COMMON FIXED POINT OF MULTI-STEP ITERATION SCHEME WITH ERRORS FOR FINITE FAMILY OF ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS

Gurucharan Singh Saluja ${ }^{1}$ and Hemant Kumar Nashine ${ }^{2}$

${ }^{1}$ Department of Mathematics \& Information Technology
Govt. College of Science, Raipur (Chhattisgarh), India.
e-mail: saluja_1963@rediffmail.com
${ }^{2}$ Department of Mathematics, Disha Institute of Management and Technology, Satya Vihar, Vidhansabha-Chandrakhuri Marg (Baloda Bazar Road), Mandir Hasaud, Raipur-492001(Chhattisgarh), India.
e-mail: hemantnashine@rediffmail.com

Abstract

In this paper, we study sufficient and necessary condition for finite step iterative sequences with errors for finite family of asymptotically quasi-nonexpansive mappings in Banach space to converge to common fixed point. These results improve and extend the corresponding results of Ghosh and Debnath [4], Khan and Takahashi [6], Petryshyn and Williamson [8], Liu [9, 10], Shahzad and Udomene [14], Xu and Noor [17] and many others.

1. Introduction and Preliminaries

Let K be a nonempty subset of a real normed space E. Let T be a self mapping of K. Then T is said to be asymptotically nonexpansive with sequence $\left\{u_{n}\right\} \subset[0, \infty)$ if $\lim _{n \rightarrow \infty} u_{n}=0$ and

$$
\left\|T^{n} x-T^{n} y\right\| \leq\left(1+u_{n}\right)\|x-y\|
$$

for all $x, y \in K$ and $n \geq 1$; and is said to be asymptotically quasi-nonexpansive with sequence $\left\{u_{n}\right\} \subset[0, \infty)$ if $F(T)=\{x \in K: T x=x\} \neq \emptyset, \lim _{n \rightarrow \infty} u_{n}=0$ and

$$
\left\|T^{n} x-x^{*}\right\| \leq\left(1+u_{n}\right)\left\|x-x^{*}\right\|
$$

[^0]for all $x \in K, x^{*} \in F(T)$ and $n \geq 1$. The mapping T is called nonexpansive if
$$
\|T x-T y\| \leq\|x-y\|
$$
for all $x, y \in K$, and is called quasi-nonexpansive if $F(T) \neq \emptyset$ and
$$
\left\|T x-x^{*}\right\| \leq\left\|x-x^{*}\right\|
$$
for all $x \in K$ and $x^{*} \in F(T)$.
It is therefore clear that a nonexpansive mapping with a nonempty fixed point set is quasi-nonexpansive and an asymptotically nonexpansive mapping with a nonempty fixed point set is asymptotically quasi-nonexpansive but converse does not hold in general.

The class of asymptotically nonexpansive maps was introduced by Goebel and Kirk [2] as an important generalization of the class of nonexpansive maps. They established that if K is a nonempty closed convex bounded subset of a uniformly convex Banach space E and T is an asymptotically nonexpansive self mapping of K, then T has a fixed point. In the year 1973, Goebel and Kirk [3] extended their own result to the broader class of uniformly L-Lipschitzian mappings with $L<\lambda$, where λ is sufficiently near 1 .

Iterative techniques for approximating fixed points of nonexpansive mappings and their generalizations (asymptotically nonexpansive mappings etc.) have been studied by many authors (see e.g. Chidume [1], Rhoades [12], Schu [13], Tan and Xu [15]), using the Mann iteration process [7] or the Ishikawa iteration process [5].

In the year 1973, Petryshyn and Williamson [8] established a necessary and sufficient condition for the Mann iterative sequence to converge to a fixed point for quasi-nonexpansive mappings. Subsequently, Ghosh and Debnath [4] extended Petryshyn and Williamson's results and established some necessary and sufficient conditions for an Ishikawa-type iterative sequence to converge to a fixed point for quasi-nonexpansive mappings. Further, Qihou [9, 10, 11] extended the above results and established some sufficient and necessary conditions for Ishikawa iterative sequences or Ishikawa iterative sequences with errors for asymptotically quasi-nonexpansive mappings to converge to a fixed point. Recently, Shahzad and Udomene [14] established a sufficient and necessary conditions for the convergence of the Ishikawa type iterative sequences involving two asymptotically quasi-nonexpansive mappings to a common fixed point of the mappings defined on a nonempty closed convex subset of a Banach space and a sufficient condition for the convergence of the Ishikawa type iterative sequences involving two uniformly continuous asymptotically quasinonexpansive mappings to a common fixed point of the mappings defined on a nonempty closed convex subset of a uniformly convex Banach space.

Inspired and motivated by the above facts, we introduce and study a multistep iterative scheme with errors for a finite family of asymptotically quasinonexpansive mappings. This scheme can be viewed as an extension for two step iterative schemes of Shahzad and Udomene [14]. The scheme may be defined as follows:

Let K be a nonempty closed convex subset of a Banach space E and let $T_{1}, T_{2}, \cdots, T_{N}: K \rightarrow K$ be asymptotically quasi-nonexpansive mappings, the following iteration scheme is studied:

$$
\begin{gather*}
x_{n}^{1}=\alpha_{n}^{1} T_{1}^{n} x_{n}+\beta_{n}^{1} x_{n}+\gamma_{n}^{1} u_{n}^{1} \\
x_{n}^{2}=\alpha_{n}^{2} T_{2}^{n} x_{n}^{1}+\beta_{n}^{2} x_{n}+\gamma_{n}^{2} u_{n}^{2} \\
\cdots \tag{1}\\
x_{n+1}=x_{n}^{N}=\alpha_{n}^{N} T_{N}^{n} x_{n}^{N-1}+\beta_{n}^{N} x_{n}+\gamma_{n}^{N} u_{n}^{N}
\end{gather*}
$$

with $x_{1} \in K, n \geq 1$, where $\left\{\alpha_{n}^{i}\right\},\left\{\beta_{n}^{i}\right\},\left\{\gamma_{n}^{i}\right\}$, for all $1 \leq i \leq N$ are sequences in $[0,1]$ with $\alpha_{n}^{i}+\beta_{n}^{i}+\gamma_{n}^{i}=1$ for all $i=1,2, \cdots, N$, and $\left\{u_{n}^{1}\right\},\left\{u_{n}^{2}\right\}, \cdots,\left\{u_{n}^{N}\right\}$ are bounded sequences in K.

For $N=2, T_{1}=T_{2}=T, \beta_{n}=\alpha_{n}^{1}, \alpha_{n}=\alpha_{n}^{2}$ and $\gamma_{n}^{1}=\gamma_{n}^{2}=0$, then (1) reduces to the scheme for a mapping defined by Liu [9]:

$$
\begin{gathered}
x_{1}=x \in K \\
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T^{n}\left[\left(1-\beta_{n}\right) x_{n}+\beta_{n} T^{n} x_{n}\right], \quad n \geq 1
\end{gathered}
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ are sequences in $[0,1]$.
For $N=2, T_{1}, T_{2}: K \rightarrow K, T_{1}=T, T_{2}=S, \beta_{n}=\alpha_{n}^{1}, \alpha_{n}=\alpha_{n}^{2}$ and $\gamma_{n}^{1}=\gamma_{n}^{2}=0$, then (1) reduces to the scheme for two mappings defined by Shahzad and Udomene [14]:

$$
\begin{gathered}
x_{1}=x \in K \\
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} S^{n}\left[\left(1-\beta_{n}\right) x_{n}+\beta_{n} T^{n} x_{n}\right], \quad n \geq 1
\end{gathered}
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ are sequences in $[0,1]$.
For $N=2, T_{1}, T_{2}: K \rightarrow K, T_{1}=T_{2}=T$, and $y_{n}=x_{n}^{1}$, then (1) reduces to the scheme with errors for a mapping defined by Liu [10]:

$$
\begin{gathered}
x_{1}=x \in K \\
y_{n}=\alpha_{n}^{1} T^{n} x_{n}+\beta_{n}^{1} x_{n}+\gamma_{n}^{1} u_{n}^{1} \\
x_{n+1}=x_{n}^{2}=\alpha_{n}^{2} T^{n} y_{n}+\beta_{n}^{2} x_{n}+\gamma_{n}^{2} u_{n}^{2}
\end{gathered}
$$

where $\left\{\alpha_{n}^{1}\right\},\left\{\alpha_{n}^{2}\right\},\left\{\beta_{n}^{1}\right\},\left\{\beta_{n}^{2}\right\},\left\{\gamma_{n}^{1}\right\},\left\{\gamma_{n}^{2}\right\}$ are sequences in $[0,1]$ with $\alpha_{n}^{1}+$ $\beta_{n}^{1}+\gamma_{n}^{1}=1=\alpha_{n}^{2}+\beta_{n}^{2}+\gamma_{n}^{2}$ and $\left\{u_{n}^{1}\right\},\left\{u_{n}^{2}\right\}$ are bounded sequences in K.

