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ISOMORPHISMS BETWEEN BANACH ALGEBRAS

Chun-Gil Park

Abstract. It is shown that a bijective approximate isomorphism f : B →
C of a unital Banach algebra B to a unital Banach algebra C is an algebra
isomorphism. Moreover, we prove that a bijective approximate ∗-isomorphism
f : B → C of a unital C∗-algebra B to a unital C∗-algebra C is an algebra
∗-isomorphism, and that a bijective approximate ∗-isomorphism f : B → C of
a unital JB∗-algebra B to a unital JB∗-algebra C is an algebra ∗-isomorphism.

1. Introduction

Our knowledge concerning the continuity properties of epimorphisms on
Banach algebras, Jordan-Banach algebras, and, more generally, nonassociative
complete normed algebras, is now fairly complete and satisfactory (see [7] and
[8]). A basic continuity problem consists in determining algebraic conditions
on a Banach algebra A which ensure that derivations on A are continuous.
In 1996, Villena [8] proved that derivations on semisimple Jordan-Banach
algebras are continuous.

Let E1 and E2 be Banach spaces with norms ‖ · ‖ and ‖ · ‖, respectively.
Consider f : E1 → E2 to be a mapping such that f(tx) is continuous in t ∈ R
for each fixed x ∈ E1. Assume that there exist constants θ ≥ 0 and p ∈ [0, 1)
such that

‖f(x + y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p)

for all x, y ∈ E1. Rassias [6] showed that there exists a unique R-linear map-
ping T : E1 → E2 such that

‖f(x)− T (x)‖ ≤ 2θ

2− 2p
‖x‖p
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for all x ∈ E1. Găvruta [2] generalized the Rassias’ result, and Park [5] applied
the Găvruta’s result to linear functional equations in Banach modules over a
C∗-algebra.

Throughout this paper, let B be a unital Banach algebra with unit e and
norm ‖ · ‖, and C a unital Banach algebra with unit e′ and norm ‖ · ‖.

In this paper, we prove that a bijective approximate isomorphism f : B → C
of a unital Banach algebra B to a unital Banach algebra C is an algebra
isomorphism. This result is applied to unital C∗-algebras and unital JB∗-
algebras.

2. Stability of isomorphisms between unital Banach algebras

We are going to show the generalized Hyers-Ulam-Rassias stability of iso-
morphisms between unital Banach algebras.

Theorem 1. Let f : B → C be a bijective mapping satisfying f(xy) =
f(x)f(y) and f(0) = 0 for which there exists a function ϕ : B × B → [0,∞)
such that

∞∑

j=0

2−jϕ(2jx, 2jy) < ∞,(i)

‖Dµf(x, y)‖ :=‖f(µx + µy)− µf(x)− µf(y)‖ ≤ ϕ(x, y)(ii)

for all µ ∈ T1 := {λ ∈ C | |λ| = 1} and all x, y ∈ B. Assume that (iii)
limn→∞

f(2ne)
2n is invertible. Then the bijective mapping f : B → C is an

algebra isomorphism.

Proof. Put µ = 1 ∈ T1. Replacing y by x in (ii), we get

‖f(2x)− 2f(x)‖ ≤ ϕ(x, x)

for all x ∈ B. So one can obtain that

‖f(x)− 1
2
f(2x)‖ ≤ 1

2
ϕ(x, x),

and hence

‖ 1
2n

f(2nx)− 1
2n+1

f(2n+1x)‖ ≤ 1
2n+1

ϕ(2nx, 2nx)

for all x ∈ B. So we get

‖f(x)− 1
2n

f(2nx)‖ ≤ 1
2

n−1∑

l=0

1
2l

ϕ(2lx, 2lx) (1)
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for all x ∈ B.
Let x be an element in B. For positive integers n and m with n > m,

‖ 1
2n

f(2nx)− 1
2m

f(2mx)‖ ≤ 1
2

n−1∑

l=m

1
2l

ϕ(2lx, 2lx),

which tends to zero as m → ∞ by (i). So { 1
2n f(2nx)} is a Cauchy sequence

for all x ∈ B. Since C is complete, the sequence { 1
2n f(2nx)} converges for all

x ∈ B. We can define a mapping Θ : B → C by

Θ(x) = lim
n→∞

1
2n

f(2nx) (2)

for all x ∈ B.
By (i) and (2), we get

‖D1Θ(x, y)‖ = lim
n→∞

1
2n
‖D1f(2nx, 2ny)‖ ≤ lim

n→∞
1
2n

ϕ(2nx, 2ny) = 0

for all x, y ∈ B. Hence D1Θ(x, y) = 0 for all x, y ∈ B. So one obtains that Θ
is additive. Moreover, by passing to the limit in (1) as n → ∞, we get the
inequality

