LINEAR OPERATORS IN PROBABILISTIC NORMED SPACES

Chang Li Yan ${ }^{1}$ and Min Xian Zhang ${ }^{2}$
${ }^{1}$ Department of Mathematics, Hebei Institute of Architecture and
Civil Engineering, Zhang Jiakou 075024, P.R.China
e-mail: changli24ycli@yahoo.com.cn
${ }^{2}$ Department of computation science, Chengdu University of Information Technology, Chengdu 610225, P.R.China

Abstract

Probabilistic normed spaces had been redefined by Alsina, Schweizer and Sklar. In this paper, the boundedness notions for linear operators in probabilistic normed space was studied and the relation between operator and operation was discussed.

1. Introduction

Probabilistic normed spaces (PN spaces) were introduced by Serstnev by means of a definition that was closely modeled on the theory of normed spaces. Here we consistantly adopt the new, and in our opinion convincing, definition of PN space given in the paper by Alsina, Schweizer and Sklar[1]. The notation and concepts used are those of [3,5,and 6]. In [2], it discussed the operator, for example, strongly bounded operator, certainly bounded operator, perhaps bounded operator and it also proved the relation between them. And from this paper, we know in the class of linear operators, no two of the concepts of certain boundedness and continuity imply each other.

In the following, the letter Δ^{+}will be denoted the set of one-dimensional distribution functions which is nondecreasing, left-continuous and $v(0)=0$, and has both a maximal element ϵ_{0} and a minimal element ϵ_{∞} : these are given

[^0]respectively,by
\[

\epsilon_{0}(x)= $$
\begin{cases}0, & x \leq 0 \tag{1.1}\\ 1, & x>0\end{cases}
$$
\]

and

$$
\epsilon_{\infty}(x)= \begin{cases}0, & x<\infty \tag{1.2}\\ 1, & x=\infty\end{cases}
$$

We shall also consider the subset $D^{+} \subset \Delta^{+}$of the proper distance distribution function, i.e., those $F \in \Delta^{+}$for which $\lim _{x \rightarrow \infty} F(x)=1$.
Definition 1.1. [1] A probabilistic normed space (briefly, PN space) is a quadruple ($\mathrm{V}, v, \tau, \tau^{*}$), where V is a real vector space, τ and τ^{*} are continuous triangle functions with $\tau \leq \tau^{*}$ and v is a mapping from V into Δ^{+}such that for all p, q in V, the following conditions hold:
$(\mathbf{P N 1}) v_{p}=\varepsilon_{0}$ if and only if $\mathrm{p}=\theta$;
(PN2) $v_{-p}=v_{p}$;
$(\mathbf{P N} 3) v_{p+q} \geq \tau\left(v_{p}, v_{q}\right) ;$
$(\mathbf{P N} 4) v_{p} \leq \tau^{*}\left(v_{\alpha p}, v_{(1-\alpha) p}\right)$ for all α in $[0,1]$,
for the continuous t-norm T such that $\tau=\tau_{T}$ and $\tau^{*}=\tau_{T^{*}}$, where

$$
\begin{gathered}
T^{*}(x, y)=1-T(1-x, 1-y) \\
\tau_{T}(F, G)(x)=\sup _{s+t=x} T(F(s), G(t))
\end{gathered}
$$

and

$$
\tau_{T^{*}}(F, G)(x)=\inf _{s+t=x} T^{*}(F(s), G(t))
$$

A PN space is called a Serstnev space if it satisfies (PN1), (PN3) and the following Surstnev condition which implies both (PN2) and (PN4).

$$
N_{a p}(x)=N_{p}\left(\frac{x}{a}\right)
$$

for any $p \in S, a \in R /\{0\}, x>0$.
There is a natural topology in a PN space $\left(V, v, \tau, \tau^{*}\right)$ which is called the strong topology. It is defined by the neighbourhood

$$
N_{p}(t)=\left\{q \in V: v_{q-p}(t)>1-t\right\}=\left\{q \in V: d_{l}\left(v_{q-p}, \epsilon_{0}\right)<t\right\}
$$

where $t>0, d_{l}$ is the modified Levy metric(see [2]). For every $t>0$, the neighbourhood $N_{\theta}(t)$ at θ of V is defined by

$$
N_{\theta}(t)=\left\{p \mid p \in V, v_{p}(t)>1-t\right\}=\left\{p \mid p \in V, d_{l}\left(v_{p}, \epsilon_{0}\right)<t\right\}
$$

