
Nonlinear Funct. Anal. & Appl., Vol. 9, No. 2 (2004), pp. 233–243

INEQUALITIES FOR SOLUTIONS

TO SOME NONLINEAR EQUATIONS

A. G. Ramm

Abstract. Let F be a nonlinear Fréchet differentiable map in a real Hilbert
space. Condition sufficient for existence of a solution to the equation F (u) = 0
is given, and a method (dynamical systems method, DSM) to calculate the
solution as the limit of the solution to a Cauchy problem is justified under
suitable assumptions.

1. Introduction

In this paper a method is given for proving existence of a solution to a
nonlinear operator equation F (u) = 0 in a Hilbert space and for computing
this solution. Our method (the dynamical systems method: DSM) consists
of solving a suitable Cauchy problem which has a global solution u(t) such
that y := u(∞) does exist and F (y) = 0. In [8], global convergence of a
Newton-type DSM method is proved for solvable operator equations with
C2−monotone operators in a Hilbert space, and estimates for the solution
are obtained. The results of the present paper generalize some results in [1]
and [2]. Examples of applications of DSM and its development for nonlinear
ill-posed problems, for problems with unbounded operators, and for construc-
tion of convergent iterative schemes for nonlinear ill-posed operator equations
are given in [1],[7],[8]-[15]. In [2]-[4] continuous regularization methods are
used for a study of well-posed operator equations with smooth operators and
for some equations with monotone operators. In [7]-[10] and [15] DSM was
developed for solving ill-posed operator equations, with not necessarily mono-
tone operators, and for constructing convergent iterative methods for their
solution.
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Let F be a nonlinear Fréchet differentiable map in a real Hilbert space.
Consider the equation

F (u) = 0. (1.1)

Let Φ(t, u) be a map, continuous with respect to t in the norm of H and
Lipschitz with respect to u in the ball B := {u : ‖u − u0‖ ≤ R, u ∈ H}.
Weaker conditions, which guarantee local existence and uniqueness of the
solution to (1.6) below, would suffice. Assume that:

(F ′(u)Φ(t, u), F (u)) ≤ −g1(t)‖F (u)‖2 ∀u ∈ B, (1.2)

and
‖Φ(t, u)‖ ≤ g2(t)‖F (u)‖ ∀u ∈ B, (1.3)

where gj , j = 1, 2, are positive functions on R+ := [0,∞), g2 is continuous,
g1 ∈ L1

loc(R+), ∫ ∞

0

g1dt = +∞, (1.4)

and

G(t) := g2(t) exp(−
∫ t

0

g1ds) ∈ L1(R+). (1.5)

Remark. Sometimes the assumption (1.3) can be used in the following more
general form:

‖Φ(t, u)‖ ≤ g2(t)‖F (u)‖b ∀u ∈ B, (1.3′)

where b > 0 is a constant. The statements and proofs of Theorems 1-3 in
Sections 1 and 2 can be easily adjusted to this assumption.

Consider the following Cauchy problem:

u̇ = Φ(t, u), u(0) = u0, u̇ :=
du

dt
. (1.6)

Assume that

‖F (u0)‖
∫ ∞

0

G(t)dt ≤ R. (1.7)

The above assumptions (1.2)-(1.5) and (1.7) on F, Φ, g1 and g2 hold through-
out and are not repeated in the statement of Theorem 1 below. By global
solution to (1.6) we mean a solution defined for all t ≥ 0.
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Theorem 1. Under the above assumptions problem (1.6) has a global solution
u(t), there exists the strong limit y := limt→∞ u(t) = u(∞), F (y) = 0, u(t) ∈
B for all t ≥ 0, and the following inequalities hold:

‖u(t)− y‖ ≤ ‖F (u0)‖
∫ ∞

t

G(x)dx, (1.8)

and

‖F (u(t))‖ ≤ ‖F (u0)‖ exp(−
∫ t

0

g1(x)dx). (1.9)

In Section 2 proof of Theorem 1 is given, and two other theorems are
proved, and in Section 3 examples of applications are presented. In Section 4
a linear equation and in Section 5 a nonlinear equation are discussed.

2. Proof of Theorem 1 and additional results

The assumptions about Φ imply local existence and uniqueness of the so-
lution u(t) to (1.6). To prove global existence of u, it is sufficient to prove a
uniform with respect to t bound on ‖u(t)‖. Indeed, if the maximal interval of
the existence of u(t) is finite, say [0, T ), and Φ(t, u) is locally Lipschitz with
respect to u, then ‖u(t)‖ → ∞ as t → T.

