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AN IMPLICIT ITERATION PROCESS WITH ERRORS
FOR A FINITE FAMILY OF ASYMPTOTICALLY
QUASI-NONEXPANSIVE MAPPINGS

CHUANZHI BAI AND JONG KYU KM

ABSTRACT. Let C be a closed convex subset of a real uniformly convex Banach
space E. Iterative methods for the approximation of common fixed points of
a finite family of asymptotically quasi-nonexpansive mappings 11,75, ...,TN :
C — C are constructed. Our results show that boundedness requirement
imposed on the subset C in a result of Sun can be dropped. Furthermore,
our results extend the results of Sun to more general iteration methods with
errors.

1. INTRODUCTION

Diaz-Metcalf [3] introduced the concept of quasi-nonexpansive mapping
and Goebel-Kirk [5] in 1972 introduced the concept of asymptotically nonex-
pansive mapping. Let E be a Banach space, C' be a nonempty subset of E.
T : C — C'is said to be asymptotically nonexpansive if there exists a sequence
{hn} in [0, 00) with lim,,_, 4 hy, = 0 such that

IT"x = T"y|| < (14 ha)llz -yl

forall z,ye Candn=1,2,---.
T : C — C is called asymptotically quasi-nonexpansive if there exists a
sequence {h,} in [0, 00) with lim,,_, 4 h,, = 0 such that

IT"z = ql| < (1+ hn)llz — 4]
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forallzeCandqe F(T)={ze€C:Te=z}#0andn=1,2,---.
T :C — C is said to be uniformly L-Lipschitzian if there exists a constant
L > 0 such that
[Tz = T"y|| < Lz -y

forall z,ye Candn=1,2,---.

In [10], Xu-Ori have introduced an implicit iteration process for a finite
family of nonexpansive mappings. Recently, Sun [7] extended the process
in [10] to a process for a finite family of asymptotically quasi-nonexpansive
mappings and proved the following theorem.

Theorem 1.1 [7]. Let E be a real uniformly convex Banach space, C' be a
bounded closed convex subset of E. Let T;, i € I = {1,2,...,N}, be uni-
formly L-Lipschitzian asymptotically quasi-nonexpansive self-mappings of C,
ie, |T]'x — ;|| < (1 + hin)|lz — qil| for all x € C, ¢; € F(T;), i € I. Sup-
pose that F = NI, F(T;) # 0, /%5 hin < 400 for all i € I, and there
exists one member T in {T;, i € I} to be semi-compact. Let xy € C, and
{an} C (5,1 —s) for some s € (0,1). Then the sequence {x,} defined by the
following implicit iteration process

Ty = nZp_1+ (1 — o) TFer,, n>1, (1.1)

where n = (k. — 1)N +1, i € I converges strongly to a common fized point of
the mappings {T;, i € I}.

Theorem 1.1 is a generalization and extension of the corresponding main
results in Wittmann [9], Xu-Ori [10].
From Theorem 1.1, two questions arise quite naturally.
Question 1. Can the boundedness condition on C' in Theorem 1.1 be
dropped ?
Question 2. Can the implicit iteration process (1.1) in Theorem 1.1 be
extended to more general form 7
Inspired and motivated by the recent works in [2, 11], our purpose here
is to extend the process (1.1) to a process with errors for a finite family of
asymptotically quasi-nonexpansive mappings, with an initial ¢ € C, which
is defined as follows:
r1 = arzg + STy + Yiua,
y1 =a1x1 + b1z + cyvs,

TNy =anyrn-1 + OBNTNYyN + YNunN,
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ynv = anxZn + OnTNnzN + envn,
2
TNy1 = an1ZN + BN 1T YN 1 + YN F1UN 11,
2
YN+1 = aN+1ZN+1 +ON 1 TT T N1 + CNf1UN S,

_ 2

ToN = aanTan—1 + BonTNYenN + Yenu2n,
_ 2

YoN = aaNTaN + ban TN ZoN + canvan,

which can be written in the following compact form

Ty = QpTp—1 + 5nTikyn + Ynln, n>1, (1 2)
Yn = QpnTy + bnT@kxn + CnUn, n > 17 .

where n = (k — 1)N + 4,0 € I, {u,},{v,} are bounded sequence in C' and
{an}, {Bn}, {m}, {an}, {bn}, and {c,} are sequences in [0, 1] such that
an+ 0n+Vm=a,+b,+c, =1 forn=1,2,---.