For $N=2, T_{1}, T_{2}: K \rightarrow K, T_{1}=T, T_{2}=S$ and $y_{n}=x_{n}^{1}$, then (1) reduces to the scheme with errors for two mappings defined by Shahzad and Udomene [14]:

$$
\begin{gathered}
x_{1}=x \in K \\
y_{n}=\alpha_{n}^{1} T^{n} x_{n}+\beta_{n}^{1} x_{n}+\gamma_{n}^{1} u_{n}^{1} \\
x_{n+1}=x_{n}^{2}=\alpha_{n}^{2} S^{n} y_{n}+\beta_{n}^{2} x_{n}+\gamma_{n}^{2} u_{n}^{2}
\end{gathered}
$$

where $\left\{\alpha_{n}^{1}\right\},\left\{\alpha_{n}^{2}\right\},\left\{\beta_{n}^{1}\right\},\left\{\beta_{n}^{2}\right\},\left\{\gamma_{n}^{1}\right\},\left\{\gamma_{n}^{2}\right\}$ are sequences in $[0,1]$ with $\alpha_{n}^{1}+$ $\beta_{n}^{1}+\gamma_{n}^{1}=1=\alpha_{n}^{2}+\beta_{n}^{2}+\gamma_{n}^{2}$ and $\left\{u_{n}^{1}\right\},\left\{u_{n}^{2}\right\}$ are bounded sequences in K.

The purpose of this paper is to establish a sufficient and necessary condition for strong convergence of the multistep iteration scheme with errors for a finite family of asymptotically quasi-nonexpansive mappings in Banach space. These results extend the related result of Shahzad and Udomene [14] and many others.

In order to prove our main results, the following lemmas have been used:
Lemma 1.1. Let $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{\beta_{n}\right\}_{n=1}^{\infty}$ and $\left\{r_{n}\right\}_{n=1}^{\infty}$ be sequences of nonnegative real numbers satisfying

$$
a_{n+1} \leq\left(1+r_{n}\right) a_{n}+\beta_{n}, \quad \forall n \in N
$$

Let $\sum_{n=1}^{\infty} r_{n}<\infty, \sum_{n=1}^{\infty} \beta_{n}<\infty$. Then
(i) $\lim _{n \rightarrow \infty} a_{n}$ exists.
(ii) If $\lim \inf _{n \rightarrow \infty} a_{n}=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Lemma 1.2. ([16]) Let $p>1$ and $R>1$ be two fixed numbers and E a Banach space. Then E is uniformly convex if and only if there exists a continuous, strictly increasing and convex function $g:[0, \infty) \rightarrow[0, \infty)$ with $g(0)=0$ such that

$$
\|\lambda x+(1-\lambda) y\|^{p} \leq \lambda\|x\|^{p}+(1-\lambda)\|y\|^{p}-W_{p}(\lambda) g(\|x-y\|)
$$

for all $x, y \in B_{R}(0)=\{x \in E:\|x\| \leq R\}$, and $\lambda \in[0,1]$, where $W_{p}(\lambda)=$ $\lambda(1-\lambda)^{p}+\lambda^{p}(1-\lambda)$.

2. Main Results

Theorem 2.1. Let E be a real Banach space and K be a nonempty closed convex subset of E. Let $T_{1}, T_{2}, \cdots, T_{N}: K \rightarrow K$ be asymptotically quasinonexpansive mappings with sequences $\left\{r_{n}^{i}\right\}$ such that $\sum_{n=1}^{\infty} r_{n}^{i}<\infty$, for all $1 \leq i \leq N$ and $F=\cap_{i=1}^{N} F\left(T_{i}\right) \neq \phi$. Let $\left\{\alpha_{n}^{i}\right\},\left\{\beta_{n}^{i}\right\}$ and $\left\{\gamma_{n}^{i}\right\}$ are sequences in $[0,1]$ with $\alpha_{n}^{i}+\beta_{n}^{i}+\gamma_{n}^{i}=1$ for all $i=1,2, \cdots, N$. From arbitrary $x_{1} \in K$, define the sequence $\left\{x_{n}\right\}$ iteratively by (1), where $\left\{u_{n}^{i}\right\}$ are bounded sequences in K with $\sum_{n=1}^{\infty} u_{n}^{i}<\infty$. Then
(i) For $x^{*} \in F$ and for some sequences $\left\{b_{n}^{i}\right\}$ and $\left\{d_{n}^{i}\right\}$ for all $i=1,2, \cdots, N$, $n \geq 1$, of numbers satisfy $\sum_{n=1}^{\infty} b_{n}^{i}<\infty$ and $\sum_{n=1}^{\infty} d_{n}^{i}<\infty$ such that

$$
\left\|x_{n+1}-x^{*}\right\|=\left\|x_{n}^{N}-x^{*}\right\| \leq\left(1+b_{n}^{N-1}\right)\left\|x_{n}-x^{*}\right\|+d_{n}^{N-1}
$$

(ii) There exists a constant $M>0$ such that

$$
\left\|x_{n+m}-x^{*}\right\| \leq M\left\|x_{n}-x^{*}\right\|
$$

for all $n, m \geq 1$ and $x^{*} \in F$.
Proof. (i) Let $x^{*} \in F$. Then from (1) we have

$$
\begin{aligned}
\left\|x_{n}^{1}-x^{*}\right\|= & \left\|\alpha_{n}^{1} T_{1}^{n} x_{n}+\beta_{n}^{1} x_{n}+\gamma_{n}^{1} u_{n}^{1}\right\| \\
\leq & \alpha_{n}^{1}\left\|T_{1}^{n} x_{n}-x^{*}\right\|+\beta_{n}^{1}\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{1}\left\|u_{n}^{1}-x^{*}\right\| \\
\leq & \alpha_{n}^{1}\left(1+r_{n}^{1}\right)\left\|x_{n}-x^{*}\right\|+\beta_{n}^{1}\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{1}\left\|u_{n}^{1}-x^{*}\right\| \\
\leq & \left(1-\beta_{n}^{1}\right)\left(1+r_{n}^{1}\right)\left\|x_{n}-x^{*}\right\|+\beta_{n}^{1}\left(1+r_{n}^{1}\right)\left\|x_{n}-x^{*}\right\| \\
& +\gamma_{n}^{1}\left\|u_{n}^{1}-x^{*}\right\| \\
\leq & \left(1+r_{n}^{1}\right)\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{1}\left\|u_{n}^{1}-x^{*}\right\| \\
\leq & \left(1+r_{n}^{1}\right)\left\|x_{n}-x^{*}\right\|+d_{n}^{0}
\end{aligned}
$$

where $d_{n}^{0}=\gamma_{n}^{1}\left\|u_{n}^{1}-x^{*}\right\|$. Since $\sum_{n=1}^{\infty} \gamma_{n}^{1}<\infty$, then $\sum_{n=1}^{\infty} d_{n}^{0}<\infty$.
Next, we note that

