
Nonlinear Funct. Anal. & Appl., Vol. 9, No. 4 (2004), pp. 649–658

AN IMPLICIT ITERATION PROCESS WITH ERRORS

FOR A FINITE FAMILY OF ASYMPTOTICALLY

QUASI-NONEXPANSIVE MAPPINGS

Chuanzhi Bai and Jong Kyu Kim

Abstract. Let C be a closed convex subset of a real uniformly convex Banach
space E. Iterative methods for the approximation of common fixed points of
a finite family of asymptotically quasi-nonexpansive mappings T1, T2, ..., TN :
C → C are constructed. Our results show that boundedness requirement
imposed on the subset C in a result of Sun can be dropped. Furthermore,
our results extend the results of Sun to more general iteration methods with
errors.

1. Introduction

Diaz-Metcalf [3] introduced the concept of quasi-nonexpansive mapping
and Goebel-Kirk [5] in 1972 introduced the concept of asymptotically nonex-
pansive mapping. Let E be a Banach space, C be a nonempty subset of E.
T : C → C is said to be asymptotically nonexpansive if there exists a sequence
{hn} in [0,∞) with limn→+∞ hn = 0 such that

‖Tnx− Tny‖ ≤ (1 + hn)‖x− y‖
for all x, y ∈ C and n = 1, 2, · · · .

T : C → C is called asymptotically quasi-nonexpansive if there exists a
sequence {hn} in [0,∞) with limn→+∞ hn = 0 such that

‖Tnx− q‖ ≤ (1 + hn)‖x− q‖
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for all x ∈ C and q ∈ F (T ) = {x ∈ C : Tx = x} 6= ∅ and n = 1, 2, · · · .
T : C → C is said to be uniformly L-Lipschitzian if there exists a constant

L > 0 such that
‖Tnx− Tny‖ ≤ L‖x− y‖

for all x, y ∈ C and n = 1, 2, · · · .
In [10], Xu-Ori have introduced an implicit iteration process for a finite

family of nonexpansive mappings. Recently, Sun [7] extended the process
in [10] to a process for a finite family of asymptotically quasi-nonexpansive
mappings and proved the following theorem.

Theorem 1.1 [7]. Let E be a real uniformly convex Banach space, C be a
bounded closed convex subset of E. Let Ti, i ∈ I = {1, 2, ..., N}, be uni-
formly L-Lipschitzian asymptotically quasi-nonexpansive self-mappings of C,
i.e., ‖Tn

i x − qi‖ ≤ (1 + hin)‖x − qi‖ for all x ∈ C, qi ∈ F (Ti), i ∈ I. Sup-
pose that F =

⋂N
i=1 F (Ti) 6= ∅, ∑+∞

n=1 hin < +∞ for all i ∈ I, and there
exists one member T in {Ti, i ∈ I} to be semi-compact. Let x0 ∈ C, and
{αn} ⊂ (s, 1− s) for some s ∈ (0, 1). Then the sequence {xn} defined by the
following implicit iteration process

xn = αnxn−1 + (1− αn)T k
i xn, n ≥ 1, (1.1)

where n = (k − 1)N + i, i ∈ I converges strongly to a common fixed point of
the mappings {Ti, i ∈ I}.

Theorem 1.1 is a generalization and extension of the corresponding main
results in Wittmann [9], Xu-Ori [10].

From Theorem 1.1, two questions arise quite naturally.
Question 1. Can the boundedness condition on C in Theorem 1.1 be
dropped ?
Question 2. Can the implicit iteration process (1.1) in Theorem 1.1 be
extended to more general form ?

