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A NECESSARY AND SUFFICIENT CONDITION
FOR THE EXISTENCE OF POSITIVE
SOLUTIONS TO A CLASS OF SINGULAR
SECOND-ORDER BOUNDARY VALUE PROBLEMS

ZHAOCAI HAO AND JONG KyUu KiMm

ABSTRACT. We study the existence of positive solutions to a class of second
order singular boundary value problems by means of lower and upper solutions.
A necessary and sufficient condition for the existence of C[0,1] and C*[0,1]
positive solutions is obtained. Results of this paper extend and include some
results in [4-7].

1. INTRODUCTION

Boundary value problems concerning the generalized Emden-Fowler equa-
tions
2" (t) +a(t)z™t) =0, te(0,1), (1)

where a(t) € C(0,1), a(t) > 0 for t € (0,1), has been profusely studied
by many authors. Its origin lies in theories concerning gaseous dynamics
in astrophysics around the turn of the century [1]. See [5] for more recent
applications. When a(t) € C0,1], problem (1) is nonsingular. One can find
classical results about the existence of this case in [5]. When a(t) is not
continuous at the end points of (0,1) (including the case that a(t) is unbounded
on (0,1), or A < 0, problem (1) is singular. Also, much attention has been paid
to the existence of positive solutions, as can be seen in [2-7]. When A > 0, Wei
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[6] and Zhang [8] studied problem (1). When A < 0, Fink-Gatic-Hernadea-
waltman [2], Luning-Perry [3], Taliaferro [4], Wong [5], and wei [7] researched
problem (1). Results of these papers are significant.

However, by general analyzing, we can find that, in these papers, the ar-
gument relies on the fact that f(z) = 2* is monotones. It’s worth indicating
that the monotonicity condition is key for these papers. For example, the ex-
istence of positive solutions for the case A < 0 has been studied completely by
Taliaferro [4] with the shooting method. But when A > 0 or replace a(t)z*(t)
with a(t)zP(t) + b(t)x~9,p and ¢ > 0 in problem (1), the monotonicity on x
asked by the shooting method is not holds. This makes the method unless.

In this paper we study the singular boundary value problems
2" (t) + a(t)zP(t) + b(t)z=7 =0, te€(0,1), )
#(0) = 2(1) =0, 2

where ¢ > 0,0 <p < 1,a,b € C((0,1),[0,00)) and a(t), b(t) may be singular at
the end points of (0,1). A necessary and sufficient condition for the existence
of C[0,1] and C'[0,1] positive solutions of problem (2) is obtained by using
the method of lower and upper solutions. Main results of this paper extend
and include those of [4,6,7]. When a(t) and b(t) are continuous on [0, 1], main
results of this paper are new also.

2. PRELIMINARIES

We shall give some preliminary considerations and some lemmas. In our
discussion, by a positive solution of (2) we mean a function z(t) € C[0,1] N
C?(0,1) which satisfies boundary value problem (2) and z(t) > 0 holds for
t € (0,1). If in addition there is a solution z(t) € C'[0,1], i.e., both 2/(0T)
and 2/(17) exist, we call it a C'*[0, 1] solution.

For the sake of convenience, we list the hypothesis as follows, which is
assumed throughout the paper.

(H): a(t),b(t) € C((0,1),]0,00)), ¢>0, 0<p<]1.

The following lemma is important for this paper.

Lemma 1. [8]. If the following boundary value problem

2(t) + f(t,z) =0, te(0,1),
z(0) =7y, x2(1) = 7o,
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where f(t,x) € C((O 1) x I,R),r1,r2 € I, I C R, has lower and upper so-
lutions «a(t), B(t), i.e., a(t),B(t) € C[0,1] N C%(0,1), a(t) < B(t), t € [0,1],
a(0) = 5(0) = rl,a(l) = B(1) = rq, then it possesses at least one solution
x(t) € C[0,1] such that a(t) < z(t) < B(t) fort € [0,1].

3. MAIN RESULTS

Now we state the main results of this paper as follows.