(iv) ‖f(x)−Θ(x)‖ ≤ 1
2

∞∑

j=0

2−jϕ(2jx, 2jx)

for all x ∈ B.
By the assumption, for each µ ∈ T1,

‖f(2nµx)− 2µf(2n−1x)‖ ≤ ϕ(2n−1x, 2n−1x)

for all x ∈ B. And one can show that

‖µf(2nx)− 2µf(2n−1x)‖ ≤ |µ| · ‖f(2nx)− 2f(2n−1x)‖ ≤ ϕ(2n−1x, 2n−1x)

for all µ ∈ T1 and all x ∈ B. So

‖f(2nµx)− µf(2nx)‖ ≤‖f(2nµx)− 2µf(2n−1x)‖+ ‖2µf(2n−1x)− µf(2nx)‖
≤ϕ(2n−1x, 2n−1x) + ϕ(2n−1x, 2n−1x)
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for all µ ∈ T1 and all x ∈ B. Thus 2−n‖f(2nµx) − µf(2nx)‖ → 0 as n → ∞
for all µ ∈ T1 and all x ∈ B. Hence

Θ(µx) = lim
n→∞

f(2nµx)
2n

= lim
n→∞

µf(2nx)
2n

= µΘ(x)

for all µ ∈ T1 and all x ∈ B.
Now let λ ∈ C (λ 6= 0) and M an integer greater than 4|λ|. Then | λ

M | <
1
4 < 1− 2

3 = 1
3 . By [3, Theorem 1], there exist three elements µ1, µ2, µ3 ∈ T1

such that 3 λ
M = µ1 + µ2 + µ3. And Θ(x) = Θ(3 · 1

3x) = 3Θ( 1
3x) for all x ∈ B.

So Θ( 1
3x) = 1

3Θ(x) for all x ∈ B. Thus

Θ(λx) = Θ(
M

3
· 3 λ

M
x) = M ·Θ(

1
3
· 3 λ

M
x) =

M

3
Θ(3

λ

M
x)

=
M

3
Θ(µ1x + µ2x + µ3x) =

M

3
(Θ(µ1x) + Θ(µ2x) + Θ(µ3x))

=
M

3
(µ1 + µ2 + µ3)Θ(x) =

M

3
· 3 λ

M
Θ(x)

= λΘ(x)

for all x ∈ B. Hence

Θ(ζx + ηy) = Θ(ζx) + Θ(ηy) = ζΘ(x) + ηΘ(y)

for all ζ, η ∈ C(ζ, η 6= 0) and all x, y ∈ B. And Θ(0x) = 0 = 0Θ(x) for all
x ∈ B. So the additive mapping Θ : B → C is a C-linear mapping.

Since f(xy) = f(x)f(y) for all x, y ∈ B,

Θ(xy) = lim
n→∞

1
2n

f(2nxy) = lim
n→∞

1
2n

f(2nx)f(y) = Θ(x)f(y) (3)

for all x, y ∈ B. By the additivity of Θ and (3),

2nΘ(xy) = Θ(2nxy) = Θ(x(2ny)) = Θ(x)f(2ny)

for all x ∈ B. Hence

Θ(xy) =
1
2n

Θ(x)f(2ny) = Θ(x)
1
2n

f(2ny) (4)

for all x, y ∈ B. Taking the limit in (4) as n →∞, we obtain

Θ(xy) = Θ(x)Θ(y)
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for all x, y ∈ B. So the additive mapping Θ : B → C is an algebra homomor-
phism. By (3),

Θ(e)Θ(x) = Θ(ex) = Θ(e)f(x)

for all x ∈ B. Since limn→∞
f(2ne)

2n = Θ(e) is invertible,

Θ(x) = f(x)

for all x ∈ B. Since the mapping f : B → C is bijective, the additive mapping
Θ : B → C is bijective. So the bijective mapping f = Θ : B → C is an algebra
isomorphism, as desired. ¤

Corollary 2. Let f : B → C be a bijective mapping satisfying f(xy) =
f(x)f(y) and f(0) = 0 for which there exist constants θ ≥ 0 and p ∈ [0, 1)
such that

‖f(µx + µy)− µf(x)− µf(y)‖ ≤ θ(‖x‖p + ‖y‖p)

for all µ ∈ T1 and all x, y ∈ B. Assume that limn→∞
f(2ne)

2n is invertible. Then
the bijective mapping f : B → C is an algebra isomorphism.