Definition 1.2. [3] Let $\left(V, v, \tau, \tau^{*}\right)$ and $\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ be PN spaces. A linear map $T: V \rightarrow V^{\prime}$ is said to be:
(i) Certainly bounded if every certainly bounded set A of the space (V, v, τ, τ^{*}) has, as image by T a certainly bounded set $T \mathrm{~A}$ of the space $\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$, i.e., if there exists $x_{0} \in(0,+\infty)$ such that $v_{p}\left(x_{0}\right)=1$ for all $p \in A$, then there exists $x_{1} \in(0,+\infty)$ such that $\mu_{T p}\left(x_{1}\right)=1$ for all $p \in A$.
(ii) Bounded if it map every D-bounded set of V into a D -bounded set of V^{\prime}, i.e., it satisfies the implication,

$$
\lim _{x \rightarrow+\infty} \varphi_{A}(x)=1 \Rightarrow \lim _{x \rightarrow+\infty} \varphi_{T A}(x)=1
$$

for every nonempty subset A of V.
(iii) Strongly B-bounded if there exists a constant $k>0$ such that, for every $p \in V$ and for every $x>0, \mu_{T p}(x) \geq v_{p}\left(\frac{x}{k}\right)$, or equivalently if there exists a constant $h>0$ such that, for every $p \in V$ and for every $x>0$,

$$
\mu_{T p}(h x) \geq v_{p}(x) .
$$

(iv) Strongly C-bounded if there exists a constant $h \in(0,1)$ such that for every $p \in V$ and for every $x>0$,

$$
v_{p}(x)>1-x \Rightarrow \mu_{T p}(h x)>1-h x .
$$

Definition 1.3. Let $\left(V, v, \tau, \tau^{*}\right)$ and $\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ be PN spaces. A linear map $T: V \rightarrow V^{\prime}$ is said to be infer-strongly B-bounded if there exists $M>0$, for any $p \in V, x>0, y>0$ such that

$$
\mu_{T p}(M x+M y) \geq \tau\left(v_{\frac{p}{2}}(x), v_{\frac{p}{2}}(y)\right) .
$$

Definition 1.4. A linear map $T:\left(V, v, \tau, \tau^{*}\right) \rightarrow\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ is said to be semi-bounded if it maps every D-bounded set of V into a semi-bounded set of V^{\prime}, i.e., it satisfies the implication

$$
\lim _{x \rightarrow+\infty} \phi_{A}(x)=1 \Rightarrow \lim _{x \rightarrow+\infty} \phi_{T A}(x)<1
$$

for every nonempty subset A of V .

2. Main Result

Theorem 2.1. Let $\left(V, v, \tau, \tau^{*}\right)$ and $\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ be PN spaces. Let $T: V \rightarrow$ V^{\prime} be a linear operator.
i) If T is strongly B-bounded, then it is infer-strongly B-bounded.
ii) If T is infer-strongly B-bounded, then it is continuous.

Proof. i) By definition, there exists a constant $M>0$ such that for every $p \in V$ and for every $x, y>0$,
$\mu_{T p}(M x+M y) \geq v_{p}(x+y) \geq \tau\left(v_{\frac{p}{2}}, v_{\frac{p}{2}}\right)(x+y) \geq \tau\left(v_{\frac{p}{2}}(x), v_{\frac{p}{2}}(y)\right)$. Therefore, i) holds.
ii) If $p_{n} \rightarrow p$, then $\mu_{T p_{n}-T p}(M x)=\mu_{T\left(p_{n}-p\right)}(M x) \geq \tau\left(v_{\frac{p_{n}-p}{2}}\left(\frac{x}{2}\right), v_{\frac{p_{n}-p}{2}}\left(\frac{x}{2}\right)\right)$, and $\tau\left(v_{\underline{p_{n}-p}}^{2}\left(\frac{x}{2}\right), v_{\underline{p_{n}-p}}^{2}\left(\frac{x}{2}\right)\right) \rightarrow \tau\left(\epsilon_{0}, \epsilon_{0}\right)\left(\frac{x}{2}\right)=1$ as $n \rightarrow \infty$. Hence, we have $T p_{n}-T p \rightarrow \theta$, i.e., $T p_{n} \rightarrow T p$, for any $x>0, M>0$. Therefore, T is continuous.

