ISOMORPHISMS BETWEEN BANACH ALGEBRAS

Chun-Gil Park

Abstract. It is shown that a bijective approximate isomorphism $f: \mathcal{B} \rightarrow$ \mathcal{C} of a unital Banach algebra \mathcal{B} to a unital Banach algebra \mathcal{C} is an algebra isomorphism. Moreover, we prove that a bijective approximate $*$-isomorphism $f: \mathcal{B} \rightarrow \mathcal{C}$ of a unital C^{*}-algebra \mathcal{B} to a unital C^{*}-algebra \mathcal{C} is an algebra $*$-isomorphism, and that a bijective approximate $*$-isomorphism $f: \mathcal{B} \rightarrow \mathcal{C}$ of a unital $J B^{*}$-algebra \mathcal{B} to a unital $J B^{*}$-algebra \mathcal{C} is an algebra $*$-isomorphism.

1. Introduction

Our knowledge concerning the continuity properties of epimorphisms on Banach algebras, Jordan-Banach algebras, and, more generally, nonassociative complete normed algebras, is now fairly complete and satisfactory (see [7] and [8]). A basic continuity problem consists in determining algebraic conditions on a Banach algebra A which ensure that derivations on A are continuous. In 1996, Villena [8] proved that derivations on semisimple Jordan-Banach algebras are continuous.

Let E_{1} and E_{2} be Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. Consider $f: E_{1} \rightarrow E_{2}$ to be a mapping such that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in E_{1}$. Assume that there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in E_{1}$. Rassias [6] showed that there exists a unique \mathbb{R}-linear mapping $T: E_{1} \rightarrow E_{2}$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}
$$

[^0]for all $x \in E_{1}$. Găvruta [2] generalized the Rassias' result, and Park [5] applied the Găvruta's result to linear functional equations in Banach modules over a C^{*}-algebra.

Throughout this paper, let \mathcal{B} be a unital Banach algebra with unit e and norm $\|\cdot\|$, and \mathcal{C} a unital Banach algebra with unit e^{\prime} and norm $\|\cdot\|$.

In this paper, we prove that a bijective approximate isomorphism $f: \mathcal{B} \rightarrow \mathcal{C}$ of a unital Banach algebra \mathcal{B} to a unital Banach algebra \mathcal{C} is an algebra isomorphism. This result is applied to unital C^{*}-algebras and unital $J B^{*}$ algebras.

2. Stability of isomorphisms between unital Banach algebras

We are going to show the generalized Hyers-Ulam-Rassias stability of isomorphisms between unital Banach algebras.

Theorem 1. Let $f: \mathcal{B} \rightarrow \mathcal{C}$ be a bijective mapping satisfying $f(x y)=$ $f(x) f(y)$ and $f(0)=0$ for which there exists a function $\varphi: \mathcal{B} \times \mathcal{B} \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\sum_{j=0}^{\infty} 2^{-j} \varphi\left(2^{j} x, 2^{j} y\right)<\infty \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left\|D_{\mu} f(x, y)\right\|:=\|f(\mu x+\mu y)-\mu f(x)-\mu f(y)\| \leq \varphi(x, y) \tag{ii}
\end{equation*}
$$

for all $\mu \in \mathbb{T}^{1}:=\{\lambda \in \mathbb{C}|\quad| \lambda \mid=1\}$ and all $x, y \in \mathcal{B}$. Assume that (iii) $\lim _{n \rightarrow \infty} \frac{f\left(2^{n} e\right)}{2^{n}}$ is invertible. Then the bijective mapping $f: \mathcal{B} \rightarrow \mathcal{C}$ is an algebra isomorphism.
Proof. Put $\mu=1 \in \mathbb{T}^{1}$. Replacing y by x in (ii), we get

$$
\|f(2 x)-2 f(x)\| \leq \varphi(x, x)
$$

for all $x \in \mathcal{B}$. So one can obtain that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leq \frac{1}{2} \varphi(x, x),
$$