Proof. Define ϕ(x, y) = θ(‖x‖p + ‖y‖p), and apply Theorem 1. ¤

Theorem 3. Let f : B → C be a bijective mapping satisfying f(xy) =
f(x)f(y) and f(0) = 0 for which there exists a function ϕ : B × B → [0,∞)
satisfying (i) and (iii) such that

(v) ‖f(µx + µy)− µf(x)− µf(y)‖ ≤ ϕ(x, y)

for µ = 1, i, and all x, y ∈ B. If f(tx) is continuous in t ∈ R for each fixed
x ∈ B, then the bijective mapping f : B → C is an algebra isomorphism.

Proof. Put µ = 1 in (v). By the same reasoning as the proof of Theorem 1,
there exists an additive mapping Θ : B → C satisfying the inequality (iv).
By the same reasoning as the proof of [6, Theorem], the additive mapping
Θ : B → C is R-linear.

Put µ = i in (v). By the same method as the proof of Theorem 1, one can
obtain that

Θ(ix) = lim
n→∞

f(2nix)
2n

= lim
n→∞

if(2nx)
2n

= iΘ(x)

for all x ∈ B.
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For each element λ ∈ C, λ = s + it, where s, t ∈ R. So

Θ(λx) = Θ(sx + itx) = sΘ(x) + tΘ(ix) = sΘ(x) + itΘ(x)

= λΘ(x)

for all λ ∈ C and all x ∈ B. So

Θ(ζx + ηy) = Θ(ζx) + Θ(ηy) = ζΘ(x) + ηΘ(y)

for all ζ, η ∈ C, and all x, y ∈ B. Hence the additive mapping Θ : B → C is
C-linear.

The rest of the proof is the same as the proof of Theorem 1. ¤

3. Stability of ∗-isomorphisms between unital C∗-algebras

In this section, let B be a unital C∗-algebra with unitary group U(B), and
C a unital C∗-algebra.

We are going to show the generalized Hyers-Ulam-Rassias stability of ∗-
isomorphisms between unital C∗-algebras.

Theorem 4. Let f : B → C be a bijective mapping satisfying f(xy) =
f(x)f(y) and f(0) = 0 for which there exists a function ϕ : B × B → [0,∞)
satisfying (i), (ii), and (iii) such that

(vi) ‖f(2nu∗)− f(2nu)∗‖ ≤ ϕ(2nu, 2nu),

for all u ∈ U(B) and all n = 0, 1, · · · . Then the bijective mapping f : B → C
is an algebra ∗-isomorphism.

Proof. By the same reasoning as the proof of Theorem 1, there exists a C-
linear mapping Θ : B → C satisfying the inequality (iv), and the bijective
mapping f : B → C is an algebra isomorphism with f = Θ. The C-linear
mapping Θ : B → C is given by

Θ(x) = lim
n→∞

f(2nx)
2n

for all x ∈ B.
By (2) and (vi), we get

Θ(u∗) = lim
n→∞

f(2nu∗)
2n

= lim
n→∞

f(2nu)∗

2n
= ( lim

n→∞
f(2nu)

2n
)∗

= Θ(u)∗



Isomorphisms between Banach algebras 321

for all u ∈ U(B). Since Θ is C-linear and each x ∈ B is a finite linear combina-
tion of unitary elements (see [4, Theorem 4.1.7]), i.e., x =

∑m
j=1 λjuj , λj ∈

C, uj ∈ U(B),

Θ(x∗) = Θ(
m∑

j=1

λju
∗
j ) =

m∑

j=1

λjΘ(u∗j ) =
m∑

j=1

λjΘ(uj)∗ = (
m∑

j=1

λjΘ(uj))∗

= Θ(
m∑

j=1

λjuj)∗ = Θ(x)∗

for all x ∈ B. Hence the algebra isomorphism Θ : B → C is a ∗-mapping. So
the bijective mapping f : B → C is an algebra ∗-isomorphism, as desired. ¤
Corollary 5. Let f : B → C be a bijective mapping satisfying f(xy) =
f(x)f(y) and f(0) = 0 for which there exist constants θ ≥ 0 and p ∈ [0, 1)
such that

‖f(µx + µy)− µf(x)− µf(y)‖ ≤ θ(‖x‖p + ‖y‖p),

‖f(2nu∗)− f(2nu)∗‖ ≤ 2 · 2npθ

for all µ ∈ T1, all u ∈ U(B), all n = 0, 1, · · · , and all x, y ∈ B. Assume
that limn→∞

f(2ne)
2n is invertible. Then the bijective mapping f : B → C is an

algebra ∗-isomorphism.

Proof. Define ϕ(x, y) = θ(‖x‖p + ‖y‖p), and apply Theorem 4. ¤
Theorem 6. Let f : B → C be a bijective mapping satisfying f(xy) =
f(x)f(y) and f(0) = 0 for which there exists a function ϕ : B × B → [0,∞)
satisfying (i), (iii), (v), and (vi). If f(tx) is continuous in t ∈ R for each fixed
x ∈ B, then the bijective mapping f : B → C is an algebra ∗-isomorphism.

