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A NONLINEAR ALTERNATIVE IN BANACH

ALGEBRAS WITH APPLICATIONS TO

FUNCTIONAL DIFFERENTIAL EQUATIONS

B. C. Dhage

Abstract. In this paper a fixed point theorem of Schaefer type involving
the product of two operators in a Banach algebra is proved and it is further
applied to a first order nonlinear functional differential equation for proving
an existence theorem under the mixed generalized Lipschitz and Carathéodory
condition.

1. Statement of Problem

Let R denote the real line and let I0 = [−r, 0] and I = [0, a] be two closed
and bounded intervals in R. Let J = I0 ∪ I, then J is a closed and bounded
interval in R. Let C denote the Banach space of all continuous real-valued
functions φ on I0 with the supremum norm ‖ · ‖C defined by

‖φ‖C = sup
t∈I0

|φ(t)|.

Clearly C is a Banach algebra with this norm. Given a function φ ∈ C,
consider the first order functional differential equation (in short FDE)

(
x(t)

f(t, xt)

)′
= g(t, xt) a.e. t ∈ I

x(t) = φ(t), t ∈ I0,





(1.1)

where f : I ×C → R− {0} and g : I ×C → R and the function xt : I0 → R
is defined by xt(θ) = x(t + θ) is continuous for each t ∈ I.
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By a solution of FDE (1.1) we mean a function x ∈ AC(J,R) that satisfies
the equations in (1.1), where AC(J,R) is the space of all absolutely continuous
real-valued functions on J .

The functional differential equations have been the most active area of
research since long time. See Hale [11], Henderson [12] and the references
therein. But the study of functional differential equations in Banach algebras
is very rare in the literature. Very recently the study along this line has
been started via fixed point theorems and in Dhage and O’Regan [10] and
Dhage [3] some existence results for a particular class of first order functional
differential equations have been proved. The FDE (1.1) is new to the literature
and the study of this problem will definitely contribute immensely to the area
of functional differential equations. The fixed point theorem of Dhage [1] is
generally used for proving the existence of solutions under the mixed Lipschitz
and Carathéodory conditions. In this article we shall prove the existence
theorem for FDE (1.1) using a new nonlinear alternative of Schaefer type to
be developed in this paper.

2. Auxiliary Results

Let X be a Banach algebra with norm ‖ · ‖. A mapping A : X → Xis
called D-Lipschitzian if there exists a continuous and nondecreasing function
ψ : R+ → R+ satisfying

‖Ax−Ay‖ ≤ φ(‖x− y‖) (2.1)

for all x, y ∈ X with φ(0) = 0. Sometimes we call the function φ to be a D-
function of the mapping A on X. In the special case when φ(r) = αr α > 0,
A is called a Lipschitzian with a Lipschitz constant α. In particular if α < 1, A
is called a contraction with a contraction constant α. Further if φ(r) < r for
r > 0, then A is called a nonlinear contraction on X.

The following fixed point theorem for a nonlinear contraction is well-known
and useful for proving the existence and the uniqueness theorems for nonlinear
differential and integral equations.

Theorem 2.1. Let A : X → X be a nonlinear contraction. Then A has a
unique fixed point x∗ and the sequence {Anx} of successive iterations of A
converges to x∗ for each x ∈ X.

An operator T : X → X is called compact if T (X) is a compact subset
of X. Similarly T : X → X is called totally bounded if T maps a bounded
subset of X into the relatively compact subset of X. Finally T : X → X is
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called completely continuous operator if it is continuous and totally bounded
operator on X. It is clear that every compact operator is totally bounded ,
but the converse may not be true. However the two notions are equivalent on
a bounded subset of X. The details of these concepts may be found in Dhage
[7].

The well-known fixed point theorem of Schaefer concerning the completely
continuous operators is

Theorem 2.2. Let T : X → X be a completely continuous operator. Then
either

(i) the equation x = λTx has a solution for λ = 1, or
(ii) the set E = {u ∈ X | u = λTu, 0 < λ < 1} is unbounded.

Theorem 2.2 is extensively used in the theory of nonlinear differential equa-
tions for proving the existence results. The method is commonly known as
a priori bound method for the nonlinear equations. See for example,
Dugundji and Granas [9], Zeidler [16] and the references therein. Recently
the present author has combined the above two Theorems 2.1 and 2.2 in a
Banach algebra and proved the following result.