and hence

$$
\left\|\frac{1}{2^{n}} f\left(2^{n} x\right)-\frac{1}{2^{n+1}} f\left(2^{n+1} x\right)\right\| \leq \frac{1}{2^{n+1}} \varphi\left(2^{n} x, 2^{n} x\right)
$$

for all $x \in \mathcal{B}$. So we get

$$
\begin{equation*}
\left\|f(x)-\frac{1}{2^{n}} f\left(2^{n} x\right)\right\| \leq \frac{1}{2} \sum_{l=0}^{n-1} \frac{1}{2^{l}} \varphi\left(2^{l} x, 2^{l} x\right) \tag{1}
\end{equation*}
$$

for all $x \in \mathcal{B}$.
Let x be an element in \mathcal{B}. For positive integers n and m with $n>m$,

$$
\left\|\frac{1}{2^{n}} f\left(2^{n} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\| \leq \frac{1}{2} \sum_{l=m}^{n-1} \frac{1}{2^{l}} \varphi\left(2^{l} x, 2^{l} x\right)
$$

which tends to zero as $m \rightarrow \infty$ by (i). So $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in \mathcal{B}$. Since \mathcal{C} is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges for all $x \in \mathcal{B}$. We can define a mapping $\Theta: \mathcal{B} \rightarrow \mathcal{C}$ by

$$
\begin{equation*}
\Theta(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right) \tag{2}
\end{equation*}
$$

for all $x \in \mathcal{B}$.
By (i) and (2), we get

$$
\left\|D_{1} \Theta(x, y)\right\|=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|D_{1} f\left(2^{n} x, 2^{n} y\right)\right\| \leq \lim _{n \rightarrow \infty} \frac{1}{2^{n}} \varphi\left(2^{n} x, 2^{n} y\right)=0
$$

for all $x, y \in \mathcal{B}$. Hence $D_{1} \Theta(x, y)=0$ for all $x, y \in \mathcal{B}$. So one obtains that Θ is additive. Moreover, by passing to the limit in (1) as $n \rightarrow \infty$, we get the inequality
(iv)

$$
\|f(x)-\Theta(x)\| \leq \frac{1}{2} \sum_{j=0}^{\infty} 2^{-j} \varphi\left(2^{j} x, 2^{j} x\right)
$$

for all $x \in \mathcal{B}$.
By the assumption, for each $\mu \in \mathbb{T}^{1}$,

$$
\left\|f\left(2^{n} \mu x\right)-2 \mu f\left(2^{n-1} x\right)\right\| \leq \varphi\left(2^{n-1} x, 2^{n-1} x\right)
$$

for all $x \in \mathcal{B}$. And one can show that

$$
\left\|\mu f\left(2^{n} x\right)-2 \mu f\left(2^{n-1} x\right)\right\| \leq|\mu| \cdot\left\|f\left(2^{n} x\right)-2 f\left(2^{n-1} x\right)\right\| \leq \varphi\left(2^{n-1} x, 2^{n-1} x\right)
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in \mathcal{B}$. So

$$
\begin{aligned}
\left\|f\left(2^{n} \mu x\right)-\mu f\left(2^{n} x\right)\right\| & \leq\left\|f\left(2^{n} \mu x\right)-2 \mu f\left(2^{n-1} x\right)\right\|+\left\|2 \mu f\left(2^{n-1} x\right)-\mu f\left(2^{n} x\right)\right\| \\
& \leq \varphi\left(2^{n-1} x, 2^{n-1} x\right)+\varphi\left(2^{n-1} x, 2^{n-1} x\right)
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in \mathcal{B}$. Thus $2^{-n}\left\|f\left(2^{n} \mu x\right)-\mu f\left(2^{n} x\right)\right\| \rightarrow 0$ as $n \rightarrow \infty$ for all $\mu \in \mathbb{T}^{1}$ and all $x \in \mathcal{B}$. Hence