But the converse need not to be true.
Example 2.1. Let V be a vector space and let $v_{\theta}=\mu_{\theta}=\varepsilon_{0}$. For $p, q \neq \theta$ and $x \in R$, if

$$
\begin{gather*}
\epsilon_{p}(x)= \begin{cases}0, & x \leq 1 \\
1, & x>1\end{cases} \tag{2.1}\\
\mu_{p}(x)= \begin{cases}0, & x \leq 0 \\
\frac{1}{3}, & 0<x \leq 1 \\
\frac{9}{10}, & 1<x<\infty \\
1, & x=\infty\end{cases} \tag{2.2}
\end{gather*}
$$

and

$$
\begin{aligned}
& \tau\left(v_{p}(x), v_{q}(y)\right)=\tau^{*}\left(v_{p}(x), v_{q}(y)\right)=\min \left(v_{p}(x), v_{q}(x)\right), \\
& \delta\left(\mu_{p}(x), \mu_{q}(y)\right)=\delta^{*}\left(\mu_{p}(x), \mu_{q}(y)\right)=\min \left(\mu_{p}(x), \mu_{q}(x)\right)
\end{aligned}
$$

then $\left(V, v, \tau, \tau^{*}\right)$ and $\left(V, \mu, \delta, \delta^{*}\right)$ are equilateral PN spaces. Now let I : $\left(V, v, \tau, \tau^{*}\right) \rightarrow\left(V, \mu, \delta, \delta^{*}\right)$ be the identity operator. Then I is not strongly B-bounded, because for every $k>0$ and for $x=\max \left\{2, \frac{1}{k}\right\}$,

$$
\mu_{I p}(k x)=\frac{9}{10}<1=v_{p}(x)
$$

But I is infer-strongly B-bounded, because for $M>0$ and for all $x \leq y$,

$$
\begin{gathered}
{ }_{p}(M x+M y) \geq \delta\left(\mu_{\frac{p}{2}}(M x), \mu_{\frac{p}{2}}(M y)\right) \\
=\delta^{*}\left(\mu_{\frac{p}{2}}(M x), \mu_{\frac{p}{2}}(M y)\right) \\
=\min \left(\mu_{\frac{p}{2}}(M x), \mu_{\frac{p}{2}}(M x)\right) \\
=\mu_{\frac{p}{2}}(M x)
\end{gathered}
$$

and $\tau\left(v_{\frac{p}{2}}(x), v_{\frac{p}{2}}(y)\right)=\tau^{*}\left(v_{\frac{p}{2}}(x), v_{\frac{p}{2}}(y)\right)=\min \left(v_{\frac{p}{2}}(x), v_{\frac{p}{2}}(x)\right)=v_{\frac{p}{2}}(x)$, there exists $M=\frac{1}{2}>0$, for $x=\frac{1}{2} \in R, \mu_{\frac{p}{2}}(M x)=\mu_{\frac{p}{2}}\left(\frac{1}{2} x\right)=\frac{1}{3}, v_{\frac{p}{2}}(x)=0$.
Therefore, we obtain

$$
\mu_{I p}(M x+M y) \geqq \mu_{\frac{p}{2}}(M x)>\tau\left(v_{\frac{p}{2}}(x), v_{\frac{p}{2}}(y)\right)=v_{\frac{p}{2}}(x) .
$$

Theorem 2.2. (see [2]) Let $\left(V, v, \tau, \tau^{*}\right)$ and $\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ be $P N$ spaces. A linear map $T: V \rightarrow V^{\prime}$ is either continuous at every point of V or at no point of V.

