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Abstract. Probabilistic normed spaces had been redefined by Alsina, Schweizer and Sklar.

In this paper, the boundedness notions for linear operators in probabilistic normed space

was studied and the relation between operator and operation was discussed.

1. Introduction

Probabilistic normed spaces (PN spaces) were introduced by S̆erstnev by
means of a definition that was closely modeled on the theory of normed spaces.
Here we consistantly adopt the new, and in our opinion convincing, definition
of PN space given in the paper by Alsina, Schweizer and Sklar[1]. The notation
and concepts used are those of [3,5,and 6]. In [2], it discussed the operator,
for example, strongly bounded operator, certainly bounded operator, perhaps
bounded operator and it also proved the relation between them. And from
this paper, we know in the class of linear operators, no two of the concepts of
certain boundedness and continuity imply each other.

In the following, the letter ∆+ will be denoted the set of one-dimensional
distribution functions which is nondecreasing, left-continuous and υ(0) = 0,
and has both a maximal element ε0 and a minimal element ε∞: these are given
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respectively,by

ε0(x) =
{

0, x ≤ 0
1, x > 0 (1.1)

and

ε∞(x) =
{

0, x < ∞
1, x = ∞.

(1.2)

We shall also consider the subset D+ ⊂ ∆+ of the proper distance distri-
bution function, i.e., those F ∈ ∆+ for which limx→∞ F (x) = 1.

Definition 1.1. [1] A probabilistic normed space (briefly, PN space) is a
quadruple (V,v,τ ,τ∗), where V is a real vector space, τ and τ∗ are continuous
triangle functions with τ ≤ τ∗ and v is a mapping from V into ∆+ such that
for all p,q in V , the following conditions hold:

(PN1) vp = ε0 if and only if p=θ;

(PN2) v−p = vp ;

(PN3) vp+q ≥ τ(vp, vq);

(PN4) vp ≤ τ∗(vαp, v(1−α)p) for all α in [0,1],
for the continuous t-norm T such that τ = τT and τ∗ = τT ∗ , where

T ∗(x, y) = 1− T (1− x, 1− y),

τT (F, G)(x) = sup
s+t=x

T (F (s), G(t))

and
τT ∗(F, G)(x) = inf

s+t=x
T ∗(F (s), G(t)).

A PN space is called a S̆erstnev space if it satisfies (PN1), (PN3) and the
following S̆erstnev condition which implies both (PN2) and (PN4).

Nap(x) = Np(
x

a
)

for any p ∈ S, a ∈ R/{0}, x > 0.
There is a natural topology in a PN space (V, v, τ, τ∗) which is called the

strong topology. It is defined by the neighbourhood

Np(t) = {q ∈ V : vq−p(t) > 1− t} = {q ∈ V : dl(vq−p, ε0) < t},
where t > 0, dl is the modified Levy metric(see [2]). For every t > 0, the
neighbourhood Nθ(t) at θ of V is defined by

Nθ(t) = {p|p ∈ V, vp(t) > 1− t} = {p|p ∈ V, dl(vp, ε0) < t}.
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Definition 1.2. [3] Let (V, v, τ, τ∗) and (V
′
, µ, σ, σ∗) be PN spaces. A linear

map T : V → V
′
is said to be:

(i) Certainly bounded if every certainly bounded set A of the space (V, v, τ, τ∗)
has, as image by T a certainly bounded set TA of the space (V

′
, µ, σ, σ∗), i.e.,

if there exists x0 ∈ (0, +∞) such that vp(x0) = 1 for all p ∈ A, then there
exists x1 ∈ (0, +∞) such that µTp(x1) = 1 for all p ∈ A.

(ii) Bounded if it map every D-bounded set of V into a D-bounded set of
V
′
, i.e., it satisfies the implication,

lim
x→+∞ϕA(x) = 1 ⇒ lim

x→+∞ϕTA(x) = 1

for every nonempty subset A of V.

(iii) Strongly B-bounded if there exists a constant k > 0 such that, for every
p ∈ V and for every x > 0, µTp(x) ≥ vp(x

k ), or equivalently if there exists a
constant h > 0 such that, for every p ∈ V and for every x > 0,

µTp(hx) ≥ vp(x).

(iv) Strongly C-bounded if there exists a constant h ∈ (0, 1) such that for
every p ∈ V and for every x > 0,

vp(x) > 1− x ⇒ µTp(hx) > 1− hx.

Definition 1.3. Let (V, v, τ, τ∗) and (V
′
, µ, σ, σ∗) be PN spaces. A linear

map T : V → V
′
is said to be infer-strongly B-bounded if there exists M > 0,

for any p ∈ V, x > 0, y > 0 such that

µTp(Mx + My) ≥ τ(v p
2
(x), v p

2
(y)).