$$
\Theta(\mu x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} \mu x\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{\mu f\left(2^{n} x\right)}{2^{n}}=\mu \Theta(x)
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in \mathcal{B}$.
Now let $\lambda \in \mathbb{C}(\lambda \neq 0)$ and M an integer greater than $4|\lambda|$. Then $\left|\frac{\lambda}{M}\right|<$ $\frac{1}{4}<1-\frac{2}{3}=\frac{1}{3}$. By [3, Theorem 1], there exist three elements $\mu_{1}, \mu_{2}, \mu_{3} \in \mathbb{T}^{1}$ such that $3 \frac{\lambda}{M}=\mu_{1}+\mu_{2}+\mu_{3}$. And $\Theta(x)=\Theta\left(3 \cdot \frac{1}{3} x\right)=3 \Theta\left(\frac{1}{3} x\right)$ for all $x \in \mathcal{B}$. So $\Theta\left(\frac{1}{3} x\right)=\frac{1}{3} \Theta(x)$ for all $x \in \mathcal{B}$. Thus

$$
\begin{aligned}
\Theta(\lambda x) & =\Theta\left(\frac{M}{3} \cdot 3 \frac{\lambda}{M} x\right)=M \cdot \Theta\left(\frac{1}{3} \cdot 3 \frac{\lambda}{M} x\right)=\frac{M}{3} \Theta\left(3 \frac{\lambda}{M} x\right) \\
& =\frac{M}{3} \Theta\left(\mu_{1} x+\mu_{2} x+\mu_{3} x\right)=\frac{M}{3}\left(\Theta\left(\mu_{1} x\right)+\Theta\left(\mu_{2} x\right)+\Theta\left(\mu_{3} x\right)\right) \\
& =\frac{M}{3}\left(\mu_{1}+\mu_{2}+\mu_{3}\right) \Theta(x)=\frac{M}{3} \cdot 3 \frac{\lambda}{M} \Theta(x) \\
& =\lambda \Theta(x)
\end{aligned}
$$

for all $x \in \mathcal{B}$. Hence

$$
\Theta(\zeta x+\eta y)=\Theta(\zeta x)+\Theta(\eta y)=\zeta \Theta(x)+\eta \Theta(y)
$$

for all $\zeta, \eta \in \mathbb{C}(\zeta, \eta \neq 0)$ and all $x, y \in \mathcal{B}$. And $\Theta(0 x)=0=0 \Theta(x)$ for all $x \in \mathcal{B}$. So the additive mapping $\Theta: \mathcal{B} \rightarrow \mathcal{C}$ is a \mathbb{C}-linear mapping.

Since $f(x y)=f(x) f(y)$ for all $x, y \in \mathcal{B}$,

$$
\begin{equation*}
\Theta(x y)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x y\right)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right) f(y)=\Theta(x) f(y) \tag{3}
\end{equation*}
$$

for all $x, y \in \mathcal{B}$. By the additivity of Θ and (3),

$$
2^{n} \Theta(x y)=\Theta\left(2^{n} x y\right)=\Theta\left(x\left(2^{n} y\right)\right)=\Theta(x) f\left(2^{n} y\right)
$$

for all $x \in \mathcal{B}$. Hence

$$
\begin{equation*}
\Theta(x y)=\frac{1}{2^{n}} \Theta(x) f\left(2^{n} y\right)=\Theta(x) \frac{1}{2^{n}} f\left(2^{n} y\right) \tag{4}
\end{equation*}
$$

for all $x, y \in \mathcal{B}$. Taking the limit in (4) as $n \rightarrow \infty$, we obtain

$$
\Theta(x y)=\Theta(x) \Theta(y)
$$

for all $x, y \in \mathcal{B}$. So the additive mapping $\Theta: \mathcal{B} \rightarrow \mathcal{C}$ is an algebra homomorphism. By (3),

$$
\Theta(e) \Theta(x)=\Theta(e x)=\Theta(e) f(x)
$$

for all $x \in \mathcal{B}$. Since $\lim _{n \rightarrow \infty} \frac{f\left(2^{n} e\right)}{2^{n}}=\Theta(e)$ is invertible,

$$
\Theta(x)=f(x)
$$

for all $x \in \mathcal{B}$. Since the mapping $f: \mathcal{B} \rightarrow \mathcal{C}$ is bijective, the additive mapping $\Theta: \mathcal{B} \rightarrow \mathcal{C}$ is bijective. So the bijective mapping $f=\Theta: \mathcal{B} \rightarrow \mathcal{C}$ is an algebra isomorphism, as desired.