It is our purpose in this paper to give affirmative answers to above two
questions. That is, we prove that Theorem 1.1 remains true if process (1.1)
be replaced by a process (1.2) and without the boundedness condition imposed
on C. So, the result presented in this paper is a generalization and extension
of the corresponding main results in [6, 7].

2. PRELIMINARIES
For convenience, we recall some definitions and conclusions.

Definition 2.1 [1]. Let C be a closed subset of a Banach space. A mapping
T :C — C is said be semi-compact, if for any sequence {x,} in C such that
|xn —Txyn] — 0 (n — 00), there exists a subsequence {x,,} of {x,} such that
Tp, —x* €C.

Let F be a Banach space. The modulus of convexity of F is the function
dg :[0,2] — [0,1] defined by

. 1
di(e) =inf {1 Gllo + ol il = Iyl = 1. lo = ol 2 ¢ .
By [4], 0 is nondecreasing and
I+ (1 Ayl (2.)

< max{ |, [y} [1 = 221~ A)dp (”I_y”ﬂ

max{||z], [y}
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for every z,y € E'\ {0} and A € [0,1]. A Banach space FE is called uniformly
convex if and only if iz () > 0 for all € € (0, 2].
The following lemma is essentially due to Tan-Xu [8, Lemma 1].

Lemma 2.1 [8]. Let{pn}, {\n} and {0,,} be nonnegative sequences such that
for some positive integer ng.

Pn+1 < (1 + )\n)pn + fhn, (Tl > nO)a
where
+oo +oo
Z)\n<+oo, Z,un<+oo.
n=ng n=no

Then limy,_, o pn exists.

3. MAIN RESULTS
Now we state and prove the following theorems.

Theorem 3.1. Let E be a real uniformly convex Banach space, C be a
closed conver subset of E. Let T;,i € I = {1,2,...,N}, be uniformly L-
Lipschitzian and asymptotically quasi-nonexpansive self-mappings of C' such
that 3" hip < 400 for alli € I. Let F = ﬂivzl F(T;) # 0, the set of com-
mon fized points of T;, i € I, and there exists one member T; in {T;,i € I}
to be semi-compact. Let xy € C, {fp,} C [s,1 — s] for some s € (0,1/2),
limsup,, _, ;. Lb, <1, Z:{:l Y < 400, Z:::l cn < +oo, and {u,}, {v,} be
arbitrary bounded sequences in C. Then the sequence {z,} defined by the im-
plicit iterative process with errors (1.2) strongly converges to a common fized

point of the mappings {T;,i € I}.

Proof. For q € F, let M = max{sup,,>q [lun — ¢qll, sup,>; |lvn — ql}. Tt
is obvious that 0 < M < +oo. Since T; (i € I) is asymptotically quasi-
nonexpansive, it follows that

lyn = all < anlln = gll + bullTF 2 — gll + cnllvn — gl (3.1)
< (1= bp)llzn — gl + ba (1 + hir) ||z — gl + M
= (1 + bnhik)H:Cn - QH +cnM,

and

20 — gl < anllza—1 = qll + Bul Ty — all + A llun — ll (3:2)
S aonn—l - QH + (]- - an)(l + hzk)”yn - QH + ’YnM
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Substitute (3.1) into (3.2) to get

[ —qll < anllzn—1 —qll + (1 = an)(1 + hik) (1 + bphik) || 2n — 4|
+ (1 = an) (1 + hik)en +yn) M
< anlzn-1—qll + (1 — an + hix) (1 + bphix) |20 — gl
+ (1 + hig)en + )M (3.3)
< anl@n—1 —qll + (1 — an + (2 + hir)hik) [|2n — 4l
+ (T + hik)en +yn) M.
Since lim,, o ¥, = 0, there exists a natural number n; such that for n > nq,

Y <8/2.Soa, =1—=0, =7, >1—(1—35)—s/2=s/2for n > ny. Thus,
we have by (3.3) that

[2n — gl (3-4)

2(2 + hig )ik
o = gl < llonos — g + 2Ol

2((1 + hik)en + )M
s

. (n>ny).