Definition 1.4. A linear map T : (V, v, τ, τ∗) → (V
′
, µ, σ, σ∗) is said to be

semi-bounded if it maps every D-bounded set of V into a semi-bounded set of
V
′
, i.e., it satisfies the implication

lim
x→+∞φA(x) = 1 ⇒ lim

x→+∞φTA(x) < 1,

for every nonempty subset A of V.

2. Main Result

Theorem 2.1. Let (V, v, τ, τ∗) and (V
′
, µ, σ, σ∗) be PN spaces. Let T : V →

V
′
be a linear operator.

i) If T is strongly B-bounded, then it is infer-strongly B-bounded.
ii) If T is infer-strongly B-bounded, then it is continuous.



312 Changli Yan

Proof. i) By definition, there exists a constant M > 0 such that for every
p ∈ V and for every x, y > 0,

µTp(Mx+My) ≥ vp(x+y) ≥ τ(v p
2
, v p

2
)(x+y) ≥ τ(v p

2
(x), v p

2
(y)). Therefore,

i) holds.
ii) If pn → p, then µTpn−Tp(Mx) = µT (pn−p)(Mx) ≥ τ(v pn−p

2
(x

2 ), v pn−p
2

(x
2 )),

and τ(v pn−p
2

(x
2 ), v pn−p

2
(x

2 )) → τ(ε0, ε0)(x
2 ) = 1 as n → ∞. Hence, we have

Tpn − Tp → θ, i.e., Tpn → Tp, for any x > 0,M > 0. Therefore, T is
continuous. ¤

But the converse need not to be true.

Example 2.1. Let V be a vector space and let vθ = µθ = ε0. For p, q 6= θ
and x ∈ R, if

εp(x) =
{

0, x ≤ 1
1, x > 1,

(2.1)

µp(x) =





0, x ≤ 0
1
3 , 0 < x ≤ 1
9
10 , 1 < x < ∞
1, x = ∞,

(2.2)

and
τ(vp(x), vq(y)) = τ∗(vp(x), vq(y)) = min(vp(x), vq(x)),
δ(µp(x), µq(y)) = δ∗(µp(x), µq(y)) = min(µp(x), µq(x)),

then (V, v, τ, τ∗) and (V, µ, δ, δ∗) are equilateral PN spaces. Now let I :
(V, v, τ, τ∗) → (V, µ, δ, δ∗) be the identity operator. Then I is not strongly
B-bounded, because for every k > 0 and for x = max{2, 1

k},
µIp(kx) = 9

10 < 1 = vp(x).
But I is infer-strongly B-bounded, because for M > 0 and for all x ≤ y,

p(Mx + My) ≥ δ(µ p
2
(Mx), µ p

2
(My))

= δ∗(µ p
2
(Mx), µ p

2
(My))

= min(µ p
2
(Mx), µ p

2
(Mx))

= µ p
2
(Mx)

and τ(v p
2
(x), v p

2
(y)) = τ∗(v p

2
(x), v p

2
(y)) = min(v p

2
(x), v p

2
(x)) = v p

2
(x), there

exists M = 1
2 > 0, for x = 1

2 ∈ R, µ p
2
(Mx) = µ p

2
(1
2x) = 1

3 , v p
2
(x) = 0.

Therefore, we obtain

µIp(Mx + My) = µ p
2
(Mx) > τ(v p

2
(x), v p

2
(y)) = v p

2
(x).
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Theorem 2.2. (see [2]) Let (V, v, τ, τ∗) and (V
′
, µ, σ, σ∗) be PN spaces. A

linear map T : V → V
′
is either continuous at every point of V or at no point

of V.

Theorem 2.3. (see [2]) Let (V, v, τ, τ∗) and (V
′
, µ, σ, σ∗) be two PN spaces

and let T : (V, v, τ, τ∗) → (V
′
, µ, σ, σ∗) be a linear map. If there exists a

constant h > 0 such that, for every x > 0 and for every p ∈ V ,

vp(x) > µTp(hx),

then T has a linear inverse T−1 defined on TV and T−1 is strongly bounded.

In normed space, the strongly B-bounded and strongly C-bounded operators
with boundedness have the relation as [3] of Theorem 2.6 and 2.7.

Theorem 2.4. (see [3]) Let G be strictly increasing on [0,1]. Then T :
(V, ||.||, G, α) → (V

′
, ||.||, G, α) is a strongly B-bounded operator if and only

if T is a bounded linear operator in a normed space.

Theorem 2.5. (see [3]) Let T : (V, ||.||, G, α) → (V
′
, ||.||, G, α) be strongly C-

bounded and let G be strictly increasing on [0,1]. Then T is a bounded linear
operator in a normed space.