Corollary 2. Let $f: \mathcal{B} \rightarrow \mathcal{C}$ be a bijective mapping satisfying $f(x y)=$ $f(x) f(y)$ and $f(0)=0$ for which there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\|f(\mu x+\mu y)-\mu f(x)-\mu f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y \in \mathcal{B}$. Assume that $\lim _{n \rightarrow \infty} \frac{f\left(2^{n} e\right)}{2^{n}}$ is invertible. Then the bijective mapping $f: \mathcal{B} \rightarrow \mathcal{C}$ is an algebra isomorphism.

Proof. Define $\varphi(x, y)=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$, and apply Theorem 1.
Theorem 3. Let $f: \mathcal{B} \rightarrow \mathcal{C}$ be a bijective mapping satisfying $f(x y)=$ $f(x) f(y)$ and $f(0)=0$ for which there exists a function $\varphi: \mathcal{B} \times \mathcal{B} \rightarrow[0, \infty)$ satisfying (i) and (iii) such that

$$
\begin{equation*}
\|f(\mu x+\mu y)-\mu f(x)-\mu f(y)\| \leq \varphi(x, y) \tag{v}
\end{equation*}
$$

for $\mu=1, i$, and all $x, y \in \mathcal{B}$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{B}$, then the bijective mapping $f: \mathcal{B} \rightarrow \mathcal{C}$ is an algebra isomorphism.

Proof. Put $\mu=1$ in (v). By the same reasoning as the proof of Theorem 1, there exists an additive mapping $\Theta: \mathcal{B} \rightarrow \mathcal{C}$ satisfying the inequality (iv). By the same reasoning as the proof of [6, Theorem], the additive mapping $\Theta: \mathcal{B} \rightarrow \mathcal{C}$ is \mathbb{R}-linear.

Put $\mu=i$ in (v). By the same method as the proof of Theorem 1, one can obtain that

$$
\Theta(i x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} i x\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{i f\left(2^{n} x\right)}{2^{n}}=i \Theta(x)
$$

for all $x \in \mathcal{B}$.

For each element $\lambda \in \mathbb{C}, \lambda=s+i t$, where $s, t \in \mathbb{R}$. So

$$
\begin{aligned}
\Theta(\lambda x) & =\Theta(s x+i t x)=s \Theta(x)+t \Theta(i x)=s \Theta(x)+i t \Theta(x) \\
& =\lambda \Theta(x)
\end{aligned}
$$

for all $\lambda \in \mathbb{C}$ and all $x \in \mathcal{B}$. So

$$
\Theta(\zeta x+\eta y)=\Theta(\zeta x)+\Theta(\eta y)=\zeta \Theta(x)+\eta \Theta(y)
$$

for all $\zeta, \eta \in \mathbb{C}$, and all $x, y \in \mathcal{B}$. Hence the additive mapping $\Theta: \mathcal{B} \rightarrow \mathcal{C}$ is \mathbb{C}-linear.

The rest of the proof is the same as the proof of Theorem 1.

3. Stability of $*$-ISOMORPHISms BETWEEN UNITAL C^{*}-ALGEBRAS

In this section, let \mathcal{B} be a unital C^{*}-algebra with unitary group $\mathcal{U}(\mathcal{B})$, and \mathcal{C} a unital C^{*}-algebra.

We are going to show the generalized Hyers-Ulam-Rassias stability of *isomorphisms between unital C^{*}-algebras.