Theorem 2.3. (Dhage [5]) Let X be a Banach algebra and let A,B : X → X
be two operators satisfying

(a) A is D-Lipschitzian with D-function φ,
(b) B is compact and continuous,
(c) Mφ(r) < r whenever r > 0, where M = ‖B(X)‖ = sup{‖Bx‖ : x ∈

X}.
Then either

(i) the equation λA(x
λ )Bx = x has a solution for λ = 1,or

(ii) the set E = {u ∈ X | λA(u
λ )Bx = u, 0 < λ < 1} is unbounded.

It is known that Theorem 2.3 is useful for proving the existence theorems for
the integral equations of mixed type. See Dhage [2] and the references therein.
In this paper we shall prove a nonlinear alternative similar to Theorem 2.3
with a slightly different conclusion under the more general conditions via a
method different from Dhage [3].

3. A Nonlinear Alternative

Before going to the main results we give some preliminaries needed in the
sequel. A Kuratowski measure of noncompactness α of a bounded set A in X
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is a nonnegative real number α(A) defined by

α(A) = inf{r > 0 : A =
n⋃

i=1

Ai, diam(Ai) ≤ r, ∀i}. (3.1)

The function α enjoys the following properties:
(α1) α(A) = 0 ⇐⇒ A is relatively compact.
(α2) α(A) = α(A) = α(coA), where A and co A denote respectively the

closure and the closed convex hull of A.
(α3) A ⊂ B ⇒ α(A) ≤ α(B).
(α4) a(A ∪B) = max{α(A), α(B)}.
(α5) α(λA) = |λ|α(A), ∀λ ∈ R.
(α6) α(A + B) ≤ α(A) + α(B).
The details of measures of noncompactness and their properties appear in

Deimling [3] and Zeidler [16].

Definition 3.1. A mapping T : X → X is called condensing if for any
bounded subset A of X, T (A) is bounded and α(T (A)) < α(A), α(A) > 0.

Note that contraction and completely continuous mappings are condensing
but the converse may not be true. The following generalization of Theorem
2.2 appears in Martelli [14].

Theorem 3.1. Let T : X → X be a continuous and condensing operator.
Then either

(i) the equation x = λTx has a solution for λ = 1, or
(ii) the set E = {u ∈ X|u = λTu, 0 < λ < 1} is unbounded.

Our main result of this section is

Theorem 3.2. Let X be a Banach algebra and let A,B : X → X be two
operators satisfying

(a) A is a D-Lipschitzian with a D-function φ,
(b) B is compact and continuous,
(c) Mφ(r) < r whenever r > 0 with M = ‖B(X)‖.

Then either
(i) the equation λAxBx = x has a solution for λ = 1,or
(ii) the set E = {u ∈ X |λAuBu = u, 0 < λ < 1} is unbounded.

Proof. Define a mapping T : X ∈ X by

Tx = AxBx, x ∈ X. (3.2)
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Obviously the mapping T is continuous on X. The result follows immedi-
ately from Theorem 2.2 if the operator T is condensing on X. Let S be a
and bounded set in X. Then we have the following estimate concerning he
operators A and B. Let x∗ be a fixed element of S. Then by hypothesis (a),

‖Ax‖ ≤ ‖Ax∗‖+ ‖Ax∗ −Ax‖
≤ ‖Ax∗‖+ φ(‖x∗ − x‖)
≤ β

for all x ∈ S, where

β = ‖Ax∗‖+ φ(diam S) < ∞

for all x ∈ S, since S is bounded. Similarly since B is compact, B(S) is a
precompact subset of X. Hence for η > 0, there exist subsets G1, G2, . . . , Gm

of X such that

B(S) =
m⋃

j=1

(Gj) and diam(Gj) <
η

β
.

This further gives that

S =
m⋃

j=1

B−1(Gj).

Let ε > 0 be given and suppose that

S ⊆
n⋃

i=1

Si

with
diam(Si) < α(S) + ε

for all i = 1, 2, ..., n. We put Fij = Si

⋂
B−1(Gj), then S ⊂ ⋃

Fij .
Now

T (S) ⊆
⋃

i,j

T (Fij)

⊂
⋃

i,j

T
(
Si

⋂
B−1(Gj)

)

=
⋃

i,j

Yij .
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If w0, w0 ∈ Yij , for some i = 1, . . . , n and j = 1, . . . , m, then there exist
x0, x1 ∈ Fij = Si

⋂
B−1(Gj) such that Tx0 = w0 and Tx1 = w1.