$$
\begin{aligned}
\left\|x_{n}^{2}-x^{*}\right\|= & \left\|\alpha_{n}^{2} T_{2}^{n} x_{n}^{1}+\beta_{n}^{2} x_{n}+\gamma_{n}^{2} u_{n}^{2}\right\| \\
\leq & \alpha_{n}^{2}\left\|T_{2}^{n} x_{n}^{1}-x^{*}\right\|+\beta_{n}^{2}\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{2}\left\|u_{n}^{2}-x^{*}\right\| \\
\leq & \alpha_{n}^{2}\left(1+r_{n}^{2}\right)\left\|x_{n}^{1}-x^{*}\right\|+\beta_{n}^{2}\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{2}\left\|u_{n}^{2}-x^{*}\right\| \\
\leq & \alpha_{n}^{2}\left(1+r_{n}^{2}\right)\left[\left(1+r_{n}^{1}\right)\left\|x_{n}-x^{*}\right\|+d_{n}^{0}\right]+\beta_{n}^{2}\left\|x_{n}-x^{*}\right\| \\
& +\gamma_{n}^{2}\left\|u_{n}^{2}-x^{*}\right\| \\
\leq & {\left[\left(1+r_{n}^{1}\right)\left(1+r_{n}^{2}\right) \alpha_{n}^{2}+\beta_{n}^{2}\right]\left\|x_{n}-x^{*}\right\|+\alpha_{n}^{2}\left(1+r_{n}^{2}\right) d_{n}^{0} } \\
& +\gamma_{n}^{2}\left\|u_{n}^{2}-x^{*}\right\| \\
\leq & \left(\alpha_{n}^{2}+\beta_{n}^{2}\right)\left(1+r_{n}^{1}\right)\left(1+r_{n}^{2}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n}^{2}\left(1+r_{n}^{2}\right) d_{n}^{0} \\
& +\gamma_{n}^{2}\left\|u_{n}^{2}-x^{*}\right\| \\
\leq & \left(1+r_{n}^{1}+r_{n}^{2}+r_{n}^{1} r_{n}^{2}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n}^{2}\left(1+r_{n}^{2}\right) d_{n}^{0}+\gamma_{n}^{2}\left\|u_{n}^{2}-x^{*}\right\| \\
\leq & \left(1+b_{n}^{1}\right)\left\|x_{n}-x^{*}\right\|+d_{n}^{1}
\end{aligned}
$$

where $d_{n}^{1}=\alpha_{n}^{2}\left(1+r_{n}^{2}\right) d_{n}^{0}+\gamma_{n}^{2}\left\|u_{n}^{2}-x^{*}\right\|$ and $b_{n}^{1}=\left(1+r_{n}^{1}+r_{n}^{2}+r_{n}^{1} r_{n}^{2}\right)$. Since $\sum_{n=1}^{\infty} d_{n}^{0}<\infty, \sum_{n=1}^{\infty} \gamma_{n}^{2}<\infty, \sum_{n=1}^{\infty} r_{n}^{i}<\infty$ for $i=1,2$, and so $\sum_{n=1}^{\infty} d_{n}^{1}<\infty$
and $\sum_{n=1}^{\infty} b_{n}^{1}<\infty$. Similarly, we have

$$
\begin{aligned}
\left\|x_{n}^{3}-x^{*}\right\|= & \left\|\alpha_{n}^{3} T_{3}^{n} x_{n}^{2}+\beta_{n}^{3} x_{n}+\gamma_{n}^{3} u_{n}^{3}\right\| \\
\leq & \alpha_{n}^{3}\left\|T_{3}^{n} x_{n}^{2}-x^{*}\right\|+\beta_{n}^{3}\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{3}\left\|u_{n}^{3}-x^{*}\right\| \\
\leq & \alpha_{n}^{3}\left(1+r_{n}^{3}\right)\left\|x_{n}^{2}-x^{*}\right\|+\beta_{n}^{3}\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{3}\left\|u_{n}^{3}-x^{*}\right\| \\
\leq & \alpha_{n}^{3}\left(1+r_{n}^{3}\right)\left[\left(1+b_{n}^{1}\right)\left\|x_{n}-x^{*}\right\|+d_{n}^{1}\right]+\beta_{n}^{3}\left\|x_{n}-x^{*}\right\| \\
& +\gamma_{n}^{3}\left\|u_{n}^{3}-x^{*}\right\| \\
\leq & {\left[\alpha_{n}^{3}\left(1+r_{n}^{3}\right)\left(1+b_{n}^{1}\right)+\beta_{n}^{3}\right]\left\|x_{n}-x^{*}\right\|+\alpha_{n}^{3}\left(1+r_{n}^{3}\right) d_{n}^{1} } \\
& +\gamma_{n}^{3}\left\|u_{n}^{3}-x^{*}\right\| \\
\leq & \left(\alpha_{n}^{3}+\beta_{n}^{3}\right)\left(1+b_{n}^{1}\right)\left(1+r_{n}^{3}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n}^{3}\left(1+r_{n}^{3}\right) d_{n}^{1} \\
& +\gamma_{n}^{3}\left\|u_{n}^{3}-x^{*}\right\| \\
\leq & \left(1+b_{n}^{1}\right)\left(1+r_{n}^{3}\right)\left\|x_{n}-x^{*}\right\|+d_{n}^{2} \\
\leq & \left(1+b_{n}^{2}\right)\left\|x_{n}-x^{*}\right\|+d_{n}^{2}
\end{aligned}
$$

where $b_{n}^{2}=b_{n}^{1}+r_{n}^{3}+b_{n}^{1} r_{n}^{3}$ and $d_{n}^{2}=\alpha_{n}^{3}\left(1+r_{n}^{3}\right) d_{n}^{1}+\gamma_{n}^{3}\left\|u_{n}^{3}-x^{*}\right\|$. Since $\sum_{n=1}^{\infty} b_{n}^{1}<\infty, \sum_{n=1}^{\infty} r_{n}^{3}<\infty, \sum_{n=1}^{\infty} d_{n}^{1}<\infty$ and $\sum_{n=1}^{\infty} \gamma_{n}^{3}<\infty$, so $\sum_{n=1}^{\infty} b_{n}^{2}<$ ∞ and $\sum_{n=1}^{\infty} d_{n}^{2}<\infty$.

By continuing the above process, there exist nondecreasing sequences $\left\{d_{n}^{l-1}\right\}$ and $\left\{b_{n}^{l-1}\right\}$ such that $\sum_{n=1}^{\infty} d_{n}^{l-1}<\infty$ and $\sum_{n=1}^{\infty} b_{n}^{l-1}<\infty$ and

$$
\left\|x_{n}^{i}-x^{*}\right\| \leq\left(1+b_{n}^{i-1}\right)\left\|x_{n}-x^{*}\right\|+d_{n}^{i-1}, \quad \forall n \geq 1, \quad \forall i=1,2, \cdots, N .
$$

Thus

$$
\left\|x_{n+1}-x^{*}\right\|=\left\|x_{n}^{N}-x^{*}\right\| \leq\left(1+b_{n}^{N-1}\right)\left\|x_{n}-x^{*}\right\|+d_{n}^{N-1}, \quad \forall n \in N .
$$

This completes the proof of (i).
(ii) Since $1+x \leq e^{x}$ for all $x>0$. Then from (i) it can be obtained that

$$
\begin{aligned}
& \left\|x_{n+m}-x^{*}\right\| \\
& \leq\left(1+b_{n+m-1}^{N-1}\right)\left\|x_{n+m-1}-x^{*}\right\|+d_{n+m-1}^{N-1} \\
& \leq e^{b_{n+m-1}^{N-1}\left\|x_{n+m-1}-x^{*}\right\|+d_{n+m-1}^{N-1}} \\
& =e^{\left(b_{n+m-1}^{N-1}+b_{n+m-2}^{N-1}\right)}\left\|x_{n+m-2}-x^{*}\right\|+e^{b_{n+m-1}^{N-1}} d_{n+m-2}^{N-1}+d_{n+m-1}^{N-1} \\
& =e^{\left(b_{n+m-1}^{N-1}+b_{n+m-2}^{N-1}\right)}\left\|x_{n+m-2}-x^{*}\right\|+e^{b_{n+m-1}^{N-1}}\left(d_{n+m-1}^{N-1}+d_{n+m-2}^{N-1}\right) \\
& \cdots \\
& =e^{\sum_{k=n}^{n+m-1} b_{k}^{N-1}}\left\|x_{n}-x^{*}\right\|+e^{\sum_{k=n}^{n+m-1} b_{k}^{N-1}} \cdot \sum_{k=n}^{n+m-1} d_{k}^{N-1}
\end{aligned}
$$