Theorem 4. Let $f: \mathcal{B} \rightarrow \mathcal{C}$ be a bijective mapping satisfying $f(x y)=$ $f(x) f(y)$ and $f(0)=0$ for which there exists a function $\varphi: \mathcal{B} \times \mathcal{B} \rightarrow[0, \infty)$ satisfying (i), (ii), and (iii) such that

$$
\begin{equation*}
\left\|f\left(2^{n} u^{*}\right)-f\left(2^{n} u\right)^{*}\right\| \leq \varphi\left(2^{n} u, 2^{n} u\right) \tag{vi}
\end{equation*}
$$

for all $u \in \mathcal{U}(\mathcal{B})$ and all $n=0,1, \cdots$. Then the bijective mapping $f: \mathcal{B} \rightarrow \mathcal{C}$ is an algebra $*$-isomorphism.

Proof. By the same reasoning as the proof of Theorem 1, there exists a \mathbb{C} linear mapping $\Theta: \mathcal{B} \rightarrow \mathcal{C}$ satisfying the inequality (iv), and the bijective mapping $f: \mathcal{B} \rightarrow \mathcal{C}$ is an algebra isomorphism with $f=\Theta$. The \mathbb{C}-linear mapping $\Theta: \mathcal{B} \rightarrow \mathcal{C}$ is given by

$$
\Theta(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

for all $x \in \mathcal{B}$.
By (2) and (vi), we get

$$
\begin{aligned}
\Theta\left(u^{*}\right) & =\lim _{n \rightarrow \infty} \frac{f\left(2^{n} u^{*}\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} u\right)^{*}}{2^{n}}=\left(\lim _{n \rightarrow \infty} \frac{f\left(2^{n} u\right)}{2^{n}}\right)^{*} \\
& =\Theta(u)^{*}
\end{aligned}
$$

for all $u \in \mathcal{U}(\mathcal{B})$. Since Θ is \mathbb{C}-linear and each $x \in \mathcal{B}$ is a finite linear combination of unitary elements (see [4, Theorem 4.1.7]), i.e., $x=\sum_{j=1}^{m} \lambda_{j} u_{j}, \quad \lambda_{j} \in$ $\mathbb{C}, u_{j} \in \mathcal{U}(\mathcal{B})$,

$$
\begin{aligned}
\Theta\left(x^{*}\right) & =\Theta\left(\sum_{j=1}^{m} \overline{\lambda_{j}} u_{j}^{*}\right)=\sum_{j=1}^{m} \overline{\lambda_{j}} \Theta\left(u_{j}^{*}\right)=\sum_{j=1}^{m} \overline{\lambda_{j}} \Theta\left(u_{j}\right)^{*}=\left(\sum_{j=1}^{m} \lambda_{j} \Theta\left(u_{j}\right)\right)^{*} \\
& =\Theta\left(\sum_{j=1}^{m} \lambda_{j} u_{j}\right)^{*}=\Theta(x)^{*}
\end{aligned}
$$

for all $x \in \mathcal{B}$. Hence the algebra isomorphism $\Theta: \mathcal{B} \rightarrow \mathcal{C}$ is a $*$-mapping. So the bijective mapping $f: \mathcal{B} \rightarrow \mathcal{C}$ is an algebra $*$-isomorphism, as desired.

