \|x_{n} - x^{*} + \gamma_{n}^{N-1} (u_{n}^{N-1} - x_{n})\|^{2} \\ &- W_{2} (\alpha_{n}^{N-1}) g(\|T_{N-1}^{n} x_{n}^{N-2} - x_{n}\|) \\ &\leq \alpha_{n}^{N-1} [(1 + b_{n}^{N-3}) \|x_{n} - x^{*}\| + d_{n}^{N-3} + \gamma_{n}^{N-1} \|u_{n}^{N-1} - x_{n}\|]^{2} \\ &+ (1 - \alpha_{n}^{N-1}) [(1 + b_{n}^{N-3}) \|x_{n} - x^{*}\| + d_{n}^{N-3} + \gamma_{n}^{N-1} \|u_{n}^{N-1} - x_{n}\|]^{2} \\ &- W_{2} (\alpha_{n}^{N-1}) g(\|T_{N-1}^{n} x_{n}^{N-2} - x_{n}\|) \\ &\leq [(1 + b_{n}^{N-3}) \|x_{n} - x^{*}\| + d_{n}^{N-3} + \gamma_{n}^{N-1} \|u_{n}^{N-1} - x_{n}\|]^{2} \\ &- W_{2} (\alpha_{n}^{N-1}) g(\|T_{N-1}^{n} x_{n}^{N-2} - x_{n}\|) \\ &\leq [\|x_{n} - x^{*}\| + \lambda_{n}^{N-3}]^{2} - W_{2} (\alpha_{n}^{N-1}) g(\|T_{N-1}^{n} x_{n}^{N-2} - x_{n}\|), \end{aligned}$$

where $\lambda_n^{N-3} = d_n^{N-3} + \gamma_n^{N-1} ||u_n^{N-1} - x_n||$. This implies that

$$\varepsilon^{3}g(||T_{N-1}^{n}x_{n}^{N-2}-x_{n}||) \leq ||x_{n}-x^{*}||^{2}-||x_{n+1}-x^{*}||^{2}+\rho_{n}^{N-3},$$

where $\rho_n^{N-3}=2\lambda_n^{N-3}+(\lambda_n^{N-3})^2$ and therefore

$$\lim_{n \to \infty} \|T_{N-1}^n x_n^{N-2} - x_n\| = 0.$$

Thus, we have

$$\begin{aligned} \|x_n - T_N^n x_n\| \\ &\leq \|x_n - T_N^n x_n^{N-1}\| + \|T_N^n x_n^{N-1} - T_N^n x_n\| \\ &\leq \|x_n - T_N^n x_n^{N-1}\| + (1 + r_n^N) \|x_n^{N-1} - x_n\| \\ &\leq \|x_n - T_N^n x_n^{N-1}\| + (1 + r_n^N) \|\alpha_n^{N-1} T_{N-1}^n x_n^{N-2} + \beta_n^{N-1} x_n + \gamma_n^{N-1} u_n^{N-1} - x_n\| \\ &\leq \|x_n - T_N^n x_n^{N-1}\| + (1 + r_n^N) [\alpha_n^{N-1} \|T_{N-1}^n x_n^{N-2} - x_n\| + \gamma_n^{N-1} \|u_n^{N-1} - x_n\|]. \end{aligned}$$

Gurucharan Singh Saluja and Hemant Kumar Nashine

Since $\lim_{n \to \infty} \|x_n - T_N^n x_n^{N-1}\| = 0$, $\lim_{n \to \infty} \|x_n - T_{N-1}^n x_n^{N-2}\| = 0$, and $\sum_{n=1}^{\infty} \gamma_n^{N-1} < \infty$, $\sum_{n=1}^{\infty} r_n^N < \infty$, it follows that

$$\lim_{n \to \infty} \|x_n - T_N^n x_n\| = 0$$

Similarly, by using the same argument as in the proof above we have $\lim_{n\to\infty} ||x_n - T_{N-2}^n x_n^{N-3}|| = \lim_{n\to\infty} ||x_n - T_{N-3}^n x_n^{N-4}|| =, \dots, = \lim_{n\to\infty} ||x_n - T_2^n x_n^1|| = 0.$ This implies that

$$\lim_{n \to \infty} \|x_n - T_{N-1}^n x_n\| = \lim_{n \to \infty} \|x_n - T_{N-2}^n x_n\|$$