Since φ is nondecreasing, one has

‖Tx0 − Tx1‖ = ‖Ax0Bx0 −Ax1 −Ax2‖
≤ ‖Ax0Bx0 −Ax1Bx0‖+ ‖Ax1Bx0 −Ax1Bx1‖
≤ ‖Ax0 −Ax1‖‖Bx0‖+ ‖Ax1‖‖Bx0 −Bx1‖
≤ φ(‖x0 − x1‖)‖Bx0‖+ ‖Ax1‖‖Bx0 −Bx1‖
< φ(diam(Fij))‖B(X)‖+ ‖A(S)‖‖Bx0 −Bx1‖
≤ Mφ(diam(Fij)) + η.

Since η is arbitrary, one has

‖Tx0 − Tx1‖ ≤ Mφ(diam(Fij)).

This further implies that

‖Tx0 − Tx1‖ ≤ Mφ(diam(Si)

< Mφ(α(S) + ε).

This is true for every w0, w1 ∈ Yij and so

diam(Yij) < Mφ(α(S) + ε),

for all i = 1, 2, ..., n. Thus we have

α(T (S)) = max
i,j

diam(Yij)

< Mφ(α(S) + ε).

Since ε is arbitrary, we have

α(T (S)) ≤ Mφ(α(S)) < α(S),

whenever α(S) > 0.
This shows that T is a condensing on X. Now the desired conclusion follows

by an application of Theorem 3.1. This completes the proof. ¤
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Corollary 3.1. Let X be a Banach algebra and let A,B : X → X be two
operators satisfying

(a) A is a Lipschitzian with a Lipschitz constant α,
(b) B is compact and continuous,
(c) αM < 1 where M = ‖B(X)‖.

Then either
(i) the equation λAxBx = x has a solution for λ = 1,or
(ii) the set E = {u ∈ X |λAuBu = u, 0 < λ < 1} is unbounded.

In the following section we shall apply our new nonlinear alternative of
Dhage-Schaefer type to a nonlinear FDE (1.1) for proving the existence result
under some suitable conditions on the functions involved in (1.1).

4. Existence Theory

Let M(J,R) and B(J,R) respectively denote the spaces of measurable and
bounded real-valued functions on J. We shall seek the solution of FDE (1.1)
in the space AC(J,R), of all bounded and measurable real-valued functions
on J. Define a norm ‖ · ‖AC in AC(J,R) by

‖x‖AC = sup
t∈J

|x(t)|.

Clearly AC(J,R) becomes a Banach algebra with this norm. We need the
following definition in the sequel.

Definition 4.1. A mapping β : I × C → R is said to satisfy a condition of
L1

X-Carathéodory or simply is called L1
X-Carathéodory if

(i) t 7→ β(t, x) is measurable for each x ∈ C.
(ii) x 7→ β(t, x) is continuous almost everywhere for t ∈ I,
(iii) there exists a function h ∈ L1(I,R) such that

|β(t, x)| ≤ h(t), a.e. t ∈ I

for all x ∈ C.

We will need the following hypotheses:
(H1) The function f : J ×C → R is continuous and there exists a function

k ∈ B(J,R) such that k(t) > 0, a.e. t ∈ J and

|f(t, x)− f(t, y)| ≤ k(t)‖x− y‖C , a.e. t ∈ I
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for all x, y ∈ C.
(H2) limt→0 f(0, φ(t)) = 1.
(H3) The function g(t, x) is L1

X -Carathéodory.
(H4) There exists a nondecreasing function ψ : [0,∞) → (0,∞) and a

function γ ∈ L1(I,R) such that γ(t) > 0, a.e. t ∈ J and

|g(t, x)| ≤ γ(t)ψ
(‖x‖C

)
, a.e. t ∈ I,

for all x ∈ C.

Theorem 4.1. Assume that the hypotheses (H1)-(H4) hold. Suppose that
∫ ∞

0

ds

ψ(s)
> C1‖γ‖L1 ,

where

C1 =
‖φ‖+ F

1− ‖k‖(L + ‖h‖L1)
, ‖k‖(L + ‖h‖L1) < 1,

F = maxt∈J |f(t, 0)|, ‖k‖ = maxt∈J |k(t)| and L = max
{
‖φ‖,

∣∣∣ φ(0)
f(0,φ)

∣∣∣
}

. Then
the FDE (1.1) has a solution on J.