Corollary 5. Let $f: \mathcal{B} \rightarrow \mathcal{C}$ be a bijective mapping satisfying $f(x y)=$ $f(x) f(y)$ and $f(0)=0$ for which there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\begin{aligned}
\|f(\mu x+\mu y)-\mu f(x)-\mu f(y)\| & \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \\
\left\|f\left(2^{n} u^{*}\right)-f\left(2^{n} u\right)^{*}\right\| & \leq 2 \cdot 2^{n p} \theta
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$, all $u \in \mathcal{U}(\mathcal{B})$, all $n=0,1, \cdots$, and all $x, y \in \mathcal{B}$. Assume that $\lim _{n \rightarrow \infty} \frac{f\left(2^{n} e\right)}{2^{n}}$ is invertible. Then the bijective mapping $f: \mathcal{B} \rightarrow \mathcal{C}$ is an algebra *-isomorphism.
Proof. Define $\varphi(x, y)=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$, and apply Theorem 4.
Theorem 6. Let $f: \mathcal{B} \rightarrow \mathcal{C}$ be a bijective mapping satisfying $f(x y)=$ $f(x) f(y)$ and $f(0)=0$ for which there exists a function $\varphi: \mathcal{B} \times \mathcal{B} \rightarrow[0, \infty)$ satisfying (i), (iii), (v), and (vi). If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{B}$, then the bijective mapping $f: \mathcal{B} \rightarrow \mathcal{C}$ is an algebra $*$-isomorphism.
Proof. By the same reasoning as the proof of Theorem 1, there exists a \mathbb{C} linear mapping $\Theta: \mathcal{B} \rightarrow \mathcal{C}$ satisfying the inequality (iv), and the bijective mapping $f: \mathcal{B} \rightarrow \mathcal{C}$ is an algebra isomorphism with $f=\Theta$.

By the same method as the proof of Theorem 4, we obtain that the bijective mapping $f: \mathcal{B} \rightarrow \mathcal{C}$ is an algebra $*$-isomorphism, as desired.

4. Stability of $*$-ISomorphisms between unital $J B^{*}$-algebras

The original motivation to introduce the class of nonassociative algebras known as Jordan algebras came from quantum mechanics (see [7]). Let \mathcal{H} be a
complex Hilbert space, regarded as the "state space" of a quantum mechanical system. Let $\mathcal{L}(\mathcal{H})$ be the real vector space of all bounded self-adjoint linear operators on \mathcal{H}, interpreted as the (bounded) observables of the system. In 1932, Jordan observed that $\mathcal{L}(\mathcal{H})$ is a (nonassociative) algebra via the anticommutator product $x \circ y:=\frac{x y+y x}{2}$. A commutative algebra X with product $x \circ y$ is called a Jordan algebra if $x^{2} \circ(x \circ y)=x \circ\left(x^{2} \circ y\right)$ holds.

A complex Jordan algebra \mathcal{B} with product $x \circ y$, unit element e and involution $x \mapsto x^{*}$ is called a $J B^{*}$-algebra if \mathcal{B} carries a Banach space norm $\|\cdot\|$ satisfying $\|x \circ y\| \leq\|x\| \cdot\|y\|$ and $\left\|\left\{x x^{*} x\right\}\right\|=\|x\|^{3}$. Here $\left\{x y^{*} z\right\}:=$ $x \circ\left(y^{*} \circ z\right)-y^{*} \circ(z \circ x)+z \circ\left(x \circ y^{*}\right)$ denotes the Jordan triple product of $x, y, z \in \mathcal{B}$. Throughout this section, let \mathcal{B} and \mathcal{C} be unital $J B^{*}$-algebras.

We are going to show the generalized Hyers-Ulam-Rassias stability of $*-$ isomorphisms between unital $J B^{*}$-algebras.
Theorem 7. Let $f: \mathcal{B} \rightarrow \mathcal{C}$ be a bijective mapping satisfying $f(x \circ y)=$ $f(x) \circ f(y)$ and $f(0)=0$ for which there exists a function $\varphi: \mathcal{B} \times \mathcal{B} \rightarrow[0, \infty)$ satisfying (i) and (ii) such that

$$
\begin{equation*}
\left\|f\left(x^{*}\right)-f(x)^{*}\right\| \leq \varphi(x, x) \tag{vii}
\end{equation*}
$$

for all $x \in \mathcal{B}$. Assume that (viii) $\lim _{n \rightarrow \infty} \frac{f\left(2^{n} e\right)}{2^{n}}=e^{\prime}$. Then the bijective mapping $f: \mathcal{B} \rightarrow \mathcal{C}$ is an algebra $*$-isomorphism.
Proof. By the same reasoning as the proof of Theorem 1, there exists a \mathbb{C} linear mapping $\Theta: \mathcal{B} \rightarrow \mathcal{C}$ satisfying the inequality (iv), and the bijective mapping $f: \mathcal{B} \rightarrow \mathcal{C}$ is an algebra isomorphism with $f=\Theta$. The \mathbb{C}-linear mapping $\Theta: \mathcal{B} \rightarrow \mathcal{C}$ is given by