Theorem 2.3. (see [2]) Let $\left(V, v, \tau, \tau^{*}\right)$ and $\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ be two $P N$ spaces and let $T:\left(V, v, \tau, \tau^{*}\right) \rightarrow\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ be a linear map. If there exists a constant $h>0$ such that, for every $x>0$ and for every $p \in V$,

$$
v_{p}(x) \geqslant \mu_{T p}(h x),
$$

then T has a linear inverse T^{-1} defined on $T V$ and T^{-1} is strongly bounded.
In normed space, the strongly B-bounded and strongly C-bounded operators with boundedness have the relation as [3] of Theorem 2.6 and 2.7.

Theorem 2.4. (see [3]) Let G be strictly increasing on $[0,1]$. Then T : $(V,\|\|, G,. \alpha) \rightarrow\left(V^{\prime},\|\|, G,. \alpha\right)$ is a strongly B-bounded operator if and only if T is a bounded linear operator in a normed space.

Theorem 2.5. (see [3]) Let $T:(V,\|\|, G,. \alpha) \rightarrow\left(V^{\prime},\|\|, G,. \alpha\right)$ be strongly C bounded and let G be strictly increasing on [0,1]. Then T is a bounded linear operator in a normed space.

Example 2.2. [2] Let $(V,\|\|$.$) be a normed space, let G$ and G^{\prime} be in $\Delta^{+}-\left\{\epsilon_{0}, \epsilon_{\infty}\right\}$ and consider the identity map I between $(V,\|\|, G, M$.$) and$ $\left(V,\|\cdot\|, G^{\prime}, M\right)$. Now,
(a) if $G\left(x_{0}\right)=1$ for some $\left.x \in\right] 0,+\infty\left[\right.$ while $G^{\prime}(x)<1$ for every $\left.x \in\right] 0,+\infty[$, but $l^{-} G^{\prime}(+\infty)=1$, then I is bounded but not certainly bounded;
(b) if $G(x)<1$ for every $x \in] 0,+\infty\left[, l^{-} G(+\infty)=1\right.$ and $l^{-} G^{\prime}(+\infty)<1$, then I is certainly bounded but not bounded.

From the definition of the bounded linear operator, we can easily know the semi-bounded is not a bounded or a certainly bounded.

Moreover, a linear map T is said to be D-bounded if either (i) or (ii) holds, i.e., if $R_{A} \in D^{+}$, then $R_{T A} \in D^{+}$, where the function R_{A} defined on R^{+}by

$$
R_{A}(x):=\left\{\begin{array}{l}
l^{-} \inf \left\{v_{p}(x) ; p \in A\right\}, \quad x \in[0,+\infty[\tag{2.3}\\
1, \quad x=+\infty
\end{array}\right.
$$

Lemma 2.1. [2] (a) Every strongly bounded operator is also certainly bounded.
(b) Every strongly bounded operator is also perhaps bounded.

Theorem 2.6. (see [2]) Every strongly B-bounded operator is D-bounded.
The identity map I between any PN space $\left(V, v, \tau, \tau^{*}\right)$ and itself is a strongly bounded operator with $k=1$. Also, all linear contraction mappings, according to the definition of [7] are strongly B-bounded. So the identity map I and all linear contraction mappings are also D-bounded.

But the converses need not to be true, i.e., there exists a linear map T is D-bounded but not a strongly B-bounded operator.
Example 2.3. [2] A continuous linear operator is neither certainly bounded nor bounded.

Let $(V,\|\|$.$) be a normed space and let \mathrm{F}$ and G be distribution functions in D^{+}with $F\left(x_{0}\right)=1$ for some $\left.x_{0} \in\right] 0,+\infty[$. Consider the identity map I from the equilateral space (V, F, M) into the simple space $(V,\|\cdot\|, G, M)$. Let A be an unbounded set of $(V,\|\cdot\|)$. Then A is certainly bounded in (V, F, M), but A is not D-bounded in $(V,\|\|, G, M$.$) . Therefore, I is neither certainly bounded$ nor bounded.