Proof. By the same reasoning as the proof of Theorem 1, there exists a C-
linear mapping Θ : B → C satisfying the inequality (iv), and the bijective
mapping f : B → C is an algebra isomorphism with f = Θ.

By the same method as the proof of Theorem 4, we obtain that the bijective
mapping f : B → C is an algebra ∗-isomorphism, as desired. ¤

4. Stability of ∗-isomorphisms between unital JB∗-algebras

The original motivation to introduce the class of nonassociative algebras
known as Jordan algebras came from quantum mechanics (see [7]). Let H be a
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complex Hilbert space, regarded as the “state space” of a quantum mechanical
system. Let L(H) be the real vector space of all bounded self-adjoint linear
operators on H, interpreted as the (bounded) observables of the system. In
1932, Jordan observed that L(H) is a (nonassociative) algebra via the anti-
commutator product x ◦ y := xy+yx

2 . A commutative algebra X with product
x ◦ y is called a Jordan algebra if x2 ◦ (x ◦ y) = x ◦ (x2 ◦ y) holds.

A complex Jordan algebra B with product x ◦ y, unit element e and in-
volution x 7→ x∗ is called a JB∗-algebra if B carries a Banach space norm
‖ · ‖ satisfying ‖x ◦ y‖ ≤ ‖x‖ · ‖y‖ and ‖{xx∗x}‖ = ‖x‖3. Here {xy∗z} :=
x ◦ (y∗ ◦ z) − y∗ ◦ (z ◦ x) + z ◦ (x ◦ y∗) denotes the Jordan triple product of
x, y, z ∈ B. Throughout this section, let B and C be unital JB∗-algebras.

We are going to show the generalized Hyers-Ulam-Rassias stability of ∗-
isomorphisms between unital JB∗-algebras.

Theorem 7. Let f : B → C be a bijective mapping satisfying f(x ◦ y) =
f(x) ◦ f(y) and f(0) = 0 for which there exists a function ϕ : B ×B → [0,∞)
satisfying (i) and (ii) such that

(vii) ‖f(x∗)− f(x)∗‖ ≤ ϕ(x, x)

for all x ∈ B. Assume that (viii) limn→∞
f(2ne)

2n = e′. Then the bijective
mapping f : B → C is an algebra ∗-isomorphism.

Proof. By the same reasoning as the proof of Theorem 1, there exists a C-
linear mapping Θ : B → C satisfying the inequality (iv), and the bijective
mapping f : B → C is an algebra isomorphism with f = Θ. The C-linear
mapping Θ : B → C is given by

Θ(x) = lim
n→∞

f(2nx)
2n

for all x ∈ B.
It follows from (2) and (vii) that

Θ(x∗) = lim
n→∞

f(2nx∗)
2n

= lim
n→∞

f(2nx)∗

2n
= ( lim

n→∞
f(2nx)

2n
)∗

= Θ(x)∗

for all x ∈ B. Hence the algebra isomorphism Θ : B → C is a ∗-mapping. So
the bijective mapping f : B → C is an algebra ∗-isomorphism, as desired. ¤
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Corollary 8. Let f : B → C be a bijective mapping satisfying f(x ◦ y) =
f(x) ◦ f(y) and f(0) = 0 for which there exist constants θ ≥ 0 and p ∈ [0, 1)
such that

‖f(µx + µy)− µf(x)− µf(y)‖ ≤ θ(‖x‖p + ‖y‖p),

‖f(x∗)− f(x)∗‖ ≤ 2θ‖x‖p

for all µ ∈ T1 and all x, y ∈ B. Assume that

lim
n→∞

f(2ne)
2n

= e′.

Then the bijective mapping f : B → C is an algebra ∗-isomorphism.

Proof. Define ϕ(x, y) = θ(‖x‖p + ‖y‖p), and apply Theorem 7. ¤

Theorem 9. Let f : B → C be a bijective mapping satisfying f(x ◦ y) =
f(x) ◦ f(y) and f(0) = 0 for which there exists a function ϕ : B ×B → [0,∞)
satisfying (i), (v), (vii), and (viii). If f(tx) is continuous in t ∈ R for each
fixed x ∈ B, then the bijective mapping f : B → C is an algebra ∗-isomorphism.

Proof. By the same reasoning as the proof of Theorem 1, there exists a C-
linear mapping Θ : B → C satisfying the inequality (iv), and the bijective
mapping f : B → C is an algebra isomorphism with f = Θ.

By the same method as the proof of Theorem 7, we obtain that the bijective
mapping f : B → C is an algebra ∗-isomorphism, as desired. ¤
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