Inspired and motivated by the recent works in [2, 11], our purpose here
is to extend the process (1.1) to a process with errors for a finite family of
asymptotically quasi-nonexpansive mappings, with an initial x0 ∈ C, which
is defined as follows:

x1 = α1x0 + β1T1y1 + γ1u1,
y1 = a1x1 + b1T1x1 + c1v1,

...
xN = αNxN−1 + βNTNyN + γNuN ,
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yN = aNxN + bNTNxN + cNvN ,
xN+1 = αN+1xN + βN+1T

2
1 yN+1 + γN+1uN+1,

yN+1 = aN+1xN+1 + bN+1T
2
1 xN+1 + cN+1vN+1,

...
x2N = α2Nx2N−1 + β2NT 2

Ny2N + γ2Nu2N ,
y2N = a2Nx2N + b2NT 2

Nx2N + c2Nv2N ,
...

which can be written in the following compact form

xn = αnxn−1 + βnT k
i yn + γnun, n ≥ 1,

yn = anxn + bnT k
i xn + cnvn, n ≥ 1,

(1.2)

where n = (k − 1)N + i, i ∈ I, {un}, {vn} are bounded sequence in C and
{αn}, {βn}, {γn}, {an}, {bn}, and {cn} are sequences in [0, 1] such that
αn + βn + γn= an + bn + cn = 1 for n = 1, 2, · · · .

It is our purpose in this paper to give affirmative answers to above two
questions. That is, we prove that Theorem 1.1 remains true if process (1.1)
be replaced by a process (1.2) and without the boundedness condition imposed
on C. So, the result presented in this paper is a generalization and extension
of the corresponding main results in [6, 7].

2. Preliminaries

For convenience, we recall some definitions and conclusions.

Definition 2.1 [1]. Let C be a closed subset of a Banach space. A mapping
T : C → C is said be semi-compact, if for any sequence {xn} in C such that
‖xn−Txn‖ → 0 (n →∞), there exists a subsequence {xni} of {xn} such that
xni → x∗ ∈ C.

Let E be a Banach space. The modulus of convexity of E is the function
δE : [0, 2] → [0, 1] defined by

δE(ε) = inf
{

1− 1
2
‖x + y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε

}
.

By [4], δE is nondecreasing and

‖λx + (1− λ)y‖ (2.1)

≤ max{‖x‖, ‖y‖}
[
1− 2λ(1− λ)δE

( ‖x− y‖
max{‖x‖, ‖y‖}

)]
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for every x, y ∈ E \ {0} and λ ∈ [0, 1]. A Banach space E is called uniformly
convex if and only if δE(ε) > 0 for all ε ∈ (0, 2].

The following lemma is essentially due to Tan-Xu [8, Lemma 1].

Lemma 2.1 [8]. Let {ρn}, {λn} and {δn} be nonnegative sequences such that
for some positive integer n0.

ρn+1 ≤ (1 + λn)ρn + µn, (n ≥ n0),

where
+∞∑

n=n0

λn < +∞,
+∞∑

n=n0

µn < +∞.

Then limn→+∞ ρn exists.

3. Main results

Now we state and prove the following theorems.

Theorem 3.1. Let E be a real uniformly convex Banach space, C be a
closed convex subset of E. Let Ti, i ∈ I = {1, 2, ..., N}, be uniformly L-
Lipschitzian and asymptotically quasi-nonexpansive self-mappings of C such
that

∑+∞
n=1 hin < +∞ for all i ∈ I. Let F =

⋂N
i=1 F (Ti) 6= ∅, the set of com-

mon fixed points of Ti, i ∈ I, and there exists one member Tj in {Ti, i ∈ I}
to be semi-compact. Let x0 ∈ C, {βn} ⊂ [s, 1 − s] for some s ∈ (0, 1/2),
lim supn→+∞ Lbn < 1,

∑+∞
n=1 γn < +∞,

∑+∞
n=1 cn < +∞, and {un}, {vn} be

arbitrary bounded sequences in C. Then the sequence {xn} defined by the im-
plicit iterative process with errors (1.2) strongly converges to a common fixed
point of the mappings {Ti, i ∈ I}.
Proof. For q ∈ F , let M = max{supn≥1 ‖un − q‖, supn≥1 ‖vn − q‖}. It
is obvious that 0 < M < +∞. Since Ti (i ∈ I) is asymptotically quasi-
nonexpansive, it follows that

‖yn − q‖ ≤ an‖xn − q‖+ bn‖T k
i xn − q‖+ cn‖vn − q‖ (3.1)