$$
=M \cdot\left\|x_{n}-x^{*}\right\|+M \cdot \sum_{k=n}^{n+m-1} d_{k}^{N-1}
$$

where $M=e^{\sum_{k=n}^{\infty} b_{k}^{N-1}}$. This completes the proof of (ii).
Theorem 2.2. Let E be a real Banach space and K be a nonempty closed convex subset of E. Let $T_{1}, T_{2}, \cdots, T_{N}: K \rightarrow K$ be N asymptotically quasinonexpansive mappings ($\left\{T_{i}: i=1,2, \cdots, N\right\}$ need not be continuous) with sequences $\left\{r_{n}^{i}\right\}$ such that $\sum_{n=1}^{\infty} r_{n}^{i}<\infty$, for all $1 \leq i \leq N$ and $F=\cap_{i=1}^{N} F\left(T_{i}\right) \neq$ ϕ. Let $\left\{\alpha_{n}^{i}\right\},\left\{\beta_{n}^{i}\right\}$ and $\left\{\gamma_{n}^{i}\right\}$ are sequences in $[0,1]$ with $\alpha_{n}^{i}+\beta_{n}^{i}+\gamma_{n}^{i}=1$ for all $i=1,2, \cdots, N$. From arbitrary $x_{1} \in K$, define the sequence $\left\{x_{n}\right\}$ iteratively by (1), where $\left\{u_{n}^{i}\right\}$ are bounded sequences in K with $\sum_{n=1}^{\infty} u_{n}^{i}<\infty$. Then $\left\{x_{n}\right\}$ converges strongly to a common fixed point of the mappings $\left\{T_{1}, T_{2}, \cdots, T_{N}\right\}$ if and only if

$$
\liminf _{n \rightarrow \infty} d\left(x_{n}, F\right)=0,
$$

where $d(y, A)$ denotes the distance of y to the set A; that is, $d(y, A)=\inf \{\|y-z\|$: $\forall z \in A\}$.

Proof. Suppose $\left\{x_{n}\right\}$ converges strongly to a common fixed point z of $\left\{T_{1}, T_{2}\right.$, $\left.\cdots, T_{N}\right\}$. Then

$$
\liminf _{n \rightarrow \infty} d\left(x_{n}, F\right)=0
$$

Conversely, suppose $\left\{T_{1}, T_{2}, \cdots, T_{N}\right\}$. Then from Theorem 2.1 (i), we have

$$
\begin{equation*}
\left\|x_{n+1}-x^{*}\right\| \leq\left(1+b_{n}^{N-1}\right)\left\|x_{n}-x^{*}\right\|+d_{n}^{N-1}, \quad \forall n \in N, \quad \forall x^{*} \in F . \tag{2}
\end{equation*}
$$

Since $\sum_{n=1}^{\infty} u_{n}^{i}<\infty, \sum_{n=1}^{\infty} r_{n}^{i}<\infty$ for all $1 \leq i \leq N$, we know that $\sum_{n=1}^{\infty} b_{n}^{N-1}<\infty$ and $\sum_{n=1}^{\infty} d_{n}^{N-1}<\infty$. So from (2), we obtain

$$
d\left(x_{n+1}, F\right) \leq\left(1+b_{n}^{N-1}\right) d\left(x_{n}, F\right)+d_{n}^{N-1} .
$$

Since $\liminf _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$ and from Lemma 2.1, we have

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0 .
$$

Next we will show that $\left\{x_{n}\right\}$ is a Cauchy sequence. For all $\varepsilon>0$, from Theorem 2.1 (ii), it can be known that there must exists a constant $M>0$, such that

$$
\begin{equation*}
\left\|x_{n+m}-x^{*}\right\| \leq M .\left\|x_{n}-x^{*}\right\|+M . \sum_{k=n}^{n+m-1} d_{k}^{N-1}, \forall m, n \in N, \quad \forall x^{*} \in F . \tag{3}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$ and $\sum_{n=1}^{\infty} d_{n}^{N-1}<\infty$, there must exists a constant N_{1}, such that when $n \geq N_{1}$

$$
d\left(x_{n}, F\right)<\frac{\varepsilon_{1}}{3 M} \quad \text { and } \quad \sum_{k=n}^{n+m-1} d_{k}^{N-1}<\frac{\varepsilon_{1}}{6 M}
$$

So there must exists $w^{*} \in F$, such that

$$
d\left(x_{N_{1}}, w^{*}\right)=\left\|x_{N_{1}}-w^{*}\right\|<\frac{\varepsilon_{1}}{3 M} .
$$

From (3), it can be obtained that when $n \geq N_{1}$

$$
\begin{aligned}
\left\|x_{n+m}-x_{n}\right\| & \leq\left\|x_{n+m}-w^{*}\right\|+\left\|x_{n}-w^{*}\right\| \\
& \leq M\left\|x_{N_{1}}-w^{*}\right\|+M\left\|x_{N_{1}}-w^{*}\right\|+2 M \sum_{k=N_{1}}^{\infty} d_{n}^{N-1} \\
& \leq M \cdot \frac{\varepsilon_{1}}{3 M}+M \cdot \frac{\varepsilon_{1}}{3 M}+2 M \cdot \frac{\varepsilon_{1}}{6 M} \\
& <\varepsilon_{1}
\end{aligned}
$$

that is,

$$
\left\|x_{n+m}-x_{n}\right\|<\varepsilon_{1} .
$$

This shows that $\left\{x_{n}\right\}$ is a Cauchy sequence and so is convergent from the completeness of E. Let $\lim _{n \rightarrow \infty} x_{n}=y^{*}$. Then $y^{*} \in K$. It remains to show that $y^{*} \in F$. Let $\varepsilon_{2}>0$ be given. Then there exists a natural number N_{2} such that

$$
\left\|x_{n}-y^{*}\right\|<\frac{\varepsilon_{2}}{2\left(2+r_{1}^{i}\right)}, \quad \forall n \geq N_{2} .
$$

Since $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$, there must exists a natural number $N_{3} \geq N_{2}$ such that for all $n \geq N_{3}$, we have

$$
d\left(x_{n}, F\right)<\frac{\varepsilon_{2}}{3\left(2+r_{1}^{i}\right)}
$$

and in particular we have

$$
d\left(x_{N_{3}}, F\right)<\frac{\varepsilon_{2}}{3\left(2+r_{1}^{i}\right)} .
$$

Therefore, there exists $z^{*} \in F$ such that

$$
\left\|x_{N_{3}}-z^{*}\right\|<\frac{\varepsilon_{2}}{2\left(2+r_{1}^{i}\right)} .
$$

Consequently, we have

$$
\begin{aligned}
\left\|T_{i} y^{*}-y^{*}\right\| & =\left\|T_{i} y^{*}-z^{*}+z^{*}-x_{N_{3}}+x_{N_{3}}-y^{*}\right\| \\
& \leq\left\|T_{i} y^{*}-z^{*}\right\|+\left\|z^{*}-x_{N_{3}}\right\|+\left\|x_{N_{3}}-y^{*}\right\| \\
& \leq\left(1+r_{1}^{i}\right)\left\|y^{*}-z^{*}\right\|+\left\|z^{*}-x_{N_{3}}\right\|+\left\|x_{N_{3}}-y^{*}\right\| \\
& \leq\left(1+r_{1}^{i}\right)\left[\left\|y^{*}-x_{N_{3}}\right\|+\left\|x_{N_{3}}-z^{*}\right\|\right]+\left\|z^{*}-x_{N_{3}}\right\|+\left\|x_{N_{3}}-y^{*}\right\| \\
& \leq\left(2+r_{1}^{i}\right)\left\|y^{*}-x_{N_{3}}\right\|+\left(2+r_{1}^{i}\right)\left\|x_{N_{3}}-z^{*}\right\| \\
& <\left(2+r_{1}^{i}\right) \cdot \frac{\varepsilon_{2}}{2\left(2+r_{1}^{i}\right)}+\left(2+r_{1}^{i}\right) \cdot \frac{\varepsilon_{2}}{2\left(2+r_{1}^{i}\right)} \\
& <\varepsilon_{2} .
\end{aligned}
$$

This implies that $y^{*} \in F\left(T_{i}\right)$ for all $i=1,2, \cdots, N$. Hence we conclude that $y^{*} \in F=\cap_{i=1}^{N} F\left(T_{i}\right)$, that is, y^{*} is a common fixed point of the mappings $\left\{T_{1}, T_{2}, \cdots, T_{N}\right\}$. Thus $\left\{x_{n}\right\}$ converges strongly to a common fixed point of the mappings $\left\{T_{1}, T_{2}, \cdots, T_{N}\right\}$. This completes the proof.