Example 2.4. [2] Let $V=V^{\prime}=R, v_{0}=\mu_{0}=\varepsilon_{0}$. If $p \neq \theta$, then for $x>0$ let $v_{p}(x)=G\left(\frac{x}{|p|}\right)$ and $\mu_{p}(x)=U\left(\frac{x}{|p|}\right)$, where $G(x)=\frac{1}{2} I_{] 0,1]}(x)+I_{] 1,+\infty]}(x)$.

It is easy to prove that $I:(R,||, G, M.) \rightarrow(R,|\cdot|, U, M)$ is D-bounded but I is not strongly B -bounded, because for every $k>0$ and $p \neq 0$, one has, for $x<|p| \min \left\{\frac{1}{2}, k\right\}, \mu_{I p}(x)=\mu_{p}(x)=U\left(\frac{x}{|p|}\right)=\frac{x}{|p|}<\frac{1}{2}=G\left(\frac{x}{k|p|}\right)=v_{p}\left(\frac{x}{k}\right)$.
Corollary 2.1. [2] If $T:\left(V, v, \tau, \tau^{*}\right) \rightarrow\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ is linear, then T is continuous if and only if it is continuous at θ.
Corollary 2.2. [2] Let $T:\left(V, v, \tau, \tau^{*}\right) \rightarrow\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ be a linear onto map with an inverse T^{-1}, if both T and T^{-1} are strongly bounded, then T is a homeomorphism between the PN spaces $\left(V, v, \tau, \tau^{*}\right)$ and ($\left.V^{\prime}, \mu, \sigma, \sigma^{*}\right)$.

Theorem 2.7. If $T:\left(V, v, \tau, \tau^{*}\right) \rightarrow\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ is linear and continuous at θ, then it is uniformly continuous.

Proof. If T is linear, then it is continuous if and only if it is continuous at θ (see Corollary 3.1 of [2]), and by Corollary 3.2 of [2], if T is linear and continuous, then it is uniformly continuous.

Suppose

$$
R_{A}(x):=\left\{\begin{array}{l}
l^{-} \phi_{A}(x), \quad x \in[0,+\infty[\tag{2.4}\\
1, \quad x=+\infty
\end{array}\right.
$$

where $l^{-} \phi_{A}(x)$ denotes the left limit of the function f at the point x and $\phi_{A}(x)=\inf \left\{v_{p}(x): p \in A\right\}$.

Theorem 2.8. Let $\left(V, v, \tau, \tau^{*}\right)$ and $\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ be two $P N$ spaces and T_{1}, T_{2} be two certainly bounded operators. Then $T_{1}+T_{2}$ is also a certainly bounded operator.

Proof. Since T_{1}, T_{2} are two certainly bounded operators, by its definition, if there exists $x_{0} \in(0,+\infty)$ such that $v_{p}\left(x_{0}\right)=1$ for all $p \in V$, then there exists $x_{1} \in(0,+\infty)$ such that $\mu_{T_{1} p}\left(x_{1}\right)=1$ for all $p \in V$; and if there exists $x_{0}^{\prime} \in(0,+\infty)$ such that $v_{p}\left(x_{0}^{\prime}\right)=1$ for all $p \in V$, then there exists $x_{1}^{\prime} \in(0,+\infty)$ such that $\mu_{T_{2} p}\left(x_{1}^{\prime}\right)=1$ for all $p \in V$. Then there exists $x_{1}^{\prime \prime}, x_{1}^{\prime \prime}=$ $\max \left\{x_{1}, x_{1}^{\prime}\right\}$, so $\mu_{T_{1} p}\left(x_{1}^{\prime \prime}\right)=1, \mu_{T_{2} p}\left(x_{1}^{\prime \prime}\right)=1$, for $x \geq x_{1}^{\prime \prime}, \mu_{\left(T_{1}+T_{2}\right) p}(x)=$ $\mu_{T_{1} p+T_{2} p}(x) \geq \sigma\left(\mu_{T_{1} p}, \mu_{T_{2} p}\right)(x) \geq \sigma\left(\mu_{T_{1} p}, \mu_{T_{2} p}\right)\left(x_{1}^{\prime \prime}\right)=1$, i.e., there exists x such that $\mu_{\left(T_{1}+T_{2}\right) p}(x)=1$. Hence, $T_{1}+T_{2}$ is certainly bounded operator.