≤ (1− bn)‖xn − q‖+ bn(1 + hik)‖xn − q‖+ cnM

= (1 + bnhik)‖xn − q‖+ cnM,

and

‖xn − q‖ ≤ αn‖xn−1 − q‖+ βn‖T k
i yn − q‖+ γn‖un − q‖ (3.2)

≤ αn‖xn−1 − q‖+ (1− αn)(1 + hik)‖yn − q‖+ γnM.
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Substitute (3.1) into (3.2) to get

‖xn − q‖ ≤ αn‖xn−1 − q‖+ (1− αn)(1 + hik)(1 + bnhik)‖xn − q‖
+ ((1− αn)(1 + hik)cn + γn)M

≤ αn‖xn−1 − q‖+ (1− αn + hik)(1 + bnhik)‖xn − q‖
+ ((1 + hik)cn + γn)M (3.3)

≤ αn‖xn−1 − q‖+ (1− αn + (2 + hik)hik)‖xn − q‖
+ ((1 + hik)cn + γn)M.

Since limn→∞ γn = 0, there exists a natural number n1 such that for n > n1,
γn ≤ s/2. So αn = 1− βn − γn ≥ 1− (1− s)− s/2 = s/2 for n > n1. Thus,
we have by (3.3) that

‖xn − q‖ ≤ ‖xn−1 − q‖+
2(2 + hik)hik

s
‖xn − q‖ (3.4)

+
2((1 + hik)cn + γn)M

s
, (n > n1).

Since
∑+∞

k=1 hik < +∞ for all i ∈ I, limk→∞ hik = 0 for each i ∈ I. Hence,
there exists a natural number n2 with k > n2/N + 1 such that for n > n2,
hik ≤

√
1 + s/6− 1, i ∈ I. Obviously, ∀i ∈ I, (2 + hik)hik ≤ s/6 for n > n2.

Let n3 = max{n1, n2}. Then, for (3.4) becomes

‖xn − q‖

≤ s

s− 2(2 + hik)hik
‖xn−1 − q‖+ 2

(1 + hik)cn + γn

s− 2(2 + hik)hik
M (3.5)

=
(

1 +
2(2 + hik)

s− 2(2 + hik)hik
hik

)
‖xn−1 − q‖+ 2

(1 + hik)cn + γn

s− 2(2 + hik)hik
M

≤
(

1 +
3(1 +

√
1 + s/6)
s

hik

)
‖xn−1 − q‖+ 3

√
1 + s/6 cn + γn

s
M

:= (1 + λn−1)‖xn−1 − q‖+ µn−1, (n > n3).

It is easy to see that
+∞∑

n=n3+1

λn−1 =
3(1 +

√
1 + s/6)
s

+∞∑
n=n3+1

hik

≤ 3(1 +
√

1 + s/6)
s

N∑

i=1

+∞∑

n=[(n3+1)/N ]

hik < +∞,
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and

+∞∑
n=n3+1

µn−1 =
3
s
M

(√
1 + s/6

+∞∑
n=n3+1

cn +
+∞∑

n=n3+1

γn

)
< +∞.

From Lemma 2.1 we have limn→∞ ‖xn − q‖ exists. If limn→∞ ‖xn − q‖ = 0,
then the conclusion of Theorem 3.1 holds. So, we assume that limn→∞ ‖xn−
q‖ := d > 0. Then, there exists a natural number n0 such that n > n0,
2d ≥ ‖xn− q‖ ≥ d/2. Let n4 = max{n0, n3}. Combining (3.1) and (3.5), then
we have for all n > n4,

‖T k
i yn − q‖

≤ (1 + hik)‖yn − q‖ ≤ (1 + hik)2‖xn − q‖+ (1 + hik)cnM

≤ (1 + hik)2
(

1 +
3(1 +

√
1 + s/6)
s

hik

)
‖xn−1 − q‖

+ 3(1 + hik)2M

√
1 + s/6 cn + γn

s
+ (1 + hik)cnM

=

[
1 +

(
2 + hik + (1 + hik)2

3(1 +
√

1 + s/6)
s

)
hik

]
‖xn−1 − q‖

+ 3(1 + hik)2M

√
1 + s/6 cn + γn

s
+ (1 + hik)cnM (3.6)