Example 2.2. [2] Let (V, ||.||) be a normed space, let G and G
′

be in
4+ − {ε0, ε∞} and consider the identity map I between (V, ||.||, G, M) and
(V, ||.||, G′

,M). Now,

(a) if G(x0) = 1 for some x ∈]0, +∞[ while G
′
(x) < 1 for every x ∈]0, +∞[,

but l−G
′
(+∞) = 1, then I is bounded but not certainly bounded;

(b) if G(x) < 1 for every x ∈]0,+∞[, l−G(+∞) = 1 and l−G
′
(+∞) < 1,

then I is certainly bounded but not bounded.

From the definition of the bounded linear operator, we can easily know the
semi-bounded is not a bounded or a certainly bounded.

Moreover, a linear map T is said to be D-bounded if either (i) or (ii) holds,
i.e., if RA ∈ D+, then RTA ∈ D+, where the function RA defined on R+ by

RA(x) :=
{

l− inf{vp(x); p ∈ A}, x ∈ [0, +∞[,
1, x = +∞.

(2.3)

Lemma 2.1. [2] (a) Every strongly bounded operator is also certainly bounded.
(b) Every strongly bounded operator is also perhaps bounded.
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Theorem 2.6. (see [2]) Every strongly B-bounded operator is D-bounded.

The identity map I between any PN space (V, v, τ, τ∗) and itself is a strongly
bounded operator with k = 1. Also, all linear contraction mappings, according
to the definition of [7] are strongly B-bounded. So the identity map I and all
linear contraction mappings are also D-bounded.

But the converses need not to be true, i.e., there exists a linear map T is
D-bounded but not a strongly B-bounded operator.

Example 2.3. [2] A continuous linear operator is neither certainly bounded
nor bounded.

Let (V, ||.||) be a normed space and let F and G be distribution functions in
D+ with F (x0) = 1 for some x0 ∈]0,+∞[. Consider the identity map I from
the equilateral space (V, F,M) into the simple space (V, ||.||, G, M). Let A be
an unbounded set of (V, ||.||). Then A is certainly bounded in (V, F,M), but A
is not D-bounded in (V, ||.||, G, M). Therefore, I is neither certainly bounded
nor bounded.

Example 2.4. [2] Let V = V
′
= R,v0 = µ0 = ε0. If p 6= θ, then for x > 0 let

vp(x) = G( x
|p|) and µp(x) = U( x

|p|), where G(x) = 1
2I]0,1](x) + I]1,+∞](x).

It is easy to prove that I : (R, |.|, G,M) → (R, |.|, U,M) is D-bounded but
I is not strongly B-bounded, because for every k > 0 and p 6= 0, one has, for
x < |p|min{1

2 , k}, µIp(x) = µp(x) = U( x
|p|) = x

|p| < 1
2 = G( x

k|p|) = vp(x
k ).

Corollary 2.1. [2] If T : (V, v, τ, τ∗) → (V
′
, µ, σ, σ∗) is linear, then T is

continuous if and only if it is continuous at θ.

Corollary 2.2. [2] Let T : (V, v, τ, τ∗) → (V
′
, µ, σ, σ∗) be a linear onto map

with an inverse T−1, if both T and T−1 are strongly bounded, then T is a
homeomorphism between the PN spaces (V, v, τ, τ∗) and (V

′
, µ, σ, σ∗).

Theorem 2.7. If T : (V, v, τ, τ∗) → (V
′
, µ, σ, σ∗) is linear and continuous at

θ, then it is uniformly continuous.

Proof. If T is linear, then it is continuous if and only if it is continuous at θ(see
Corollary 3.1 of [2]), and by Corollary 3.2 of [2], if T is linear and continuous,
then it is uniformly continuous. ¤

Suppose

RA(x) :=
{

l−φA(x), x ∈ [0, +∞[,
1, x = +∞,

(2.4)

where l−φA(x) denotes the left limit of the function f at the point x and
φA(x) = inf{vp(x) : p ∈ A}.
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Theorem 2.8. Let (V, v, τ, τ∗) and (V
′
, µ, σ, σ∗) be two PN spaces and T1, T2

be two certainly bounded operators. Then T1 + T2 is also a certainly bounded
operator.

Proof. Since T1, T2 are two certainly bounded operators, by its definition, if
there exists x0 ∈ (0, +∞) such that vp(x0) = 1 for all p ∈ V , then there
exists x1 ∈ (0, +∞) such that µT1p(x1) = 1 for all p ∈ V ; and if there ex-
ists x

′
0 ∈ (0,+∞) such that vp(x

′
0) = 1 for all p ∈ V , then there exists

x
′
1 ∈ (0, +∞) such that µT2p(x

′
1) = 1 for all p ∈ V . Then there exists x

′′
1 ,x

′′
1 =

max{x1, x
′
1}, so µT1p(x

′′
1) = 1, µT2p(x

′′
1) = 1, for x ≥ x

′′
1 ,µ(T1+T2)p(x) =

µT1p+T2p(x) ≥ σ(µT1p, µT2p)(x) ≥ σ(µT1p, µT2p)(x
′′
1) = 1, i.e., there exists x

such that µ(T1+T2)p(x) = 1. Hence, T1 + T2 is certainly bounded operator. ¤

Remark 2.1. If the space is satisfied the condition as the above Theorem
2.4, then T1 − T2 is also a certainly bounded operator.