Since Z:fl hir < +oo for all ¢ € I, limy_, o h;r = 0 for each 7« € I. Hence,
there exists a natural number ny with & > no/N + 1 such that for n > ng,
hik < /1+4+s/6—1,i€ I. Obviously, Vi € I, (2 + hiy)hir < /6 for n > na.
Let ng = max{ni,no}. Then, for (3.4) becomes

[2n — gl
S (1 + hzk)cn + Tn
< o —qll +2 .
S TC R v U L BT Sy o v (3.5)
_ 2 + hzk) (1 + hik)cn + Tn
N < + s—2( 2+hlk)h ) ln—1 I+ 2(2 + hik) hik

(1+ /1 1+5/6
. <1+ +\/ +5/6 ) o0y gl + 3YIFSOn 0y
S

(T+ Ao 1)||£En 1= qll + pn—1, (0> ny).
It is easy to see that
+oo +00
3(1++/1+s/
> = MR S,
n=ns+l n=nz+1
314 /1+5/6) o= X
< ; > X

i=1 n=[(n3+1)/N]

hik < +OO,
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and

400 +o00 +o0
> MLPZ;M<V1+SM Yoot > %)<<+m.

S
n=ns+1 n=ns+1 n=ns+1

From Lemma 2.1 we have lim,_, ||z, — ¢|| exists. If lim, . ||zn — ¢|| = 0,
then the conclusion of Theorem 3.1 holds. So, we assume that lim,, . ||z, —
q]| :== d > 0. Then, there exists a natural number ngy such that n > ny,
2d > ||z, —q|| > d/2. Let ngy = max{ng,n3}. Combining (3.1) and (3.5), then
we have for all n > ng,

1T yn — dl
< (L +ha)lyn = all < 1+ hiw)?llzn — all + (1 + har)en M

< (14 h)? <1 L 30+ \/51 +5/6), )

ik | |2n—1 —¢|

1 6 n n
4 3(1 4+ ha)2M Y +S/SC T (1 4 ha)enM

3(1+/1+s/6
1+ (2+hik + (1 + ha)? ( . / )> hik] |lzn—1 —ql|

VIF5/6¢n + T
22 M +SCC T (1 4 ha)enM (3.6)

+ 3(1 + hig

1+<1+ 1+&m+(1+3)“1+v;+6“”)m4u@%1—m

<
- 6

V1+5/6
+3(L+%>M TSt AT GenM
S

1 3
= (14 ma ()i [ — gl + ma(s)cn + (2 + 8) Mo,

where

mi(s) = 3(? 2) (1+ ViTs/6)
and

ma(s) = W\/l + s/6M.
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By (2.1) and (3.6), we obtain for each n > n4 + 1,

Hxn —q|
= (1 = Bo)(@n-1—q) + Ba(TFyn — @) — W(Tn-1—q) + Y (un — 9|
<N = Bo) (@1 — @) + BTy — Q)| + Y (|2n—1 — all + lun — ql))

< max{||zn—1 — qll, 1T yn — qll}
HTikyn - xn—lH )}

x [1 —26,(1 = B,)05 <max{||xn_1 —qll, ITFy, —qll}
+ (2d + M)y 0

< (@ mu ) onos gl + ma(oje, + (5 +2) 213, )

X [1 —25%p < 1T yn — 2o >]
max{||zn—1 —qll, [T}yn — all}

+ (2d + M)y,

Since dg is nondecreasing and h;, < y/1+s/6 —1 < /s/6, using (3.7), we
have for all n > ny + 1,

s2dog Hleyn — Tt
2(1 4+ my(s)\/s/6)d +ma(s) + (1/2 + 3/s)M

< (@ m @)l — dl + ma(oren + (3 +2) ar, )

ko
x 25260, < [ >
max{ -1 — all, [TFy. — all}

< (L4 ma(s)hir)||lzn—1 = qll = llzn — qll + ma(s)cn
2
+ <2d + 3(8;_)M> Y (3.8)
S
= lzn-1 —all = llzn — all + ma(s)hir[[zn—1 —

2
+ ma(s)en, + (Qd + 3(821—)M> Vn

< lzn—1 = qll = llzn — qll + 2dma(s)hir

2
+ ma(s)en, + <2d + 3(82—;)M> Yn-
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By (3.8), we conclude that for all m > n4 + 2,