...
$$= \lim_{n \to \infty} \|x_n - T_3^n x_n\| = 0.$$

It remains to show that

$$\lim_{n \to \infty} \|x_n - T_1^n x_n\| = 0, \quad \lim_{n \to \infty} \|x_n - T_2^n x_n\| = 0.$$

Note that

$$\begin{aligned} \|x_n^1 - x^*\|^2 \\ &\leq \alpha_n^1 (\|T_1^n x_n - x^*\| + \gamma_n^1 \|u_n^1 - x^*)\|^2 + (1 - \alpha_n^1) (\|x_n - x^*\| + \gamma_n^1 \|u_n^1 - x^*)\|^2 \\ &- W_2(\alpha_n^1) g(\|T_1^n x_n - x_n\|) \\ &\leq \alpha_n^1 [(1 + r_n^1) \|x_n - x^*\| + \gamma_n^1 \|u_n^1 - x^*\|]^2 \\ &+ (1 - \alpha_n^1) [(1 + r_n^1) \|x_n - x^*\| + \gamma_n^1 \|u_n^1 - x^*\|]^2 - W_2(\alpha_n^1) g(\|T_1^n x_n - x_n\|) \\ &\leq [(1 + r_n^1) \|x_n - x^*\| + \gamma_n^1 \|u_n^1 - x^*\|]^2 - W_2(\alpha_n^1) g(\|T_1^n x_n - x_n\|) \\ &\leq [\|x_n - x^*\| + \gamma_n^1 \|u_n^1 - x^*\|]^2 - W_2(\alpha_n^1) g(\|T_1^n x_n - x_n\|) \end{aligned}$$

Thus, we have

$$\varepsilon^{3}g(\|T_{1}^{n}x_{n} - x_{n}\|) \leq [\|x_{n} - x^{*}\| + \gamma_{n}^{1}\|u_{n}^{1} - x^{*}\|]^{2} - \|x_{n}^{1} - x^{*}\|^{2}$$

and therefore

$$\lim_{n \to \infty} \|T_1^n x_n - x_n\| = 0.$$

Since

$$\begin{aligned} \|x_n - T_2^n x_n\| &\leq \|x_n - T_2^n x_n^1\| + \|T_2^n x_n^1 - T_2^n x_n\| \\ &\leq \|x_n - T_2^n x_n^1\| + (1 + r_n^2) \|x_n^1 - x_n\| \\ &\leq \|x_n - T_2^n x_n^1\| + (1 + r_n^2) \|\alpha_n^1 T_1^n x_n + \beta_n^1 x_n + \gamma_n^1 u_n^1 - x_n\| \\ &\leq \|x_n - T_2^n x_n^1\| + (1 + r_n^2) [\alpha_n^1\| T_1^n x_n - x_n\| + \gamma_n^1\|u_n^1 - x_n\|], \end{aligned}$$

it implies that $\lim_{n\to\infty} ||T_2^n x_n - x_n|| = 0$. Therefore $\lim_{n\to\infty} ||T_i^n x_n - x_n|| = 0$ for all $i = 1, 2, \dots, N$.