Remark 2.1. If the space is satisfied the condition as the above Theorem 2.4 , then $T_{1}-T_{2}$ is also a certainly bounded operator.

Theorem 2.9. Let $\left(V, v, \tau, \tau^{*}\right)$ and $\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ be two $P N$ spaces and T : $V \rightarrow V^{\prime}$ be a certainly bounded operator. Then $k T$ is also a certainly bounded operator for any $k \in R /\{0\}$.
Proof. Since T is a certainly bounded operator, there exists $x_{0} \in(0,+\infty)$ such that $v_{p}\left(x_{0}\right)=1$ for all $p \in V$. Hence, there exists $x_{1} \in(0,+\infty)$ such that $\mu_{T p}\left(x_{1}\right)=1$ for all $p \in V$ and for $x>x_{1}, k \in Z / 0, \mu_{k T p}(x) \geq$ $\sigma\left(\mu_{\frac{1}{k} k T p}, \mu_{\left(1-\frac{1}{k}\right) k T p}\right)(x)=\sigma\left(\mu_{T p}, \mu_{(k-1) T p}\right)(x)=\cdots=\sigma^{k-1}\left(\mu_{T p}, \cdots \mu_{T p}\right)(x) \geq$ $\sigma^{k-1}\left(\mu_{T p}, \cdots \mu_{T p},\right)\left(x_{1}\right)=1$, i.e., there exists x such that $\mu_{k T p}(x)=1$. Hence, $k T$ is a certainly bounded operator.

For $|k| \in(0,1], \mu_{k T p}(x) \geqq \mu_{T p}(x)$, and since T is a certainly bounded operator, there exists $x_{0} \in(0,+\infty)$ such that $v_{p}\left(x_{0}\right)=1$ for all $p \in V$. Hence there exists $x_{1} \in(0,+\infty)$ such that $\mu_{T p}\left(x_{1}\right)=1$ for $x \geqq x_{1}, \mu_{T p}(x) \geqq$ $\mu_{T p}\left(x_{1}\right)=1$. Therefore, $\mu_{k T p}(x) \geqq \mu_{T p}(x) \geqq \mu_{T p}\left(x_{1}\right)=1$, i.e., $\mu_{k T p}(x)=1$, $k T$ is a certainly bounded operator.

For $|k|>1, \mu_{k T p}(x) \geq \mu_{m T p}(x), \mathrm{m}$ is an integer number and $|m|>|k|$, from the above proof, when $m \in Z / 0$, we have $m T$ is a certainly bounded operator, so if there exists $x_{0} \in(0,+\infty)$ such that $v_{p}\left(x_{0}\right)=1$, then there exists $x_{1} \in$ $(0,+\infty)$ such that $\mu_{m T p}\left(x_{1}\right)=1$ for any $x \geqq x_{1}, \mu_{m T p}(x) \geqq \mu_{m T p}\left(x_{1}\right)=1$. Therefore, $\mu_{k T p}(x) \geqq \mu_{m T p}(x) \geqq \mu_{m T p}\left(x_{1}\right)=1$ and $k T$ is a certainly bounded operator.

Theorem 2.10. Let $\left(V, v, \tau, \tau^{*}\right)$ and $\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ be two $P N$ spaces, T_{1}, T_{2} be two bounded operators and $T: V \rightarrow V^{\prime}$ be a triangle norm. If the triangle function μ maps $D^{+} \times D^{+}$into D^{+}, i.e., if $\mu\left(D^{+}, D^{+}\right) \subset D^{+}$, then $T_{1}+T_{2}$ and $k T$ are also the bounded operators.