20 Y Iy — @l
s2d Z )5 <2(1+m1(s)\/s/76)d+m2(s)+(1/2+3/S)M>

n=ns+2

< #nar1 —gll +2dma(s) Y ha+mals) Y cn

n=ngq+2 n=ns+2
3(s+2) i
2d + ———M -
+< + = ) Yy
n=ns+2

Hence
oo

Z o HTz‘kyn — 1| < 00
P 2(1 4+ mq(s)y/s/6)d + ma(s) + (1/2 4 3/s)M

and thus

. HTikyn — Tn—1|
lim 6
n—00 2(1 +mq(s)y/s/6)d +ma(s)+ (1/243/s)M
Since FE is a real uniformly convex Banach space, it follows that
lim || TFy, — 2n_1]| = 0.
n—-+o0o
Hence
||:Un - xn—l” S ﬁn”Trlfyn - Jjn—l” + r}/nHun - xn—l”
< Bl Ty yn = |l + Y llun — gl + 2n-1 — gl])
< ﬂnHTr,fyn —Zn—1| + (M +2d) = 0 (n — o00),

as well as
|zn = Zngal| =0 (n — o00),

for all | < 2N. For convenience, let o, = ||T¥z,, — z,_1||. Since T}, = T; for
n = (k—1)N +1i, we have o, = || T*z,, — 2,,_1||. Noticing that

ITn 20 = 21l < | Tpan = Tyyall + 1 T5yn — 21l
< Ll = ol + |1 T5yn — @nl
< L(bnl| Ty zn — @l + cnllvn = zall) + T3 yn — a1l
< Lba (1T 20 = n-all + |20 = zn-al) + 175 Y0 — 2o
+ Len(llvn — gl + llon — qll)
< Lbo|| Ty 20 — @n-1ll + Lbnllzn — @1l + 115 yn — 2n-1]
+ Lep, (M +2d),  (n > ny).
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Thus by limsup,,_, ., Lb, < 1, we get that
lim o, = lim ||T*2, —2,_1| = 0.

n—o0 n—oo

Therefore, as in [7], for n > N,
[Zn—1 — Thxn| < on + Lz”xn — Zp-N|| + Lop-~ + Ll|zyn — 2(nn)-1];
which yields that lim, .1 ||Zn-1 — Thxn| = 0. From
[2n = Tnanl| < llzn — 2n-all + [[2n—1 = Tnn|,

it follows that
lim ||z, — Thz,| = 0.
n—-+4oo

Furthermore, as in [7], we obtain
liar_l |z — Tizn|| =0, (I €1). (3.9)

By hypothesis, we may assume that T} is semi-compact without loss of gener-
ality. Therefore by (3.9) it follows that lim, ., ||z, — T12,| = 0 and by the
definition of semi-compactness, there exists a subsequence {z,, } of {z,} such
that x,, — 2* € C. By (3.9) again, we obtain that z* € F. Replace ¢ by

*in (3.5), from Lemma 2.1 , we easily known that lim,,_ ||z, — z*|| exists.
So limy, o0 |27 — 2*[| = lim;j oo [|2;, — 2*|| = 0, that is {x,,} converges to a
common fixed point 2* in F'. This completes the proof. O

Remark. If we set v, =0, b, = ¢, = 0 in Theorem 3.1, then we obtain the
main result of [7] (Theorem 3.3) without the boundedness condition imposed
on the subset C.

Theorem 3.2. Let E be a real uniformly convex Banach space, C be a
closed convex subset of E. Let T;,i € I, be asymptotically nonexpansive self-
mappings of C such that 3725 hip < +o0 for alli € I. Let F = ﬂil F(T;) #
(0, the set of common fized points of T;, i € I, and there exists one member
T; in {T;,i € I} to be semi-compact. Let zog € C, {B,} C [s,1 — s] for some
s € (0,1/2), limsup,,_, 4o Lby, <1 (L= sup {1+ hin}), 352 7, < +o0,
iel,n>1

:3 cn < +00, and {u,}, {v,} be arbitrary bounded sequences in C. Then

the sequence {x,} defined by the implicit iterative process with errors (1.2)

strongly converges to a common fized point of the mappings {T;,i € I}.
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