Theorem 2.9. Let (V, v, τ, τ∗) and (V
′
, µ, σ, σ∗) be two PN spaces and T :

V → V
′
be a certainly bounded operator. Then kT is also a certainly bounded

operator for any k ∈ R/{0}.
Proof. Since T is a certainly bounded operator, there exists x0 ∈ (0,+∞)
such that vp(x0) = 1 for all p ∈ V . Hence, there exists x1 ∈ (0,+∞)
such that µTp(x1) = 1 for all p ∈ V and for x > x1, k ∈ Z/0,µkTp(x) ≥
σ(µ 1

k
kTp, µ(1− 1

k
)kTp)(x) = σ(µTp, µ(k−1)Tp)(x) = · · · = σk−1(µTp,...µTp,)(x) ≥

σk−1(µTp,...µTp,)(x1) = 1, i.e., there exists x such that µkTp(x) = 1. Hence,
kT is a certainly bounded operator.

For |k| ∈ (0, 1], µkTp(x) = µTp(x), and since T is a certainly bounded
operator, there exists x0 ∈ (0, +∞) such that vp(x0) = 1 for all p ∈ V .
Hence there exists x1 ∈ (0,+∞) such that µTp(x1) = 1 for x = x1,µTp(x) =
µTp(x1) = 1. Therefore, µkTp(x) = µTp(x) = µTp(x1) = 1, i.e., µkTp(x) = 1,
kT is a certainly bounded operator.

For |k| > 1, µkTp(x) ≥ µmTp(x), m is an integer number and |m| > |k|, from
the above proof, when m ∈ Z/0, we have mT is a certainly bounded operator,
so if there exists x0 ∈ (0, +∞) such that vp(x0) = 1, then there exists x1 ∈
(0,+∞) such that µmTp(x1) = 1 for any x = x1,µmTp(x) = µmTp(x1) = 1.
Therefore, µkTp(x) = µmTp(x) = µmTp(x1) = 1 and kT is a certainly bounded
operator. ¤

Theorem 2.10. Let (V, v, τ, τ∗) and (V
′
, µ, σ, σ∗) be two PN spaces, T1, T2 be

two bounded operators and T : V → V
′

be a triangle norm. If the triangle
function µ maps D+ ×D+ into D+, i.e., if µ(D+, D+) ⊂ D+, then T1 + T2

and kT are also the bounded operators.
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Proof. By Theorem 2.2 of [5], we know that Lb(V, V
′
) is vector subspaces of

L(V, V
′
), where L = L(V, V

′
) is the vector space of linear operators T : V →

V
′
, Lb = Lb(V, V

′
) the subset of L formed by the linear bounded operators

from V to V
′
, and T1, T2 ∈ Lb(V, V

′
), so T1 + T2 and kT are the bounded

operators. This completes the proof. ¤

Theorem 2.11. Let (V, v, τ, τ∗) and (V
′
, µ, σ, σ∗) be two PN spaces, T1, T2

be two strongly C-bounded operators and T : V → V
′
be a triangle norm. If

T = Min, then T1 + T2 is also a strongly C-bounded operator.

Proof. Since T1, T2 are two Strongly C-bounded operators, there exists a con-
stant h1 ∈ (0, 1) such that, for every p ∈ V and for every x > 0,vp(x) > 1−x ⇒
µT1p(h1x) > 1 − h1x; and if there exists a constant h2 ∈ (0, 1) such that, for
every p ∈ V and for every x > 0, vp(x) > 1 − x ⇒ µT2p(h2x) > 1 − h2x,
then for h ∈ (0, 1), µ(T1+T2)p(hx) = µT1p+T2p(hx) ≥ σ(µT1p, µT2p)(hx) =
σT (µT1p, µT2p)(hx) = supα∈[0,1] T (µT1p(αhx), µT2p((1−α)hx)) ≥ T (µT1p(αhx),
µT2p((1 − α)hx))). If αh = h1, (1 − α)h = h2, then T (µT1p(αhx), µT2p((1 −
α)hx))) ≥ T (1 − h1x, 1 − h2x) = Min(1 − h1x, 1 − h2x) > 1 − hx. This
completes the proof. ¤
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