≤
[
1 +

(
1 +

√
1 + s/6 +

(
1 +

s

6

) 3(1 +
√

1 + s/6)
s

)
hik

]
‖xn−1 − q‖

+ 3
(
1 +

s

6

)
M

√
1 + s/6 cn + γn

s
+

√
1 + s/6 cnM

:= (1 + m1(s)hik)‖xn−1 − q‖+ m2(s)cn +
(

1
2

+
3
s

)
Mγn,

where

m1(s) =
3(s + 2)

2s

(
1 +

√
1 + s/6

)

and

m2(s) =
3(s + 2)

2s

√
1 + s/6M.
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By (2.1) and (3.6), we obtain for each n > n4 + 1,

‖xn − q‖
= ‖(1− βn)(xn−1 − q) + βn(T k

i yn − q)− γn(xn−1 − q) + γn(un − q)‖
≤ ‖(1− βn)(xn−1 − q) + βn(T k

i yn − q)‖+ γn(‖xn−1 − q‖+ ‖un − q‖)
≤ max{‖xn−1 − q‖, ‖T k

i yn − q‖}

×
[
1− 2βn(1− βn)δE

( ‖T k
i yn − xn−1‖

max{‖xn−1 − q‖, ‖T k
i yn − q‖}

)]

+ (2d + M)γn (3.7)

≤
(

(1 + m1(s)hik)‖xn−1 − q‖+ m2(s)cn +
(

1
2

+
3
s

)
Mγn

)

×
[
1− 2s2δE

( ‖T k
i yn − xn−1‖

max{‖xn−1 − q‖, ‖T k
i yn − q‖}

)]

+ (2d + M)γn.

Since δE is nondecreasing and hik ≤
√

1 + s/6 − 1 ≤
√

s/6, using (3.7), we
have for all n > n4 + 1,

s2d δE

(
‖T k

i yn − xn−1‖
2(1 + m1(s)

√
s/6)d + m2(s) + (1/2 + 3/s)M

)

≤
(

(1 + m1(s)hik)‖xn−1 − q‖+ m2(s)cn +
(

1
2

+
3
s

)
Mγn

)

× 2s2δE

( ‖T k
i yn − xn−1‖

max{‖xn−1 − q‖, ‖T k
i yn − q‖}

)

≤ (1 + m1(s)hik)‖xn−1 − q‖ − ‖xn − q‖+ m2(s)cn

+
(

2d +
3(s + 2)

2s
M

)
γn (3.8)

= ‖xn−1 − q‖ − ‖xn − q‖+ m1(s)hik‖xn−1 − q‖

+ m2(s)cn +
(

2d +
3(s + 2)

2s
M

)
γn

≤ ‖xn−1 − q‖ − ‖xn − q‖+ 2dm1(s)hik

+ m2(s)cn +
(

2d +
3(s + 2)

2s
M

)
γn.
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By (3.8), we conclude that for all m > n4 + 2,

s2d
m∑

n=n4+2

δE

(
‖T k

i yn − xn−1‖
2(1 + m1(s)

√
s/6)d + m2(s) + (1/2 + 3/s)M

)

≤ ‖xn4+1 − q‖+ 2dm1(s)
m∑

n=n4+2

hik + m2(s)
m∑

n=n4+2

cn

+
(

2d +
3(s + 2)

2s
M

) m∑
n=n4+2

γn.

Hence
∞∑

n=n4+2

δE

(
‖T k

i yn − xn−1‖
2(1 + m1(s)

√
s/6)d + m2(s) + (1/2 + 3/s)M

)
< ∞

and thus

lim
n→∞

δE

(
‖T k

i yn − xn−1‖
2(1 + m1(s)

√
s/6)d + m2(s) + (1/2 + 3/s)M

)
= 0.

Since E is a real uniformly convex Banach space, it follows that

lim
n→+∞

‖T k
i yn − xn−1‖ = 0.