$$
\Theta(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

for all $x \in \mathcal{B}$.
It follows from (2) and (vii) that

$$
\begin{aligned}
\Theta\left(x^{*}\right) & =\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x^{*}\right)}{2^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)^{*}}{2^{n}}=\left(\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}\right)^{*} \\
& =\Theta(x)^{*}
\end{aligned}
$$

for all $x \in \mathcal{B}$. Hence the algebra isomorphism $\Theta: \mathcal{B} \rightarrow \mathcal{C}$ is a $*$-mapping. So the bijective mapping $f: \mathcal{B} \rightarrow \mathcal{C}$ is an algebra $*$-isomorphism, as desired.

Corollary 8. Let $f: \mathcal{B} \rightarrow \mathcal{C}$ be a bijective mapping satisfying $f(x \circ y)=$ $f(x) \circ f(y)$ and $f(0)=0$ for which there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\begin{gathered}
\|f(\mu x+\mu y)-\mu f(x)-\mu f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right), \\
\left\|f\left(x^{*}\right)-f(x)^{*}\right\| \leq 2 \theta\|x\|^{p}
\end{gathered}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y \in \mathcal{B}$. Assume that

$$
\lim _{n \rightarrow \infty} \frac{f\left(2^{n} e\right)}{2^{n}}=e^{\prime}
$$

Then the bijective mapping $f: \mathcal{B} \rightarrow \mathcal{C}$ is an algebra $*$-isomorphism.
Proof. Define $\varphi(x, y)=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$, and apply Theorem 7 .
Theorem 9. Let $f: \mathcal{B} \rightarrow \mathcal{C}$ be a bijective mapping satisfying $f(x \circ y)=$ $f(x) \circ f(y)$ and $f(0)=0$ for which there exists a function $\varphi: \mathcal{B} \times \mathcal{B} \rightarrow[0, \infty)$ satisfying (i), (v), (vii), and (viii). If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{B}$, then the bijective mapping $f: \mathcal{B} \rightarrow \mathcal{C}$ is an algebra $*$-isomorphism.

Proof. By the same reasoning as the proof of Theorem 1 , there exists a \mathbb{C} linear mapping $\Theta: \mathcal{B} \rightarrow \mathcal{C}$ satisfying the inequality (iv), and the bijective mapping $f: \mathcal{B} \rightarrow \mathcal{C}$ is an algebra isomorphism with $f=\Theta$.

By the same method as the proof of Theorem 7, we obtain that the bijective mapping $f: \mathcal{B} \rightarrow \mathcal{C}$ is an algebra $*$-isomorphism, as desired.

References

1. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, Heidelberg and Berlin, 1973.
2. P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
3. R.V. Kadison and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249-266.
4. R.V. Kadison and J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, Elementary Theory, Academic Press, New York, 1983.
5. C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002), 711-720.
6. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
7. H. Upmeier, Jordan Algebras in Analysis, Operator Theory, and Quantum Mechanics, Regional Conference Series in Mathematics No. 67, Amer. Math. Soc., Providence, 1987.
8. A.R. Villena, Derivations on Jordan-Banach algebras, Studia Math. 118 (1996), 205229.

Chun-Gil Park
Department of Mathematics
Chungnam National University
DaEJEON 305-764
South Korea
E-mail address: cgpark@math.cnu.ac.kr

[^0]: Received May 29, 2003.
 2000 Mathematics Subject Classification: Primary 47B48, 39B52; Secondary 46K70, 17C65, 46L05.

 Key words and phrases: C^{*}-algebra, $J B^{*}$-algebra, stability, functional equation.
 This work was supported by grant No. R05-2003-000-10006-0 from the Basic Research Program of the Korea Science \& Engineering Foundation.