Proof. Now the FDE (1.1) is equivalent to the functional integral equation
(in short FIE)

x(t) = [f(t, xt)]
(

φ(0)
f(0, φ)

+
∫ t

0

g(s, xs) ds

)
, if t ∈ I (4.1)

and
x(t) = φ(t), if t ∈ I0. (4.2)

Define the two mappings A and B on AC(J,R) by

Ax(t) =
{

f(t, xt), if t ∈ I,

1, if t ∈ I0.
(4.3)

and

Bx(t) =

{
φ(0)

f(0,φ) +
∫ t

0
g(s, xs) ds, if t ∈ I

φ(t), if t ∈ I0.
(4.4)

Obviously A and B define the operators A,B : AC(J,R) → AC(J,R).
Then the FDE (1.1) is equivalent to the operator equation

x(t) = Ax(t)Bx(t), t ∈ J. (4.5)
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We shall show that the operators A and B satisfy all the hypotheses of The-
orem 2.3. We first show that A is a Lipschitzian on AC(J,R).

Let x, y ∈ AC(J,R). Then by (H1),

|Ax(t)−Ay(t)| ≤ |f(s, xt)− f(s, yt)|
≤ k(t)‖xt − yt‖C

≤ k(t)‖x− y‖AC

for all t ∈ J . Taking the supremum over t we obtain

‖Ax−Ay‖AC ≤ ‖k‖‖x− y‖AC .

for all x, y ∈ AC(J,R). So A is a Lipschitzian on AC(J,R) with a Lipschitz
constant ‖k‖. Next we show that B is completely continuous on AC(J,R).
Using the standard arguments as in Granas et al. [10], it is shown that B
is a continuous operator on AC(J,R). We shall show that B(AC(J,R)) is a
uniformly bounded and equicontinuous set in AC(J,R). Since the function g
L1

X -Carathéodory ,we have

|Bx(t)| ≤ L +
∫ t

0

|g(s, xs)| ds

≤ L +
∫ t

0

h(s) ds

≤ ÃL + ‖h‖L1 ,

where L = max
{
‖φ‖,

∣∣∣ φ(0)
f(0,φ)

∣∣∣
}

. Taking the supremum over t, we obtain
‖Bx‖ ≤ M for all x ∈ S, where M = L+‖h‖L1 . This shows that B(AC(J,R))
is a uniformly bounded set in AC(J,R). Now we show that B(AC(J,R)) is
an equi-continuous set. Let t, τ ∈ I. Then for any x ∈ AC(J,R) we have by
(4.3),

|Bx(t)−Bx(τ)| ≤
∣∣∣∣
∫ t

0

g(s, xs) ds−
∫ τ

0

g(s, xs) ds

∣∣∣∣

≤
∣∣∣∣
∫ t

τ

|g(s, xs)| ds

∣∣∣∣

≤
∣∣∣∣
∫ t

τ

h(s) ds

∣∣∣∣
≤ |p(t)− p(τ)|,
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where p(t) =
∫ t

0

h(s) ds. Therefore

|Bx(t)−Bx(τ)| → 0 as t → τ.

Again let τ ∈ I0, t ∈ I. Without loss of generality we may assume that τ < s.
Then we obtain

|Bx(t)−Bx(τ)| ≤
∣∣∣∣φ(τ)− φ(0)

f(0, φ(s))

∣∣∣∣ +
∣∣∣∣
∫ t

0

g(s, xs) ds

∣∣∣∣
≤ |φ(τ)− φ(0)|+ |p(t)− p(τ)|

where the function p is defined above. Similarly if τ, t ∈ I0, then we get

|Bx(t)−Bx(τ)| ≤ |φ(t)− φ(τ)|.
Therefore in all above three cases

|Bx(t)−Bx(τ)| → 0 as τ → t.