Remark 2.3. Theorem 2.2 extends Theorem 3.2 of Shahzad and Udomene [14] to the case of multistep iterative sequences with errors for finite family of asymptotically quasi-nonexpansive mappings.

Remark 2.4. Theorem 2.2 also extends and improves Theorem 1.1 and Theorem 1.1' of Petryshyn and Williamson [8] and Theorem 3.1 of Ghosh and Debnath [4] to the case of multistep iterative sequences with errors for finite family of more general class of quasi-nonexpansive mappings. The continuity of mapping is relaxed in Theorem 2.2 as compared to $[8,4]$.

Remark 2.5. Theorem 2.2 also extends Liu [9, Theorem 1] and Liu [10, Theorem 1] to the case of multistep iterative sequences with errors for finite family of asymptotically quasi-nonexpansive mappings.

Theorem 2.6. Let E be a real uniformly convex Banach space and K be a nonempty closed convex subset of E. Let $T_{1}, T_{2}, \cdots, T_{N}: K \rightarrow K$ be N uniformly continuous asymptotically quasi-nonexpansive mappings with sequences $\left\{r_{n}^{i}\right\}$ such that $\sum_{n=1}^{\infty} r_{n}^{i}<\infty$, for all $1 \leq i \leq N$ and $F=\cap_{i=1}^{N} F\left(T_{i}\right) \neq \phi$. Let $\left\{x_{n}\right\}$ be the sequence defined by (1) with $\sum_{n=1}^{\infty} \gamma_{n}^{i}<\infty$ and $\left\{\alpha_{n}^{i}\right\} \subseteq[\varepsilon, 1-\varepsilon]$ for all $i=1,2, \cdots, N$, for some $\varepsilon \in(0,1)$. Then

$$
\left\|x_{n}-T_{i}^{n} x_{n}\right\|=0
$$

for all $i=1,2, \cdots, N$.
Proof. Let $x^{*} \in F=\cap_{i=1}^{N} F\left(T_{i}\right)$. Then by Theorem 2.1 (i) and Lemma 1.1, $\lim _{n \rightarrow \infty}\left\|x_{n}-x^{*}\right\|$ exists. Let $\lim _{n \rightarrow \infty}\left\|x_{n}-x^{*}\right\|=a$. If $a=0$, then by the continuity of each T_{i} the conclusion follows. Now suppose that $a>0$. Firstly,
we are now to show that $\lim _{n \rightarrow \infty}\left\|T_{N}^{n} x_{n}-x_{n}\right\|=0$. Since $\left\{x_{n}\right\}$ and $\left\{u_{n}^{i}\right\}$ are bounded for all $i=1,2, \cdots, N$, there exists $R>0$ such that

$$
x_{n}-x^{*}+\gamma_{n}^{i}\left(u_{n}^{i}-x_{n}\right), T_{i}^{n} x_{n}^{i-1}-x^{*}+\gamma_{n}^{i}\left(u_{n}^{i}-x_{n}\right) \in B_{R}(0)
$$

for all $n \geq 1$ and for all $i=1,2, \cdots, N$. Using Lemma 1.2, we have

$$
\begin{align*}
\| & x_{n}^{N}-x^{*} \|^{2} \\
= & \left\|\alpha_{n}^{N} T_{N}^{n} x_{n}^{N-1}+\beta_{n}^{N} x_{n}+\gamma_{n}^{N} u_{n}^{N}-x^{*}\right\|^{2} \\
= & \left\|\alpha_{n}^{N}\left(T_{N}^{n} x_{n}^{N-1}-x^{*}+\gamma_{n}^{N}\left(u_{n}^{N}-x_{n}\right)\right)+\left(1-\alpha_{n}^{N}\right)\left(x_{n}-x^{*}+\gamma_{n}^{N}\left(u_{n}^{N}-x_{n}\right)\right)\right\|^{2} \\
\leq & \alpha_{n}^{N}\left\|T_{N}^{n} x_{n}^{N-1}-x^{*}+\gamma_{n}^{N}\left(u_{n}^{N}-x_{n}\right)\right\|^{2} \\
& +\left(1-\alpha_{n}^{N}\right)\left\|x_{n}-x^{*}+\gamma_{n}^{N}\left(u_{n}^{N}-x_{n}\right)\right\|^{2}-W_{2}\left(\alpha_{n}^{N}\right) g\left(\| T_{N}^{n} x_{n}^{N-1}-x_{n}\right) \| \\
\leq & \alpha_{n}^{N}\left(\left\|T_{N}^{n} x_{n}^{N-1}-x^{*}\right\|+\gamma_{n}^{N} \| u_{n}^{N}-x_{n}\right) \|^{2} \\
& +\left(1-\alpha_{n}^{N}\right)\left(\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{N}\left\|u_{n}^{N}-x_{n}\right\|\right)^{2}-W_{2}\left(\alpha_{n}^{N}\right) g\left(\left\|T_{N}^{n} x_{n}^{N-1}-x_{n}\right\|\right) \\
\leq & \alpha_{n}^{N}\left[\left(1+b_{n}^{N-2}\right)\left\|x_{n}-x^{*}\right\|+d_{n}^{N-2}+\gamma_{n}^{N}\left\|u_{n}^{N}-x_{n}\right\|\right]^{2} \\
& +\left(1-\alpha_{n}^{N}\right)\left[\left(1+b_{n}^{N-2}\right)\left\|x_{n}-x^{*}\right\|+d_{n}^{N-2}+\gamma_{n}^{N}\left\|u_{n}^{N}-x_{n}\right\|\right]^{2} \\
& -W_{2}\left(\alpha_{n}^{N}\right) g\left(\left\|T_{N}^{n} x_{n}^{N-1}-x_{n}\right\|\right) \\
\leq & {\left[\left(1+b_{n}^{N-2}\right)\left\|x_{n}-x^{*}\right\|+d_{n}^{N-2}+\gamma_{n}^{N}\left\|u_{n}^{N}-x_{n}\right\|\right]^{2} } \\
& -W_{2}\left(\alpha_{n}^{N}\right) g\left(\left\|T_{N}^{n} x_{n}^{N-1}-x_{n}\right\|\right) \\
\leq & {\left[\left\|x_{n}-x^{*}\right\|+\lambda_{n}^{N-2}\right]^{2}-W_{2}\left(\alpha_{n}^{N}\right) g\left(\left\|T_{N}^{n} x_{n}^{N-1}-x_{n}\right\|\right), } \tag{4}
\end{align*}
$$

where $\lambda_{n}^{N-2}=d_{n}^{N-2}+\gamma_{n}^{N}\left\|u_{n}^{N}-x_{n}\right\|$. Observe that $\varepsilon^{3} \leq W_{2}\left(\alpha_{n}^{N}\right)$, it implies that

$$
\varepsilon^{3} g\left(\left\|T_{N}^{n} x_{n}^{N-1}-x_{n}\right\|\right) \leq\left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n+1}-x^{*}\right\|^{2}+\rho_{n}^{N-2}
$$

where

$$
\rho_{n}^{N-2}=2 \lambda_{n}^{N-2}+\left(\lambda_{n}^{N-2}\right)^{2} .
$$

Since $\sum_{n=1}^{\infty} d_{n}^{N-2}<\infty$ and $\sum_{n=1}^{\infty} \gamma_{n}^{N-2}<\infty$, we get $\sum_{n=1}^{\infty} \rho_{n}^{N-2}<\infty$. This implies that

$$
\lim _{n \rightarrow \infty} g\left(\left\|T_{N}^{n} x_{n}^{N-1}-x_{n}\right\|\right)=0
$$