Theorem 2.7. Let *E* be a real uniformly convex Banach space and *K* be a nonempty closed convex subset of *E*. Let $T_1, T_2, \dots, T_N \colon K \to K$ be *N* uniformly *L*-Lipschitzian asymptotically quasi-nonexpansive mappings with sequences $\{r_n^i\}$ such that $\sum_{n=1}^{\infty} r_n^i < \infty$, for all $1 \leq i \leq N$ and $F = \bigcap_{i=1}^N F(T_i) \neq \phi$. Let $\{x_n\}$ be the sequence defined by (1) with $\sum_{n=1}^{\infty} \gamma_n^i < \infty$ and $\{\alpha_n^i\} \subseteq [\varepsilon, 1 - \varepsilon]$ for all $i = 1, 2, \dots, N$, for some $\varepsilon \in (0, 1)$. Then

$$\|x_n - T_i x_n\| = 0$$

for all $i = 1, 2, \dots, N$.

Proof. It follows from Theorem 2.6, that

$$\lim_{n \to \infty} \|x_n - T_i^n x_n\| = 0$$

for all $i = 1, 2, \dots, N$ and this implies that

$$||x_{n+1} - x_n|| \le \alpha_n^N ||T_N^n x_n^{N-1} - x_n|| + \gamma_n^N ||u_n^N - x_n|| \to 0,$$

as $n \to \infty$. We now have to show that $\lim_{n\to\infty} ||x_n - T_i x_n|| = 0$ for all $i = 1, 2, \dots, N$. Observe that

$$||x_n - T_1^{n-1}x_n|| \le ||x_n - x_{n-1}|| + ||x_{n-1} - T_1^{n-1}x_{n-1}|| + ||T_1^{n-1}x_{n-1} - T_1^{n-1}x_n|| \le ||x_n - x_{n-1}|| + ||x_{n-1} - T_1^{n-1}x_{n-1}|| + L||x_{n-1} - x_n|| \to 0,$$

as $n \to \infty$. Using the above inequality, we have

$$||x_n - T_1 x_n|| \le ||x_n - T_1^n x_n|| + ||T_1^n x_n - T_1 x_n||$$

$$\le ||x_n - T_1^n x_n|| + L||T_1^{n-1} x_n - x_n|| \to 0$$

as $n \to \infty$. Again we have

$$\begin{aligned} \|x_n - T_2^{n-1} x_n^1\| \\ &\leq \|x_n - x_{n-1}\| + \|x_{n-1} - T_2^{n-1} x_{n-1}^1\| + \|T_2^{n-1} x_{n-1}^1 - T_2^{n-1} x_n^1\| \\ &\leq \|x_n - x_{n-1}\| + \|x_{n-1} - T_2^{n-1} x_{n-1}^1\| + L\|x_{n-1}^1 - x_n^1\| \\ &\leq \|x_n - x_{n-1}\| + \|x_{n-1} - T_2^{n-1} x_{n-1}^1\| + L[\|x_{n-1}^1 - x_{n-1}\| \\ &+ \|x_{n-1} - x_n\| + \|x_n - x_n^1\|] \\ &\leq (L+1)\|x_n - x_{n-1}\| + \|x_{n-1} - T_2^{n-1} x_{n-1}^1\| + L\|x_{n-1}^1 - x_{n-1}\| \\ &+ L\|x_n - x_n^1\| \to 0, \end{aligned}$$

as $n \to \infty$. Using the above inequality, we have

$$\begin{aligned} \|x_n - T_2 x_n\| &\leq \|x_n - T_2^n x_n^1\| + \|T_2^n x_n^1 - T_2 x_n\| \\ &\leq \|x_n - T_2^n x_n^1\| + L\|T_2^{n-1} x_n^1 - x_n\| \to 0, \end{aligned}$$

as $n \to \infty$. Similarly, we can prove that

$$||x_n - T_3 x_n|| = 0, ||x_n - T_4 x_n|| = 0, \dots, ||x_n - T_N x_n|| = 0.$$

Thus

$$\|x_n - T_i x_n\| = 0$$

for all $i = 1, 2, \dots, N$. This completes the proof.