Hence
‖xn − xn−1‖ ≤ βn‖T k

nyn − xn−1‖+ γn‖un − xn−1‖
≤ βn‖T k

nyn − xn−1‖+ γn(‖un − q‖+ ‖xn−1 − q‖)
≤ βn‖T k

nyn − xn−1‖+ γn(M + 2d) → 0 (n →∞),

as well as
‖xn − xn+l‖ → 0 (n →∞),

for all l < 2N . For convenience, let σn = ‖T k
i xn − xn−1‖. Since Tn = Ti for

n = (k − 1)N + i, we have σn = ‖T k
nxn − xn−1‖. Noticing that

‖T k
nxn − xn−1‖ ≤ ‖T k

nxn − T k
nyn‖+ ‖T k

nyn − xn−1‖
≤ L‖xn − yn‖+ ‖T k

nyn − xn−1‖
≤ L(bn‖T k

nxn − xn‖+ cn‖vn − xn‖) + ‖T k
nyn − xn−1‖

≤ Lbn(‖T k
nxn − xn−1‖+ ‖xn − xn−1‖) + ‖T k

nyn − xn−1‖
+ Lcn(‖vn − q‖+ ‖xn − q‖)

≤ Lbn‖T k
nxn − xn−1‖+ Lbn‖xn − xn−1‖+ ‖T k

nyn − xn−1‖
+ Lcn(M + 2d), (n > n4).



An implicit iteration process with errors 657

Thus by lim supn→∞ Lbn < 1, we get that

lim
n→∞

σn = lim
n→∞

‖T k
nxn − xn−1‖ = 0.

Therefore, as in [7], for n > N ,

‖xn−1 − Tnxn‖ ≤ σn + L2‖xn − xn−N‖+ Lσn−N + L‖xn − x(n−N)−1‖,

which yields that limn→+∞ ‖xn−1 − Tnxn‖ = 0. From

‖xn − Tnxn‖ ≤ ‖xn − xn−1‖+ ‖xn−1 − Tnxn‖,

it follows that
lim

n→+∞
‖xn − Tnxn‖ = 0.

Furthermore, as in [7], we obtain

lim
n→+∞

‖xn − Tlxn‖ = 0, (l ∈ I). (3.9)

By hypothesis, we may assume that T1 is semi-compact without loss of gener-
ality. Therefore by (3.9) it follows that limn→∞ ‖xn − T1xn‖ = 0 and by the
definition of semi-compactness, there exists a subsequence {xnj} of {xn} such
that xnj → x∗ ∈ C. By (3.9) again, we obtain that x∗ ∈ F . Replace q by
x∗ in (3.5), from Lemma 2.1 , we easily known that limn→∞ ‖xn− x∗‖ exists.
So limn→∞ ‖xn − x∗‖ = limj→∞ ‖xnj − x∗‖ = 0, that is {xn} converges to a
common fixed point x∗ in F . This completes the proof. ¤
Remark. If we set γn = 0, bn = cn = 0 in Theorem 3.1, then we obtain the
main result of [7] (Theorem 3.3) without the boundedness condition imposed
on the subset C.

Theorem 3.2. Let E be a real uniformly convex Banach space, C be a
closed convex subset of E. Let Ti, i ∈ I, be asymptotically nonexpansive self-
mappings of C such that

∑+∞
n=1 hin < +∞ for all i ∈ I. Let F =

⋂N
i=1 F (Ti) 6=

∅, the set of common fixed points of Ti, i ∈ I, and there exists one member
Tj in {Ti, i ∈ I} to be semi-compact. Let x0 ∈ C, {βn} ⊂ [s, 1 − s] for some
s ∈ (0, 1/2), lim supn→+∞ Lbn < 1 (L = sup

i∈I,n≥1
{1 + hin}),

∑+∞
n=1 γn < +∞,

∑+∞
n=1 cn < +∞, and {un}, {vn} be arbitrary bounded sequences in C. Then

the sequence {xn} defined by the implicit iterative process with errors (1.2)
strongly converges to a common fixed point of the mappings {Ti, i ∈ I}.
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