Since g is strictly increasing and continuous at 0 , it follows that

$$
\lim _{n \rightarrow \infty}\left\|T_{N}^{n} x_{n}^{N-1}-x_{n}\right\|=0
$$

Since $T_{N}, \forall N$ is asymptotically quasi-nonexpansive, note that

$$
\begin{aligned}
\left\|x_{n}-x^{*}\right\| & \leq\left\|x_{n}-T_{N}^{n} x_{n}^{N-1}\right\|+\left\|T_{N}^{n} x_{n}^{N-1}-x^{*}\right\| \\
& =\left\|x_{n}-T_{N}^{n} x_{n}^{N-1}\right\|+\left(1+r_{n}^{N}\right)\left\|x_{n}-x^{*}\right\|
\end{aligned}
$$

for all $n \geq 1$. Thus

$$
\begin{aligned}
a & =\lim _{n \rightarrow \infty}\left\|x_{n}-x^{*}\right\| \\
& \leq \liminf _{n \rightarrow \infty}\left\|x_{n}^{N-1}-x^{*}\right\| \\
& \leq \limsup _{n \rightarrow \infty}\left\|x_{n}^{N-1}-x^{*}\right\| \\
& \leq a
\end{aligned}
$$

and therefore $\lim _{n \rightarrow \infty}\left\|x_{n}^{N-1}-x^{*}\right\|=a$. Using the same argument in the proof above, we have

$$
\begin{align*}
& \| x_{n}^{N-1}-x^{*} \|^{2} \\
& \leq \alpha_{n}^{N-1}\left\|T_{N}^{n} x_{n}^{N-2}-x^{*}+\gamma_{n}^{N-1}\left(u_{n}^{N-1}-x_{n}\right)\right\|^{2} \\
& \quad+\left(1-\alpha_{n}^{N-1}\right)\left\|x_{n}-x^{*}+\gamma_{n}^{N-1}\left(u_{n}^{N-1}-x_{n}\right)\right\|^{2} \\
& \quad-W_{2}\left(\alpha_{n}^{N-1}\right) g\left(\left\|T_{N-1}^{n} x_{n}^{N-2}-x_{n}\right\|\right) \\
& \leq \alpha_{n}^{N-1}\left[\left(1+b_{n}^{N-3}\right)\left\|x_{n}-x^{*}\right\|+d_{n}^{N-3}+\gamma_{n}^{N-1}\left\|u_{n}^{N-1}-x_{n}\right\|\right]^{2} \\
&+\left(1-\alpha_{n}^{N-1}\right)\left[\left(1+b_{n}^{N-3}\right)\left\|x_{n}-x^{*}\right\|+d_{n}^{N-3}+\gamma_{n}^{N-1}\left\|u_{n}^{N-1}-x_{n}\right\|\right]^{2} \tag{5}\\
&-W_{2}\left(\alpha_{n}^{N-1}\right) g\left(\left\|T_{N-1}^{n} x_{n}^{N-2}-x_{n}\right\|\right) \\
& \leq {\left[\left(1+b_{n}^{N-3}\right)\left\|x_{n}-x^{*}\right\|+d_{n}^{N-3}+\gamma_{n}^{N-1}\left\|u_{n}^{N-1}-x_{n}\right\|\right]^{2} } \\
& \quad-W_{2}\left(\alpha_{n}^{N-1}\right) g\left(\left\|T_{N-1}^{n} x_{n}^{N-2}-x_{n}\right\|\right) \\
& \leq {\left[\left\|x_{n}-x^{*}\right\|+\lambda_{n}^{N-3}\right]^{2}-W_{2}\left(\alpha_{n}^{N-1}\right) g\left(\left\|T_{N-1}^{n} x_{n}^{N-2}-x_{n}\right\|\right), }
\end{align*}
$$

where $\lambda_{n}^{N-3}=d_{n}^{N-3}+\gamma_{n}^{N-1}\left\|u_{n}^{N-1}-x_{n}\right\|$. This implies that

$$
\varepsilon^{3} g\left(\left\|T_{N-1}^{n} x_{n}^{N-2}-x_{n}\right\|\right) \leq\left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n+1}-x^{*}\right\|^{2}+\rho_{n}^{N-3}
$$

where $\rho_{n}^{N-3}=2 \lambda_{n}^{N-3}+\left(\lambda_{n}^{N-3}\right)^{2}$ and therefore

$$
\lim _{n \rightarrow \infty}\left\|T_{N-1}^{n} x_{n}^{N-2}-x_{n}\right\|=0
$$

Thus, we have

$$
\begin{aligned}
& \left\|x_{n}-T_{N}^{n} x_{n}\right\| \\
& \leq\left\|x_{n}-T_{N}^{n} x_{n}^{N-1}\right\|+\left\|T_{N}^{n} x_{n}^{N-1}-T_{N}^{n} x_{n}\right\| \\
& \leq\left\|x_{n}-T_{N}^{n} x_{n}^{N-1}\right\|+\left(1+r_{n}^{N}\right)\left\|x_{n}^{N-1}-x_{n}\right\| \\
& \leq\left\|x_{n}-T_{N}^{n} x_{n}^{N-1}\right\|+\left(1+r_{n}^{N}\right)\left\|\alpha_{n}^{N-1} T_{N-1}^{n} x_{n}^{N-2}+\beta_{n}^{N-1} x_{n}+\gamma_{n}^{N-1} u_{n}^{N-1}-x_{n}\right\| \\
& \leq\left\|x_{n}-T_{N}^{n} x_{n}^{N-1}\right\|+\left(1+r_{n}^{N}\right)\left[\alpha_{n}^{N-1}\left\|T_{N-1}^{n} x_{n}^{N-2}-x_{n}\right\|+\gamma_{n}^{N-1}\left\|u_{n}^{N-1}-x_{n}\right\|\right] .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{N}^{n} x_{n}^{N-1}\right\|=0, \lim _{n \rightarrow \infty}\left\|x_{n}-T_{N-1}^{n} x_{n}^{N-2}\right\|=0$, and $\sum_{n=1}^{\infty}$ $\gamma_{n}^{N-1}<\infty, \sum_{n=1}^{\infty} r_{n}^{N}<\infty$, it follows that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{N}^{n} x_{n}\right\|=0
$$

Similarly, by using the same argument as in the proof above we have $\lim _{n \rightarrow \infty} \| x_{n}-$ $T_{N-2}^{n} x_{n}^{N-3}\left\|=\lim _{n \rightarrow \infty}\right\| x_{n}-T_{N-3}^{n} x_{n}^{N-4}\left\|=, \cdots,=\lim _{n \rightarrow \infty}\right\| x_{n}-T_{2}^{n} x_{n}^{1} \|=0$.
This implies that

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{N-1}^{n} x_{n}\right\| & =\lim _{n \rightarrow \infty}\left\|x_{n}-T_{N-2}^{n} x_{n}\right\| \\
& \cdots \\
& =\lim _{n \rightarrow \infty}\left\|x_{n}-T_{3}^{n} x_{n}\right\|=0 .
\end{aligned}
$$

It remains to show that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{1}^{n} x_{n}\right\|=0, \quad \lim _{n \rightarrow \infty}\left\|x_{n}-T_{2}^{n} x_{n}\right\|=0
$$

Note that

$$
\begin{aligned}
& \left\|x_{n}^{1}-x^{*}\right\|^{2} \\
& \leq \alpha_{n}^{1}\left(\left\|T_{1}^{n} x_{n}-x^{*}\right\|+\gamma_{n}^{1} \| u_{n}^{1}-x^{*}\right)\left\|^{2}+\left(1-\alpha_{n}^{1}\right)\left(\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{1} \| u_{n}^{1}-x^{*}\right)\right\|^{2} \\
& \quad-W_{2}\left(\alpha_{n}^{1}\right) g\left(\left\|T_{1}^{n} x_{n}-x_{n}\right\|\right) \\
& \leq \\
& \quad \alpha_{n}^{1}\left[\left(1+r_{n}^{1}\right)\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{1}\left\|u_{n}^{1}-x^{*}\right\|\right]^{2} \\
& \quad+\left(1-\alpha_{n}^{1}\right)\left[\left(1+r_{n}^{1}\right)\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{1}\left\|u_{n}^{1}-x^{*}\right\|\right]^{2}-W_{2}\left(\alpha_{n}^{1}\right) g\left(\left\|T_{1}^{n} x_{n}-x_{n}\right\|\right) \\
& \leq \\
& \leq\left[\left(1+r_{n}^{1}\right)\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{1}\left\|u_{n}^{1}-x^{*}\right\|\right]^{2}-W_{2}\left(\alpha_{n}^{1}\right) g\left(\left\|T_{1}^{n} x_{n}-x_{n}\right\|\right) \\
& \leq\left[\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{1}\left\|u_{n}^{1}-x^{*}\right\|\right]^{2}-W_{2}\left(\alpha_{n}^{1}\right) g\left(\left\|T_{1}^{n} x_{n}-x_{n}\right\|\right)
\end{aligned}
$$