Theorem 1. Suppose condition (H) and q < p hold. Then a necessary and
sufficient condition for problem (2) to have C|[0, 1] positive solutions is that

0< /0 " (a(t) + b(t))dt < oo. (3)

Proof. Necessity. Assume x € C[0,1] is a positive solution of problem (2).
Then from the boundary value condition there exists to € (0,1) such that
x'(tp) = 0. Then

/ [a(s)aP(s) + b(s)z™9(s)]ds = —/ 2" (s)ds = —2'(t), te(0,1). (4)

to tL)

Multiplying both sides of (4) by x?7P(¢) and then integrating on [tq, 1], we get

0 g/ xq_p(t)/ [a(s)zP(s) + b(s)x™(s)]dsdt :/ —z97P(t)2! (t)dt < oo.

to to to
(5)
From z'(t) < 0, we know 2/(t) < 0 for t € [tp,1). So z(t) is decreasing on
[to,1). Thus x~9(s) is increasing on [tg, t] for t € [tg, 1), zP~9(s) and zP(s) are
decreasing on [tg, t] for ¢ € [tp,1). This implies

/ 2= ($)[als) + b(s)|ds < / 2P=9(s)[a(s) + b(s)|ds, £ € [to, 1).

to to

Thus we have,

/ la(s) + b(s)]ds < 27°(#) / U8 [a(s) + b(s)|ds, € [to,1).  (6)

to to
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We have, from (4)-(6),

0< /t (1 —s)la(s) + b(s)]ds

_ /tl /t :[a(s) +b(s)]dsdt

< /t: /t: 7P (1) 2P~ (s)[a(s) + b(s)]dsdt

< /t: /t: x~P(t) iz((?) a(s)xP(s)dsdt + /t: /tot 2P (s)zT7P(t)b(s)x~(s)dsdt
- / () () + / P (0)a P (1) (8 < oo,

to to

Similarly, we can find that 7
0< /to sla(s) + b(s)]ds < ! o TP (tg) + 2t (ty) < oo, (8)
0 l-p L+q—p
From (7) and (8), we show that
1
/O la(t) + b()]dt < oo. ()

Moreover, if fol [a(t) + b(t)]dt = 0, then a(t) + b(t) = 0 holds on (0,1), i.e.,
a(t) = —b(t) holds on (0,1). Noting that a(t) > 0,b(t) > 0 for ¢ € (0,1), thus
a(t) = b(t) = 0 holds on (0,1), thus it is impossible for the problem (2) to
have nontrivial solution. Hence

0< /1[(a(t) +b(t)]dt < oo (10)

This ends the proof of necessity.
Sufficiency. Suppose that (3) holds. From Lemma 1 and Lemma 2 of [8]
we know that there exists g(¢) such that

g(t) € Cl0,1]NC*(0,1), g(t) >0, ¢"(t) <0, t€(0,1), 9(0)=g(1) =0,

/O {1 = B)g~ P ()[alt) + b(#)]dt < oo. (11)
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Furthermore, it is easy to verify that
ca(t)+cPb(t) <c a(t)+c(t), 0<c<1, te(0,1), (12)
Pa(t) +c(t) < Pa(t) + Pb(t), ¢>1, te(0,1). (13)
When g¢(t) < 1,t € (0,1), then from (11) and (12) we know that

1

/Ot<1—t>g—p<t>[a(t)gp<t>+b<t>g—q<t>1dtg /g(l—og—q—p(w[a<t>+b<t>]dt<oo.<14>

When g¢(t) > 1,t € (0,1), then from (3) and (13) we know that

/Ot(l—t)g_”(t)[a(t)gp(t)er(t)g_q(t)]dt </Ot(1—t)g_p(t)gp(t)[a(t)+b(t)]dt <00.(15)

From (14) and (15), we know that

/0 t(1=t)g P (t)[a()g”(t) + b(t)g 9 (t)]dt < oo, te€(0,1).  (16)
Let

Ri(t)=(1—- t)/oslﬂ’(l — s)Pla(s) + b(s)]ds + t/t sP(1 — 5)'*P[a(s) + b(s)]ds,

Ro(t) = g(t) + (1 - 1) / 5977(5)[a()g"(5) + b(s)g~(5))ds

wt (1= 9g(5)al9)g?(5) + bs)g ()]s,
Then obviously,
R; € C[0,1]1NC%(0,1), R;(0)=R;(1)=0, i=1,2,
Ry (t)=—tP(1 — t)P[a(t) + b(t)], te(0,1)