Let g(t) := ‖F (u(t))‖. Since H is real, one uses (1.6) and (1.2) to get
gġ = (F ′(u)u̇, F ) ≤ −g1(t)g2, so ġ ≤ −g1(t)g, and integrating one gets (1.9),
because g(0) = ‖F (u0)‖. Using (1.3), (1.6) and (1.9), one gets:

‖u(t)− u(s)‖ ≤ g(0)
∫ t

s

G(x)dx, G(x) := g2(x) exp(−
∫ x

0

g1(z)dz). (2.1)

Because G ∈ L1(R+), it follows from (2.1) that the limit y := limt→∞ u(t) =
u(∞) exists, and y ∈ B by (1.7). Inequality (1.9) and the continuity of F
imply F (y) = 0, so y solves (1.1). Taking t → ∞ and setting s = t in (2.1)
yields estimate (1.8). The inclusion u(t) ∈ B for all t ≥ 0 follows from (2.1)
and (1.7). Theorem 1 is proved. ¤

If condition (1.2) is replaced by

(F ′Φ, F ) ≤ −g1(t)‖F‖a, 0 < a < 2, (2.2)

then the proof of Theorem 1 yields the inequality g1−aġ ≤ −g1(t). So

0 ≤ g(t) ≤ [g2−a(0)− (2− a)
∫ t

0

g1(s)ds]
1

2−a . (2.3)
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If (1.4) holds, then (2.3) implies g(t) = 0 for all t ≥ T, where T is defined by
the equation:

g2−a(0)− (2− a)
∫ T

0

g1(s)ds = 0, 0 < a < 2. (2.4)

Thus ‖F (u(t))‖ = 0 for t ≥ T. So, by (1.3), Φ = 0 for t ≥ T. Thus, by (1.6),
u(t) = u(T ) for t ≥ T. Therefore y := u(T ) solves equation (1.1), F (y) = 0,

and ‖u(T )−u(0)‖ ≤ ‖F (u0)‖
∫ T

0
g2ds. If ‖F (u0)‖

∫ T

0
g2ds ≤ R, then u(t) ∈ B

for all t ≥ 0. We have proved:

Theorem 2. If (1.2) is replaced by (2.2), (1.4) holds, and ‖F (u0)‖
∫ T

0
g2ds ≤

R, where T is defined by (2.4), then equation (1.1) has a solution in B =
{u : ‖u − u0‖ ≤ R}, the solution u(t) to (1.6) exists for all t > 0, u(t) ∈ B,
u(t) := y for t ≥ T, and F (y) = 0, y ∈ B.

If (2.2) holds with a > 2, and (1.4) holds, then a similar calculation yields:

0 ≤ g(t) ≤ [g−(a−2)(0) + (a− 2)
∫ t

0

g1(s)ds]
1

2−a := h(t) → 0 t →∞, (2.5)

because of (1.4). Assume that

∫ ∞

0

g2(s)h(s)ds ≤ R. (2.6)

Then (1.3) and (1.6) yield

‖u(t)− u(0)‖ ≤ R,

and

‖u(t)− u(∞)‖ ≤
∫ ∞

t

g2(s)h(s)ds → 0 as t →∞.

Therefore an analog of Theorem 1 is obtained:

Theorem 3. If (2.2) holds with a > 2, and assumptions (1.4) and (2.6) hold,
then the solution u(t) to (1.6) exists for all t > 0, u(t) ∈ B, there exists
u(∞) := y , and F (y) = 0, where y ∈ B.
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3. Applications

If gj = cj , j = 1, 2, and cj > 0 are constants, then (1.4) and (1.5) hold,∫∞
0

Gdx = c2/c1, so condition (1.7) is:

c2

c1
‖F (u0)‖ ≤ R, cj = cj(R), j = 1, 2. (3.1)

Let us give examples of applications of Theorem 1 using its simplified version
with gj = cj > 0, j = 1, 2.

Example 1. Continuous Newton-type method.
Let Φ = −[F ′(u)]−1F (u), and assume

‖[F ′(u)]−1‖ ≤ m1 = m1(R), ∀u ∈ B. (3.2)

Assumption (3.2) holds in all the examples below. It implies ”well-posedness”
of equation (1.1). Under the above assumptions one has c1 = 1, c2 = m1. The
operator Φ is locally Lipschitz if one assumes

‖F ′′(u)‖ ≤ M2, ∀u ∈ B, (3.3)

where M2 = M2(R) is a positive constant. Condition (3.1) takes the form:

m1(R)‖F (u0)‖ ≤ R. (3.4)

In the examples below condition (3.3) is assumed and not repeated.