Proof. By Theorem 2.2 of [5], we know that $L_{b}\left(V, V^{\prime}\right)$ is vector subspaces of $L\left(V, V^{\prime}\right)$, where $L=L\left(V, V^{\prime}\right)$ is the vector space of linear operators $T: V \rightarrow$ $V^{\prime}, L_{b}=L_{b}\left(V, V^{\prime}\right)$ the subset of L formed by the linear bounded operators from V to V^{\prime}, and $T_{1}, T_{2} \in L_{b}\left(V, V^{\prime}\right)$, so $T_{1}+T_{2}$ and $k T$ are the bounded operators. This completes the proof.

Theorem 2.11. Let $\left(V, v, \tau, \tau^{*}\right)$ and $\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ be two $P N$ spaces, T_{1}, T_{2} be two strongly C-bounded operators and $T: V \rightarrow V^{\prime}$ be a triangle norm. If $T=$ Min, then $T_{1}+T_{2}$ is also a strongly C-bounded operator.

Proof. Since T_{1}, T_{2} are two Strongly C-bounded operators, there exists a constant $h_{1} \in(0,1)$ such that, for every $p \in V$ and for every $x>0, v_{p}(x)>1-x \Rightarrow$ $\mu_{T_{1} p}\left(h_{1} x\right)>1-h_{1} x$; and if there exists a constant $h_{2} \in(0,1)$ such that, for every $p \in V$ and for every $x>0, v_{p}(x)>1-x \Rightarrow \mu_{T_{2} p}\left(h_{2} x\right)>1-h_{2} x$, then for $h \in(0,1), \mu_{\left(T_{1}+T_{2}\right) p}(h x)=\mu_{T_{1} p+T_{2} p}(h x) \geq \sigma\left(\mu_{T_{1} p}, \mu_{T_{2} p}\right)(h x)=$ $\sigma_{T}\left(\mu_{T_{1} p}, \mu_{T_{2} p}\right)(h x)=\sup _{\alpha \in[0,1]} T\left(\mu_{T_{1} p}(\alpha h x), \mu_{T_{2} p}((1-\alpha) h x)\right) \geq T\left(\mu_{T_{1} p}(\alpha h x)\right.$, $\left.\mu_{T_{2} p}((1-\alpha) h x)\right)$. If $\alpha h=h_{1},(1-\alpha) h=h_{2}$, then $T\left(\mu_{T_{1} p}(\alpha h x), \mu_{T_{2} p}((1-\right.$ $\alpha) h x))$) $\geq T\left(1-h_{1} x, 1-h_{2} x\right)=\operatorname{Min}\left(1-h_{1} x, 1-h_{2} x\right)>1-h x$. This completes the proof.

References

[1] C. Alsina, B. Schweizer and A. Sklar, On the definition of a probabilistic normed space, Aequations Mathematicae, 46(1993), 91-98
[2] Bernardo Lafuerza-Guillen, Jose Antonio Rodriguez Lallena and Carlo Sempi, A study of boundedness in probabilistic normed spaces, Jour. of Math. Anal. and Appl., 232(1999),183-196.
[3] Iqbal H. Jebril and radhi ibrahim M.ali, Bounded linear operators in probabilistic normed space, Journal of Inequlities in Pure and Applied Mathematics,volume 4, Issue 1, Article 8, 2003.
[4] Bernardo Lafuerza-Guillen, Jose Antonio Rodriguez Lallena and Carlo Sempi, Probabilistic norms for linear operators, Jour. of Math. Anal. and Appl., 220(1998),462-476.
[5] B. Schweizer and A. Sklar, probabilistic metric spaces, Elsevier North-Holland, New York, 1983.
[6] Shin-sen Chang,Yeol Je Cho and Shin Min Kang, Nonliear Operator Theory In Probabilistic Metric Spaces, Huntington New York 11743.

[^0]: ${ }^{0}$ Received March 10, 2008. Revised May 27, 2009.
 ${ }^{0} 2000$ Mathematics Subject Classification: 54E70.
 ${ }^{0}$ Keywords: Probabilistic normed space, bounded linear operators, semi-bounded operators, infer-strongly B-bounded operators.