Ry (t)<—g P (t)[a(t)g? (t) + b(t)g~*(t)], t€(0,1).
If we let

= 1slﬂ’ — ) Pa(s s)lds
Ll—/o (1= 5)1*7[a(s) + b(s)]ds,
1

L= / s(1 = 8)g ™ ()la(s)g" (s) + b(s)g™"()}ds + max g(¢).
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Then
th(l — t) < Rl(t) < Ll,g(t) < RQ(t) <Ly, te [0, 1} (17)

Under such circumstance, we let
a(t) = MiRi(t), B(t)= Ma2Ra(t), te€]0,1],

where My, My are constants Wthh will be given in (21). We choose constants
C1,C5 such that C1L; < 1,5 > 1,05 > 1, then from (12) and (13) we get

<Cil>%a<t>cfap<t> (0O (a1 (1))
> CPHaP (1)]a(t) + b(t)] (18)

> MPLPCPTIP(1 — t)P[a(t) + b(t)], t € (0,1),

a(t)aP(t) + b(t)a ()

Y

a(t)BP(t) +b(t)54(t) < ( %)p [a(t)g"(t) + b(t)g~*(1)]

< o lag? o)+ be)g (o) (19)
< CYTIMELEG™P(t)[a(t)g? () + b(t)g~(t)],t € (0,1).
From (12) and (13) we know that there exists Ky > 0 such that
a(t)g?(t) +b(t)g~?(t) = Kog”(t)[a(t) +b(t)], t€(0,1).
Thus from the definition of Ry, Ro, for any K > KLO, we know that

Ri(t) < KRao(t), telo1]. (20)

Now, let
: pPtay i 1 o/ ax e
M, = min{1, (L7C7{" ")}, My = max{l, iy (L5CY™ ) 1=7 }. (21)

From (17),(18),(19),(20) and (21), we get
a’'(t) + a(t)al (t) + b(t)a (1)
> —Myt?(1 = t)P[a(t) + b(t)] + MYLYCT T4 (1 — t)[a(t) + (1)) (22)
= Mit?(1 = t)"[a(t) + b(&) (M LYCTT = 1) > 0, t € (0,1),

(1
Ja
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BI(t) + a(t)B7(t) + b(t)B~(2)

< —Mag™P(t)[a(t)g?(t) + b(t)g™(t)] (23)
+ MELECT g 7P (t)[alt)g”(t) + b(t)g ™" (t)]

= Mag ™" (t)[a(t)g” (1) +b(t)g~ ()] (MF~"LECT —1) <0, te (0,1).

From (22) and (23), we show that «(t), 3(t) are the lower and upper solutions
of problem (2), respectively. Furthermore, we know

0<alt)<Bt), te(0,1), al)=p3GE=0, i=0,1.

Then Lemma 1 tells us that problem (2) has a C[0, 1] positive solution x such
that 0 < a(t) < z(t) < B(t),t € (0,1). This completes the proof of Theorem
1. U

Theorem 2. Suppose condition (H) holds. Then a necessary and sufficient
condition for problem (2) to have C*|0,1] positive solutions is that

0< /1(15”(1 — tYPa(t) + t~9(1 — t)~9b(t))dt < co. (24)
0

Proof. Necessity. Assume z € C1[0,1] is a positive solution of problem (2).
Then both 2/(0) and 2/(1) exist. Since z(t) < 0,z(t) > 0,t € (0,1),2(0) =
z(1) = 0, we can find that z/(0) > 0 > 2/(1). Thus there exist constant
0 <m < M such that

mt(l —t) <z(t) < Mt(1—1t), te]l0,1]. (25)
From (24) and (25), noting that tP(1 — t)Pa(t) + t~9(1 — ¢)~%(t) > 0 and
tP(1 —t)Pa(t) +t~9(1 —t)~9(t) £ 0,t € (0,1), we get

1
0< / (tP(1 —t)Pa(t) +¢t79(1 —t)"b(t))dt
0

< [m”Pa(t)x(t) + M= (t)b(t)]dt

< max{m 7, M} / £ + b(t)z=1(2)]

= (2/(0) — 2'(1)) max{m P, M7} < .