Conclusion 1. By Theorem 1, inequality (3.4) implies existence of a solution
y to (1.1) in B, global existence and uniqueness of the solution u(t) to (1.6),
convergence of u(t) to y as t → ∞, and the error estimate (1.9). Condition
(3.4) is always satisfied if equation (1.1) has a solution y and if u0 is chosen
sufficiently close to y.

Example 2. Continuous simple iterations method.
Let Φ = −F, and assume F ′(u) ≥ c1(R) > 0 for all u ∈ B. Then c2 = 1,

c1 = c1(R), and (3.1) is:

[c1(R)]−1‖F (u0)‖ ≤ R. (3.5)

If this inequality holds, then Conclusion 1 holds with (3.5) replacing (3.4).

Example 3. Continuous gradient method.
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Let Φ = −[F ′]∗F and assume (3.2). Then c2 = M1(R), because ‖[F ′(u)]∗‖
= ‖F ′(u)‖ ≤ M1(R), and (F ′Φ, F ) = −‖[F ′(u)]∗F‖2 ≤ −m−2

1 ‖F‖2, so c1 =
m−2

1 , where m1 is the constant from (3.2). Here we have used the estimates
‖f‖ = ‖A−1Af‖ ≤ ‖A−1‖‖Af‖, ‖Af‖ ≥ ‖A−1‖−1‖f‖, with A := F ′(u) and
f = F (u). Estimate (3.1) is:

M1m
2
1‖F (u0)‖ ≤ R. (3.6)

If this inequality holds, then Conclusion 1 holds with (3.6) replacing (3.4).

Example 4. Continuous Gauss-Newton method.
Let Φ = −([F ′]∗F ′)−1[F ′]∗F, and assume (3.2). Then c1 = 1, c2 = m2

1M1,
and (3.1) is:

M1m
2
1‖F (u0)‖ ≤ R. (3.7)

If this inequality holds, then Conclusion 1 holds with (3.7) replacing (3.4).

Example 5. Continuous modified Newton method.
Φ = −[F ′(u0)]−1F (u), and assume ‖[F (u0)]−1‖ ≤ m0. Then c2 = m0. To

find c1, let us note that:

(F ′Φ, F ) = −‖F (u)‖2 − ((F ′(u)− F ′(u0))[F (u0)]−1F, F ) ≤ 0.5‖F (u)‖2,

provided that

|((F ′(u)− F ′(u0))[F (u0)]−1F, F )| ≤ M2Rm0‖F (u)‖2 ≤ 0.5‖F (u)‖2,

that is, M2Rm0 ≤ 0.5. If R = (2M2m0)−1, then the last inequality becomes
an equality. Choosing such R, one has c2 = m0, c1 = 0.5, and (3.1) is:
2m0‖F (u0)‖ ≤ (2M2m0)−1, that is,

4m2
0M2‖F (u0)‖ ≤ 1. (3.8)

If this inequality holds, then Conclusion 1 holds with (3.8) replacing (3.4).

Example 6. Descent methods.
Let Φ = − f

(f ′,h)h, where f = f(u(t)) is a differentiable functional f : H →
[0,∞), and h is an element of H. One has ḟ = (f ′, u̇) = −f. Thus f = f0e

−t,
where f0 := f(u0). Assume ‖Φ‖ ≤ c2|f |b, b > 0. Then ‖u̇‖ ≤ c2|f0|be−bt.
Therefore u(∞) does exist, f(u(∞)) = 0, and ‖u(∞) − u(t)‖ ≤ ce−bt, c =
const > 0.
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If h = f ′, and f = ‖F (u)‖2, then f ′(u) = 2[F ′]∗(u)F (u), Φ = − f
‖f ′‖2 f ′,

and (1.6) is a descent method. For this Φ one has c1 = 1
2 , and c2 = m1

2 , where
m1 is defined in (3.2). Condition (3.1) in this example is condition (3.4).

If (3.4) holds, then Conclusion 1 holds.

In Example 6 some results from [4] are obtained. Our approach is more
general than the one in [4], since the choices of f and h do not allow one, e.g.,
to obtain Φ used in Example 5.