Theorem 2.8. Let E be a real uniformly convex Banach space and K be a nonempty closed convex subset of E. Let $T_1, T_2, \dots, T_N \colon K \to K$ be N uniformly continuous asymptotically quasi-nonexpansive mappings with sequences $\{r_n^i\}$ such that $\sum_{n=1}^{\infty} r_n^i < \infty$, for all $1 \le i \le N$ and $F = \bigcap_{i=1}^N F(T_i) \ne \phi$. Let $\{x_n\}$ be the sequence defined by (1) with $\sum_{n=1}^{\infty} \gamma_n^i < \infty$ and $\{\alpha_n^i\} \subseteq [\varepsilon, 1-\varepsilon]$ for all $i = 1, 2, \dots, N$, for some $\varepsilon \in (0, 1)$. Suppose T_1^m is compact for some $m \in N$. Then $\{x_n\}$ converges strongly to a common fixed point of the mappings $\{T_1, T_2, \dots, T_N\}$.

Proof. Since T_1^m is compact for some $m \in N$, from the uniform continuity of T_1 and $\lim_{n\to\infty} ||T_1x_n - x_n|| = 0$, we can show that for each $l \ge 1$,

$$\lim_{n \to \infty} \|T_1^l x_n - x_n\| = 0.$$

Since $\{x_n\}$ is bounded and T_1^m is compact, $\{T_1^m x_n\}_{n=1}^{\infty}$ has a convergent subsequence $\{T_1^m x_{n_j}\}_{j=1}^{\infty}$. Suppose $\lim_{j\to\infty} T_1^m x_{n_j} = x^* \in K$. Then the inequality

$$||x_{n_j} - x^*|| \le ||x_{n_j} - T_1^m x_{n_j}|| + ||T_1^m x_{n_j} - x^*||$$

yields $\lim_{j\to\infty} ||x_{n_j} - x^*|| = 0$ which implies by Lemma 1.1 that $x_n \to x^* \in F = \bigcap_{i=1}^N F(T_i)$, since $\lim_{n\to\infty} ||x_n - x^*||$ exists. Thus $\{x_n\}$ converges strongly to a common fixed point of the mappings $\{T_1, T_2, \cdots, T_N\}$. This completes the proof.

Corollary 2.9. Let *E* be a real uniformly convex Banach space and *K* be a nonempty compact convex subset of *E*. Let $T_1, T_2, \dots, T_N \colon K \to K$ be *N* continuous asymptotically quasi-nonexpansive mappings with sequences $\{r_n^i\}$ such that $\sum_{n=1}^{\infty} r_n^i < \infty$, for all $1 \leq i \leq N$ and $F = \bigcap_{i=1}^N F(T_i) \neq \phi$. Let $\{x_n\}$ be the sequence defined by (1) with $\sum_{n=1}^{\infty} \gamma_n^i < \infty$ and $\{\alpha_n^i\} \subseteq [\varepsilon, 1 - \varepsilon]$ for all $i = 1, 2, \dots, N$, for some $\varepsilon \in (0, 1)$. Suppose T_1^m is compact for some $m \in N$. Then $\{x_n\}$ converges strongly to a common fixed point of the mappings $\{T_1, T_2, \dots, T_N\}$.

Remark 2.10. (1) Corollary 2.9 extends Theorem 1.2 of Khan and Takahashi [6] to the case of multistep iterative sequences with errors for finite family of more general class of mappings.

(2) Theorem 2.8 extends Theorem 2.2 of Schu [13] to the case of multistep iterative sequences with errors for finite family of more general class of mappings.

(3) Corollary 2.9 also extends the results of Liu [11] to the case of multistep iterative sequences for finite family of more general class of mappings.

For our next result, we shall need the following definition:

Definition 2.11. Let C be a nonempty closed subset of a Banach space E. A mapping $T: C \to C$ is said to be semi-compact, if for any bounded sequence $\{x_n\}$ in C such that $\lim_{n\to\infty} ||x_n - Tx_n|| = 0$ there exists a subsequence $\{x_{n_i}\} \subset \{x_n\}$ such that $\lim_{i\to\infty} x_{n_i} = x \in C$.