This implies (24).
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Sufficiency. Suppose that (24) holds. Let
R(t)=(1—- t)/ sla(s)(s — s*)P + b(s)(s — %)~ ]ds
0
+t/t (1= )[a(s)(s — 82) + b(s)(s — 52)~ds.

It is easy to see that

R(t) € C[0,1] N C?(0,1), R"(t) = —[a(t)t*(1 — )P + b(t)t~%(1 —t)"9]. (26)

If we let
L= /1 {1 = D[a()P (1 — 1) + b1 — )~ dt,
0
1
I = / ()P (1 — 1) + b()t~9(1 — £)~7)dt.
0
Then
Lit(1—t) < R(t) < Lt(l1—t), telo,1]. (27)
Let
alt) = miR(t), B(E) = maR(t),
where

my = min{l,[f%”,IQqu"}, mo = max{l,lg%”,lf%q}.
Then from (27), we can find that for any ¢ € (0, 1),
" (t) + a(t)aP(t) + b(t)a™9(t)
> —my[a(t)tP(1 —t)P) + b(t)t~9(1 — ¢) " + mia(t)RP(t) + b(t)m; TR™I(t)
= —ma[a(t)tP(1 — t)? + b(t)t~9(1 — £) 9] + mPa(t)IPtP(1 — t)?
+my ()11 —t)7 9 (28)
= mya(t)tP(1 — )P (mE 1P — 1) + myb(H)t (1 — )" (m 9 ' I; 7 — 1) > 0,

B7(t) + a(t) 87 (t) + b(t)B7(t)
< —mala(t)tP (1 — )P + b(t)t~9(1 — )]

+ mba(t)INtP (1 — )P + my () I, 1t~ 4(1 —t) 79 (29)
= mga(t)tP(1 — )P (my 1D — 1) + mab(t)t~9(1 — ) "9 (my T 179 — 1) < 0.
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From (28) and (29) show that «(t), 5(t) are the lower and upper solutions of
problem (2) respectively, furthermore, we know that

0<alt)<B(t), te(0,1), ali)=p8(G)=0, i=0,1.

Thus from Lemma 1 we may draw a conclusion that problem (2) have a C[0, 1]
positive solution x, such that

0 < a(t) <z (t) <B(), te(0,1). (30)

Let’s prove that the positive solution z, is C*[0, 1] solution. From (27) and
(30), we know

0 < a(t)zh(t) + b(t)x (1)
< a(t)B(t) + b(t)a™"(t)
< a(®)tP(1 —t)PmbIy + ()t~ (1 —t)"Im 11,1
< max{my I} 1, mbI5 Ha(t)tP (1 — )P + b(t)t "4 (1 —t)79] < o0, te€(0,1).

The above inequality and (24) imply that z//(¢) is absolutely integrable over
(0,1). So both 2.(0%) and 2’,(17) are exist, i.e., 2’ (t) € C'[0,1]. This com-
pletes the proof. O

Remark (1). Theorem 1 of [6] is the special case for b(t) = 0,t € (0,1) of
Theorem 1 of this paper.

(2). Main results of [4] and Theorem (A) of [6] are the special cases for
b(t) =0, t € (0,1) of Theorem 2 of this paper.

(3). If we let a(t) =0, t € (0,1), then from Theorem 1 and Theorem 2 of this
paper we can obtain Theorem 1(IV) and Theorem 2(C) of [7].

(4). If both a(t) # 0 and b(¢) # 0 hold, then main results in this paper is not
easy to obtain for other papers.

(5). Even if we let b(t) = 0,¢ € (0,1), a(t) is continuous on [0, 1], main results
of this paper are new also.
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