4. Remark about linear equations

The following result was proved in [2]: if equation Ay = f in a Hilbert
space has a solution y, and A ≥ 0 is a linear selfadjoint operator, then the
global solution u to the regularized Cauchy problem

u̇ = −Au− α(t)u + f, u(0) = u0, (4.1)

has a limit limt→∞ u(t) := u(∞), and A(u(∞)) = f. In [2] u0 ∈ H is arbitrary,
α > 0 is a continuously differentiable, monotonically decaying to zero as
t →∞, function on R+,

∫∞
0

αdt = +∞, and α−2α̇ → 0 as t →∞.

If α > 0, α̇ ≤ 0, and α−2|α̇| ≤ c, where c = const, then α−1(t)− α−1(0) ≤
ct, so α(t) ≥ [ct + α−1(0)]−1 and consequently

∫∞
0

αdt = +∞. Therefore the
condition

∫∞
0

αdt = +∞ in [2] can be dropped.
In this Section we give a new derivation of the result in [2] under weaker

assumptions about α, and show that the regularization in (4.1) is not neces-
sary.

First, let us prove that the regularization in (4.1) is not necessary: the
result holds with α = 0.

Below → denotes strong convergence in H.
The solution to (4.1) with α = 0 is

u(t) = U(t)u0 +
∫ t

0

U(t− s)fds,

where U(t) := exp(−tA). If Eλ is the resolution of the identity of the selfad-
joint operator A, then U(t)u0 =

∫∞
0

e−tλdEλu0 → Pu0 as t →∞, where P is
the operator of the orthogonal projection on N, and N is the null-space of A.

Also
∫ t

0
U(t− s)fds =

∫∞
0

(1− e−tλ)dEλy → y − Py as t →∞, by the domi-
nated convergence theorem. Thus, u(∞) = y − Py + Pu0 and A(u(∞)) = f.
¤
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Consider now the case 0 < α → 0 as t →∞. If h(t) := exp(
∫ t

0
α(s)ds), and

u solves (4.1), then

u(t) = h−1(t)U(t)u0 + h−1(t)
∫ ∞

0

exp(−tλ)
∫ t

0

esλh(s)dsλdEλy. (4.2)

Using L’Hospital’s rule one gets

lim
t→∞

λ
∫ t

0
esλh(s)ds

etλh(t)
= lim

t→∞
λetλh(t)

λetλh(t) + etλh(t)α(t)
= 1 ∀λ > 0. (4.3)

From (4.2), (4.3), and the dominated convergence theorem, one gets u(∞) =
y−Py. The first term on the right-hand side of (4.2) tends to zero as t →∞
(even if Pu0 6= 0), if h(∞) = ∞. To apply the dominated convergence theorem,
one checks that

λ
∫ t

0
e−(t−s)λh(s)ds

h(t)
=

λ
∫ t

0
e−sλh(t− s)ds

h(t)
≤ 1

for all t > 0 and all λ > 0, where the inequality 0 < h(t− s) ≤ h(t), valid for
s ≥ 0, was used. ¤

Our derivation uses less restrictive assumptions on α than in [2]: we do
not assume differentiability of α, and the property limt→∞ α−2α̇ = 0. The
property

∫∞
0

αdt = +∞, which is equivalent to h(∞) = ∞, was used above
only to prove that limt→∞ h−1(t)U(t)u0 = 0. If

∫∞
0

αdt := q < ∞, then
u(∞) = y−Py + e−qPu0, and Au(∞) = f, so that the basic conclusions hold
without the assumption h(∞) = ∞.

Finally, let us prove a typical for ill-posed problems result: the rate of con-
vergence u(t) → y can be as slow as one wishes, it is not uniform with respect
to f.

Let us assume α = 0, but the proof is essentially the same for 0 < α → 0
as t →∞. Assume that A > 0 is compact, and Aϕj = λjϕj , (ϕj , ϕm) = δjm.
Then (4.2) with y = ym := ϕm and u0 = 0 yields u(t) = ϕm(1− e−tλm). Thus
u(∞) = y, but for any fixed T > 0, however large, one can find m such that
‖u(T )− ym‖ > 0.5, that is, the convergence is not uniform with respect to f.

5. Remark about nonlinear equations

In this Section we give a short and simple proof of the basic result in [3],
and close a gap in the proof in [3], where it is not explained why one can apply
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the L’Hospital’s rule the second time. A completely different approach to a
study of operator equations with non-smooth monotone operators is given in
[13].

The assumptions in [3] are: the operator A is monotone (possibly nonlinear),
defined on all of H, hemicontinuous, problem (4.1) has a unique global solution,
equation A(y) = f has a solution, α(t) > 0 decays monotonically to zero,
limt→∞ α̇α−2 = 0, and α is convex.