Hence B(AC(J,R)) is an equicontinuous set and consequently B(AC(J,R))
is relatively compact by Arzela-Ascoli theorem. Consequently B is a compact
and continuous operator on AC(J,R). Thus all the conditions of Theorem
3.1 are satisfied and a direct application of it yields that either conclusion (i)
or conclusion (ii) holds. We show that the conclusion (ii) is not possible. Let
x ∈ X be any solution to FDE (1.1). Then we have, for any λ ∈ (0, 1),

x(t) = λAx(t)Bx(t)

=





λ
[
f(t, xt)

] (
φ(0)

f(0, φ)
+

∫ t

0

g(s, xs) ds

)
, t ∈ I

λφ(t), t ∈ I0

for t ∈ J . Then we have

|x(t)| ≤ ‖φ‖C + |f(s, xt)|
(

L +
∣∣∣∣
∫ t

0

g(s, xs) ds

∣∣∣∣
)

≤ ‖φ‖C +
(
|f(s, xt)− f(t, 0)|+ |f(t, 0)|

) (
L +

∫ t

0

|g(s, xs)| ds

)

≤ ‖φ‖C + [k(t)‖xt‖C + F ]
(

L +
∫ t

0

|g(s, xs)| ds

)

≤ ‖φ‖C + k(t)‖xt‖C

(
L +

∫ t

0

|g(s, xs)| ds

)
+ F

∫ t

0

|g(s, xs)|

≤ ‖φ‖C + ‖k‖‖xt‖C(L + ‖h‖L1) + F

∫ t

0

γ(s)ψ(‖xs‖C) ds.

(4.6)
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Put u(t) = sups∈[−r,t] |x(s)|, for t ∈ J . Then we have

|x(t)| ≤ u(t) and ‖xt‖C ≤ u(t)

∀t ∈ J , and there is a point t∗ ∈ [−r, t] such that u(t) = |x(t∗)|.
From (4.6) it follows that

u(t) = |x(t∗)|
≤ ‖φ‖C + ‖k‖‖xt∗‖C(L + ‖h‖L1)

+ F

(
L +

∫ t∗

0

γ(s)ψ(‖xs‖C) ds

)

≤ ‖φ‖C + ‖k‖u(t)(L + ‖h‖L1) + F

(
L +

∫ t

0

γ(s)ψ(u(s)) ds

)

= C1 + C2

∫ t

0

γ(s)ψ(u(s))) ds,

(4.7)

where

C1 =
‖φ‖C + FL

1− ‖k‖[L + ‖h‖1L
] and C2 =

1
1− ‖k‖[L + ‖h‖1L

] .

Let

w(t) = C1 + C2

∫ t

0

γ(s)ψ(u(s))) ds.

Then u(t) ≤ w(t) and a direct differentiation of w(t) yields

w′(t) ≤ C2γ(t)ψ(w(t))

w(0) = C1,

}
(4.8)

that is ∫ t

0

w′(s)
ψ(w(s))

ds ≤ C2

∫ t

0

γ(s)] ds

≤ C2‖γ‖L1 .

By the change of variables in the above integral gives that
∫ w(t)

C1

ds

ψ(s)
≤ C2‖γ‖L1

<

∫ ∞

C1

ds

ψ(s)
.
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Now an application of mean value theorem yields that there is a constant
M > 0 such that w(t) ≤ M for all t ∈ J .This further implies that

|x(t)| ≤ u(t) ≤ w(t) ≤ M.

for all t ∈ J . Thus the conclusion (ii) of Theorem 3.2 does not hold. Therefore
the operator equation AxBx = x and consequently the FDE (1.1) has a
solution on J . This completes the proof. ¤

5. An Example

Let I0 = [−π/2, 0] and I = [0, π/2] be two closed and bounded intervals in
R, and let C be the space of continuous and R-valued functions on I0 with
the supremum norm in it. Clearly C is a Banach algebra with respect to the
multiplication “ · ” defined by (x.y)(t) = x(t)y(t) for t ∈ I0. Now consider the
nonlinear IVP (

x(t)
f(t, xt)

)′
=

p(t)
1 + x2

t

, a.e. t ∈ I

x(t) = sin t, t ∈ I0.





(5.1)

where p ∈ L1(J,R) and f : J × C → R is defined by

f(t, xt) = 1 + α‖xt‖, α > 0

for all t ∈ J. Obviously f : J×C → R+−{0}. Define a function g : J×C → R

by g(t, xt) =
p(t)

1 + x2
t

. It is easy to verify that f is continuous and Lipschitzian

on J × C with a Lipschitz constant α. Further g(t, x) is L1
X -Carathéodory

with h(t) = p(t) on I. Therefore if α(1 + ‖p‖L1) < 1, then by Theorem 4.1,
IVP (5.1) has a solution on J , because the function ψ satisfies condition (1.1)
with γ(t) = p(t),∀t ∈ I and ψ(r) = 1 ∀ r ∈ R+.
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