Thus, we have

$$
\varepsilon^{3} g\left(\left\|T_{1}^{n} x_{n}-x_{n}\right\|\right) \leq\left[\left\|x_{n}-x^{*}\right\|+\gamma_{n}^{1}\left\|u_{n}^{1}-x^{*}\right\|\right]^{2}-\left\|x_{n}^{1}-x^{*}\right\|^{2}
$$

and therefore

$$
\lim _{n \rightarrow \infty}\left\|T_{1}^{n} x_{n}-x_{n}\right\|=0
$$

Since

$$
\begin{aligned}
\left\|x_{n}-T_{2}^{n} x_{n}\right\| & \leq\left\|x_{n}-T_{2}^{n} x_{n}^{1}\right\|+\left\|T_{2}^{n} x_{n}^{1}-T_{2}^{n} x_{n}\right\| \\
& \leq\left\|x_{n}-T_{2}^{n} x_{n}^{1}\right\|+\left(1+r_{n}^{2}\right)\left\|x_{n}^{1}-x_{n}\right\| \\
& \leq\left\|x_{n}-T_{2}^{n} x_{n}^{1}\right\|+\left(1+r_{n}^{2}\right)\left\|\alpha_{n}^{1} T_{1}^{n} x_{n}+\beta_{n}^{1} x_{n}+\gamma_{n}^{1} u_{n}^{1}-x_{n}\right\| \\
& \leq\left\|x_{n}-T_{2}^{n} x_{n}^{1}\right\|+\left(1+r_{n}^{2}\right)\left[\alpha_{n}^{1}\left\|T_{1}^{n} x_{n}-x_{n}\right\|+\gamma_{n}^{1}\left\|u_{n}^{1}-x_{n}\right\|\right],
\end{aligned}
$$

it implies that $\lim _{n \rightarrow \infty}\left\|T_{2}^{n} x_{n}-x_{n}\right\|=0$. Therefore $\lim _{n \rightarrow \infty}\left\|T_{i}^{n} x_{n}-x_{n}\right\|=0$ for all $i=1,2, \cdots, N$.

Theorem 2.7. Let E be a real uniformly convex Banach space and K be a nonempty closed convex subset of E. Let $T_{1}, T_{2}, \cdots, T_{N}: K \rightarrow K$ be N uniformly L-Lipschitzian asymptotically quasi-nonexpansive mappings with sequences $\left\{r_{n}^{i}\right\}$ such that $\sum_{n=1}^{\infty} r_{n}^{i}<\infty$, for all $1 \leq i \leq N$ and $F=\cap_{i=1}^{N} F\left(T_{i}\right) \neq$ ϕ. Let $\left\{x_{n}\right\}$ be the sequence defined by (1) with $\sum_{n=1}^{\infty} \gamma_{n}^{i}<\infty$ and $\left\{\alpha_{n}^{i}\right\} \subseteq$ $[\varepsilon, 1-\varepsilon]$ for all $i=1,2, \cdots, N$, for some $\varepsilon \in(0,1)$. Then

$$
\left\|x_{n}-T_{i} x_{n}\right\|=0
$$

for all $i=1,2, \cdots, N$.
Proof. It follows from Theorem 2.6, that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{i}^{n} x_{n}\right\|=0
$$

for all $i=1,2, \cdots, N$ and this implies that

$$
\left\|x_{n+1}-x_{n}\right\| \leq \alpha_{n}^{N}\left\|T_{N}^{n} x_{n}^{N-1}-x_{n}\right\|+\gamma_{n}^{N}\left\|u_{n}^{N}-x_{n}\right\| \rightarrow 0
$$

as $n \rightarrow \infty$. We now have to show that $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{i} x_{n}\right\|=0$ for all $i=1,2, \cdots, N$. Observe that

$$
\begin{aligned}
\left\|x_{n}-T_{1}^{n-1} x_{n}\right\| \leq & \left\|x_{n}-x_{n-1}\right\|+\left\|x_{n-1}-T_{1}^{n-1} x_{n-1}\right\| \\
& +\left\|T_{1}^{n-1} x_{n-1}-T_{1}^{n-1} x_{n}\right\| \\
\leq & \left\|x_{n}-x_{n-1}\right\|+\left\|x_{n-1}-T_{1}^{n-1} x_{n-1}\right\| \\
& +L\left\|x_{n-1}-x_{n}\right\| \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Using the above inequality, we have

$$
\begin{aligned}
\left\|x_{n}-T_{1} x_{n}\right\| & \leq\left\|x_{n}-T_{1}^{n} x_{n}\right\|+\left\|T_{1}^{n} x_{n}-T_{1} x_{n}\right\| \\
& \leq\left\|x_{n}-T_{1}^{n} x_{n}\right\|+L\left\|T_{1}^{n-1} x_{n}-x_{n}\right\| \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Again we have

$$
\begin{aligned}
& \left\|x_{n}-T_{2}^{n-1} x_{n}^{1}\right\| \\
& \leq\left\|x_{n}-x_{n-1}\right\|+\left\|x_{n-1}-T_{2}^{n-1} x_{n-1}^{1}\right\|+\left\|T_{2}^{n-1} x_{n-1}^{1}-T_{2}^{n-1} x_{n}^{1}\right\| \\
& \leq\left\|x_{n}-x_{n-1}\right\|+\left\|x_{n-1}-T_{2}^{n-1} x_{n-1}^{1}\right\|+L\left\|x_{n-1}^{1}-x_{n}^{1}\right\| \\
& \leq\left\|x_{n}-x_{n-1}\right\|+\left\|x_{n-1}-T_{2}^{n-1} x_{n-1}^{1}\right\|+L\left[\left\|x_{n-1}^{1}-x_{n-1}\right\|\right. \\
& \left.\quad+\left\|x_{n-1}-x_{n}\right\|+\left\|x_{n}-x_{n}^{1}\right\|\right] \\
& \leq(L+1)\left\|x_{n}-x_{n-1}\right\|+\left\|x_{n-1}-T_{2}^{n-1} x_{n-1}^{1}\right\|+L\left\|x_{n-1}^{1}-x_{n-1}\right\| \\
& \quad+L\left\|x_{n}-x_{n}^{1}\right\| \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Using the above inequality, we have

$$
\begin{aligned}
\left\|x_{n}-T_{2} x_{n}\right\| & \leq\left\|x_{n}-T_{2}^{n} x_{n}^{1}\right\|+\left\|T_{2}^{n} x_{n}^{1}-T_{2} x_{n}\right\| \\
& \leq\left\|x_{n}-T_{2}^{n} x_{n}^{1}\right\|+L\left\|T_{2}^{n-1} x_{n}^{1}-x_{n}\right\| \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Similarly, we can prove that

$$
\left\|x_{n}-T_{3} x_{n}\right\|=0,\left\|x_{n}-T_{4} x_{n}\right\|=0, \cdots,\left\|x_{n}-T_{N} x_{n}\right\|=0
$$

Thus

$$
\left\|x_{n}-T_{i} x_{n}\right\|=0
$$

for all $i=1,2, \cdots, N$. This completes the proof.
Theorem 2.8. Let E be a real uniformly convex Banach space and K be a nonempty closed convex subset of E. Let $T_{1}, T_{2}, \cdots, T_{N}: K \rightarrow K$ be N uniformly continuous asymptotically quasi-nonexpansive mappings with sequences $\left\{r_{n}^{i}\right\}$ such that $\sum_{n=1}^{\infty} r_{n}^{i}<\infty$, for all $1 \leq i \leq N$ and $F=\cap_{i=1}^{N} F\left(T_{i}\right) \neq \phi$. Let $\left\{x_{n}\right\}$ be the sequence defined by (1) with $\sum_{n=1}^{\infty} \gamma_{n}^{i}<\infty$ and $\left\{\alpha_{n}^{i}\right\} \subseteq[\varepsilon, 1-\varepsilon]$ for all $i=1,2, \cdots, N$, for some $\varepsilon \in(0,1)$. Suppose T_{1}^{m} is compact for some $m \in N$. Then $\left\{x_{n}\right\}$ converges strongly to a common fixed point of the mappings $\left\{T_{1}, T_{2}, \cdots, T_{N}\right\}$.