We refer below to these assumptions as A3). If A3) hold, the basic result,
proved in [3], is the existence of u(∞) := y, and the relation A(y) = f. In [3],
p. 184, under the additional assumption, (namely, assumption (1.24) from
[3]), the global existence of the solution to (4.1) is proved. Actually, the
assumption about global existence of the solution to (4.1) can be dropped
altogether: in [5], p.99, it is proved that A3) (and even weaker assumptions)
imply that problem (4.1) has a unique global solution.

Let us give a proof of the basic result from [3]. It is well known that
A3) imply that the problem A(vα) + αvα − f = 0, for any fixed number
α > 0, has a unique solution, there exists limα→0 vα := y, A(y) = f, and
‖y‖ ≤ ‖z‖, for any z ∈ {z : A(z) = f}. Thus, for any small δ > 0, one
can find αδ such that ‖vα − y‖ < δ/2 for all α > αδ, limδ→0 αδ = 0. Let
w := u − vα, where u solves (4.1) and vα does not depend on t. Then ẇ =
−[A(u) − A(vα) + α(t)(u − vα) + (α(t) − α)vα]. Multiply this by w, use the
monotonicity of A, and let ‖w‖ := g. Then gġ ≤ −α(t)g2 + c|α(t) − α|g,
c = ‖y‖.

Multiply A(vα) + αvα −A(y) = 0 by vα − y and use monotonicity of A to
get α(vα, vα − y) ≤ 0. Thus ‖vα‖ ≤ ‖y‖, so c = ‖y‖.

Since α(t) is convex, one has |α(t) − α| ≤ |α̇(t)|(tα − t), where tα ≥ t is
defined by the equation α = α(tα), limα→0 tα = ∞. Thus, gġ ≤ −α(t)g2 +
c|α̇(t)|(tα − t)g, and, taking u(0) = vα, one gets

g(tα) ≤ ce−
∫ tα
0 α(x)dx

∫ tα

0

e
∫ s
0 α(x)dx|α̇(s)|(tα − s)ds. (5.1)

We claim (and prove below) that

lim
t→∞

α(t)e
∫ t
0 α(s)ds = ∞. (5.2)

This allows one to apply twice L’Hospital’s rule to the right-hand side of (5.1),
and to get:

lim
α→0

g(tα) = lim
tα→∞

α̇(tα)
α̇(tα) + α2(tα)

= 0.
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Now,

‖u(tα)− y‖ ≤ ‖u(tα)− vα‖+ ‖vα − y‖, ‖vα − y‖ ≤ δ/2,

and ‖u(tα) − vα‖ ≤ δ/2, for sufficiently large tα. Since δ > 0 is arbitrarily
small, it follows that limt→∞ ‖u(t)− y‖ = 0.

Let us prove claim (5.2). From our assumptions about α, it follows that
for all sufficiently large t, one has −α̇α−2 ≤ c, where 0 < c < 1, so α(t) ≥
(c1 + t)−1b, where b := c−1 > 1, c1 > 0 is a constant, and e

∫ t
0 α(s)ds ≥ (c1 + t)b.

Thus, (5.2) holds, and the basic result from [3] is obtained. ¤
If one assumes additionally that A is Fréchet differentiable, then the proof

is shorter. Namely, let h(t) := ‖A(u(t)) + α(t)u(t) − f‖ := ‖ψ‖. Then hḣ =
−((A′(u(t)) + α(t))ψ, ψ) ≤ −α(t)h2, because A′ ≥ 0 due to the monotonicity
of A. Thus h(t) ≤ φ(t), where φ(t) := h(0)e−

∫ t
0 αds. As we proved in Section

4, the assumptions on α(t) imply α(t) ≥ (c1t + c2)−1, where c1 and c2 are
positive constants, and c1 can be chosen so that 0 < c1 < 1, due to the
assumption limt→∞ α̇α−2 = 0. Therefore

∫∞
0

φ(t)dt < ∞. From (4.1) one
gets: ‖u̇‖ ≤ φ(t). Because

∫∞
0

φ(t)dt < ∞, it follows that u(∞) := y exists,
and ‖u(∞) − u(t)‖ ≤ ∫∞

t
φ(s)ds. Finally, A(y) = f because h(∞) = 0 =

‖A(y) − f‖. Any choice of α, for which
∫∞
0

φ(t)dt < ∞, is sufficient for the
above argument. ¤
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