Theorem 2.12. Let E be a real uniformly convex Banach space and K be a nonempty closed convex subset of E. Let $T_1, T_2, \dots, T_N \colon K \to K$ be Nuniformly L-Lipschitzian asymptotically quasi-nonexpansive mappings with sequences $\{r_n^i\}$ such that $\sum_{n=1}^{\infty} r_n^i < \infty$, for all $1 \le i \le N$ and $F = \bigcap_{i=1}^N F(T_i) \ne \phi$. Let $\{x_n\}$ be the sequence defined by (1) with $\sum_{n=1}^{\infty} \gamma_n^i < \infty$ and $\{\alpha_n^i\} \subseteq [\varepsilon, 1-\varepsilon]$ for all $i = 1, 2, \dots, N$, for some $\varepsilon \in (0, 1)$. Suppose one of the mappings in $\{T_1, T_2, \dots, T_N\}$ is semi-compact. Then $\{x_n\}$ converges strongly to a common fixed point of the mappings $\{T_1, T_2, \dots, T_N\}$.

Proof. Suppose that T_1 is semi-compact. By Theorem 23.7, we have

$$\lim_{n \to \infty} \|x_n - T_1 x_n\| = 0.$$
 (6)

So there exists a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ such that $\lim_{j\to\infty} x_{n_j} = x^* \in K$. So from (6) we have $\lim_{n_j\to\infty} ||x_{n_j} - T_j x_{n_j}|| = 0$ for all $j = 1, 2, \dots, N$ and so $||x^* - T_j x^*|| = 0$ for all $j = 1, 2, \dots, N$. This implies that $x^* \in F = \bigcap_{i=1}^N F(T_i)$. Since $\lim_{n\to\infty} d(x_n, F) = 0$, it follows, as in the proof of Theorem 3.2, that $\{x_n\}$ converges strongly to a common fixed point of the mappings $\{T_1, T_2, \dots, T_N\}$. This completes the proof. \Box

References

- C. E. Chidume, Nonexpansive mappings, generalizations and iterative algorithms, In: Agarwal R. P., O'Reagan D. eds. Nonlinear Analysis and Application. To V. Lakshmikantam on his 80th Birthday (Research Monograph), Dordrecht: Kluwer Academic Publishers, 383–430.
- [2] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35(1) (1972), 171–174.
- [3] K. Goebel and W. A. Kirk, A fixed point theorem for transformations whose iterates have uniform Lipschitz constant, Studia Mathematica 47 (1973), 135–140.
- [4] M. K. Ghosh and L. Debnath, Convergence of Ishikawa iterations of quasi-nonexpansive mappings, J. Math. Anal. Appl., 207 (1997), 96–103.
- [5] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150.
- [6] S. H. Khan and W. Takahashi, Approximating common fixed points of two asymptotically nonexpansive mappings, Math. Japon., 53 (2001), 143–148.

- [7] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506– 510.
- [8] W. V. Petryshyn and T. E. Williamson, Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl., 43 (1973), 459–497.
- [9] Qihou Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl., 259 (2001), 1–7.
- [10] Qihou Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member, J. Math. Anal. Appl., 259 (2001), 18–24.
- [11] L. Qihou, Iteration sequences for asymptotically quasi-nonexpansive mapping with an error member of uniformly convex Banach space, J. Math. Anal. Appl., 266(2) (2002), 468–471.
- [12] B. E. Rhoades, Fixed point iteration for certain nonlinear mappings, J. Math. Anal. Appl., 183 (1994), 118–120.
- [13] J. Schu, Weak and strong convergence theorems to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc., 43 (1991), 153–159.
- [14] N. Shahzad and A. Udomene, Approximating common fixed points of two asymptotically quasi nonexpansive mappings in Banach spaces, Fixed Point Theory and Appl., 2006 (2006), Article ID 18909, 1–10.
- [15] K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., 178 (1993), 301–308.
- [16] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. TMA., 16(12) (1991), 1127–1138.
- [17] B. L. Xu and M. A. Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 267(2) (2002), 444–453.