Proof. Since T_{1}^{m} is compact for some $m \in N$, from the uniform continuity of T_{1} and $\lim _{n \rightarrow \infty}\left\|T_{1} x_{n}-x_{n}\right\|=0$, we can show that for each $l \geq 1$,

$$
\lim _{n \rightarrow \infty}\left\|T_{1}^{l} x_{n}-x_{n}\right\|=0 .
$$

Since $\left\{x_{n}\right\}$ is bounded and T_{1}^{m} is compact, $\left\{T_{1}^{m} x_{n}\right\}_{n=1}^{\infty}$ has a convergent subsequence $\left\{T_{1}^{m} x_{n_{j}}\right\}_{j=1}^{\infty}$. Suppose $\lim _{j \rightarrow \infty} T_{1}^{m} x_{n_{j}}=x^{*} \in K$. Then the inequality

$$
\left\|x_{n_{j}}-x^{*}\right\| \leq\left\|x_{n_{j}}-T_{1}^{m} x_{n_{j}}\right\|+\left\|T_{1}^{m} x_{n_{j}}-x^{*}\right\|
$$

yields $\lim _{j \rightarrow \infty}\left\|x_{n_{j}}-x^{*}\right\|=0$ which implies by Lemma 1.1 that $x_{n} \rightarrow x^{*} \in$ $F=\cap_{i=1}^{N} F\left(T_{i}\right)$, since $\lim _{n \rightarrow \infty}\left\|x_{n}-x^{*}\right\|$ exists. Thus $\left\{x_{n}\right\}$ converges strongly to a common fixed point of the mappings $\left\{T_{1}, T_{2}, \cdots, T_{N}\right\}$. This completes the proof.

Corollary 2.9. Let E be a real uniformly convex Banach space and K be a nonempty compact convex subset of E. Let $T_{1}, T_{2}, \cdots, T_{N}: K \rightarrow K$ be N continuous asymptotically quasi-nonexpansive mappings with sequences $\left\{r_{n}^{i}\right\}$ such that $\sum_{n=1}^{\infty} r_{n}^{i}<\infty$, for all $1 \leq i \leq N$ and $F=\cap_{i=1}^{N} F\left(T_{i}\right) \neq \phi$. Let $\left\{x_{n}\right\}$ be the sequence defined by (1) with $\sum_{n=1}^{\infty} \gamma_{n}^{i}<\infty$ and $\left\{\alpha_{n}^{i}\right\} \subseteq[\varepsilon, 1-\varepsilon]$ for all $i=1,2, \cdots, N$, for some $\varepsilon \in(0,1)$. Suppose T_{1}^{m} is compact for some $m \in N$. Then $\left\{x_{n}\right\}$ converges strongly to a common fixed point of the mappings $\left\{T_{1}, T_{2}, \cdots, T_{N}\right\}$.

Remark 2.10. (1) Corollary 2.9 extends Theorem 1.2 of Khan and Takahashi [6] to the case of multistep iterative sequences with errors for finite family of more general class of mappings.
(2) Theorem 2.8 extends Theorem 2.2 of Schu [13] to the case of multistep iterative sequences with errors for finite family of more general class of mappings.
(3) Corollary 2.9 also extends the results of Liu [11] to the case of multistep iterative sequences for finite family of more general class of mappings.

For our next result, we shall need the following definition:
Definition 2.11. Let C be a nonempty closed subset of a Banach space E. A mapping $T: C \rightarrow C$ is said to be semi-compact, if for any bounded sequence $\left\{x_{n}\right\}$ in C such that $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$ there exists a subsequence $\left\{x_{n_{i}}\right\} \subset\left\{x_{n}\right\}$ such that $\lim _{i \rightarrow \infty} x_{n_{i}}=x \in C$.
Theorem 2.12. Let E be a real uniformly convex Banach space and K be a nonempty closed convex subset of E. Let $T_{1}, T_{2}, \cdots, T_{N}: K \rightarrow K$ be N uniformly L-Lipschitzian asymptotically quasi-nonexpansive mappings with sequences $\left\{r_{n}^{i}\right\}$ such that $\sum_{n=1}^{\infty} r_{n}^{i}<\infty$, for all $1 \leq i \leq N$ and $F=\cap_{i=1}^{N} F\left(T_{i}\right) \neq$ ϕ. Let $\left\{x_{n}\right\}$ be the sequence defined by (1) with $\sum_{n=1}^{\infty} \gamma_{n}^{i}<\infty$ and $\left\{\alpha_{n}^{i}\right\} \subseteq$ $[\varepsilon, 1-\varepsilon]$ for all $i=1,2, \cdots, N$, for some $\varepsilon \in(0,1)$. Suppose one of the mappings in $\left\{T_{1}, T_{2}, \cdots, T_{N}\right\}$ is semi-compact. Then $\left\{x_{n}\right\}$ converges strongly to a common fixed point of the mappings $\left\{T_{1}, T_{2}, \cdots, T_{N}\right\}$.

Proof. Suppose that T_{1} is semi-compact. By Theorem 23.7, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{1} x_{n}\right\|=0 \tag{6}
\end{equation*}
$$

So there exists a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that $\lim _{j \rightarrow \infty} x_{n_{j}}=x^{*} \in K$. So from (6) we have $\lim _{n_{j} \rightarrow \infty}\left\|x_{n_{j}}-T_{j} x_{n_{j}}\right\|=0$ for all $j=1,2, \cdots, N$ and so $\left\|x^{*}-T_{j} x^{*}\right\|=0$ for all $j=1,2, \cdots, N$. This implies that $x^{*} \in F=$ $\cap_{i=1}^{N} F\left(T_{i}\right)$. Since $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$, it follows, as in the proof of Theorem 3.2 , that $\left\{x_{n}\right\}$ converges strongly to a common fixed point of the mappings $\left\{T_{1}, T_{2}, \cdots, T_{N}\right\}$. This completes the proof.

References

[1] C. E. Chidume, Nonexpansive mappings, generalizations and iterative algorithms, In: Agarwal R. P., O'Reagan D. eds. Nonlinear Analysis and Application. To V. Lakshmikantam on his 80th Birthday (Research Monograph), Dordrecht: Kluwer Academic Publishers, 383-430.
[2] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35(1) (1972), 171-174.
[3] K. Goebel and W. A. Kirk, A fixed point theorem for transformations whose iterates have uniform Lipschitz constant, Studia Mathematica 47 (1973), 135-140.
[4] M. K. Ghosh and L. Debnath, Convergence of Ishikawa iterations of quasi-nonexpansive mappings, J. Math. Anal. Appl., 207 (1997), 96-103.
[5] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147-150.
[6] S. H. Khan and W. Takahashi, Approximating common fixed points of two asymptotically nonexpansive mappings, Math. Japon., 53 (2001), 143-148.
[7] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506510.
[8] W. V. Petryshyn and T. E. Williamson, Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl., 43 (1973), 459-497.
[9] Qihou Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl., 259 (2001), 1-7.
[10] Qihou Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member, J. Math. Anal. Appl., 259 (2001), 18-24.
[11] L. Qihou, Iteration sequences for asymptotically quasi-nonexpansive mapping with an error member of uniformly convex Banach space, J. Math. Anal. Appl., 266(2) (2002), 468-471.
[12] B. E. Rhoades, Fixed point iteration for certain nonlinear mappings, J. Math. Anal. Appl., 183 (1994), 118-120.
[13] J. Schu, Weak and strong convergence theorems to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc., 43 (1991), 153-159.
[14] N. Shahzad and A. Udomene, Approximating common fixed points of two asymptotically quasi nonexpansive mappings in Banach spaces, Fixed Point Theory and Appl., 2006 (2006), Article ID 18909, 1-10.
[15] K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., 178 (1993), 301-308.
[16] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. TMA., 16(12) (1991), 1127-1138.
[17] B. L. Xu and M. A. Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 267(2) (2002), 444-453.

[^0]: ${ }^{0}$ Received Auguest 4, 2008. Revised February 2, 2009.
 ${ }^{0} 2000$ Mathematics Subject Classification: 47H09, 47H10.
 ${ }^{0}$ Keywords: Asymptotically quasi-nonexpansive mapping, common fixed point, multi-step iterative sequences with errors.

