ISOMORPHISMS BETWEEN BANACH ALGEBRAS

Chun-Gil Park

ABSTRACT. It is shown that a bijective approximate isomorphism $f: \mathcal{B} \to \mathcal{C}$ of a unital Banach algebra \mathcal{B} to a unital Banach algebra \mathcal{C} is an algebra isomorphism. Moreover, we prove that a bijective approximate *-isomorphism $f: \mathcal{B} \to \mathcal{C}$ of a unital C^* -algebra \mathcal{B} to a unital C^* -algebra \mathcal{C} is an algebra *-isomorphism, and that a bijective approximate *-isomorphism $f: \mathcal{B} \to \mathcal{C}$ of a unital JB*-algebra \mathcal{B} to a unital JB*-algebra \mathcal{C} is an algebra *-isomorphism.

1. INTRODUCTION

Our knowledge concerning the continuity properties of epimorphisms on Banach algebras, Jordan-Banach algebras, and, more generally, nonassociative complete normed algebras, is now fairly complete and satisfactory (see [7] and [8]). A basic continuity problem consists in determining algebraic conditions on a Banach algebra A which ensure that derivations on A are continuous. In 1996, Villena [8] proved that derivations on semisimple Jordan-Banach algebras are continuous.

Let E_1 and E_2 be Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. Consider $f: E_1 \to E_2$ to be a mapping such that f(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in E_1$. Assume that there exist constants $\theta \ge 0$ and $p \in [0, 1)$ such that

$$||f(x+y) - f(x) - f(y)|| \le \theta(||x||^p + ||y||^p)$$

for all $x, y \in E_1$. Rassias [6] showed that there exists a unique \mathbb{R} -linear mapping $T: E_1 \to E_2$ such that

$$||f(x) - T(x)|| \le \frac{2\theta}{2 - 2^p} ||x||^p$$

Received May 29, 2003.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47B48, 39B52; Secondary 46K70, 17C65, 46L05.

Key words and phrases: C^* -algebra, JB^* -algebra, stability, functional equation.

This work was supported by grant No. R05-2003-000-10006-0 from the Basic Research Program of the Korea Science & Engineering Foundation.

for all $x \in E_1$. Găvruta [2] generalized the Rassias' result, and Park [5] applied the Găvruta's result to linear functional equations in Banach modules over a C^* -algebra.

Throughout this paper, let \mathcal{B} be a unital Banach algebra with unit e and norm $\|\cdot\|$, and \mathcal{C} a unital Banach algebra with unit e' and norm $\|\cdot\|$.

In this paper, we prove that a bijective approximate isomorphism $f: \mathcal{B} \to \mathcal{C}$ of a unital Banach algebra \mathcal{B} to a unital Banach algebra \mathcal{C} is an algebra isomorphism. This result is applied to unital C^* -algebras and unital JB^* algebras.

2. Stability of isomorphisms between unital Banach algebras

We are going to show the generalized Hyers-Ulam-Rassias stability of isomorphisms between unital Banach algebras.

Theorem 1. Let $f : \mathcal{B} \to \mathcal{C}$ be a bijective mapping satisfying f(xy) = f(x)f(y) and f(0) = 0 for which there exists a function $\varphi : \mathcal{B} \times \mathcal{B} \to [0, \infty)$ such that

(i)
$$\sum_{j=0}^{\infty} 2^{-j} \varphi(2^j x, 2^j y) < \infty,$$

(ii)
$$||D_{\mu}f(x,y)|| := ||f(\mu x + \mu y) - \mu f(x) - \mu f(y)|| \le \varphi(x,y)$$

for all $\mu \in \mathbb{T}^1 := \{\lambda \in \mathbb{C} \mid |\lambda| = 1\}$ and all $x, y \in \mathcal{B}$. Assume that (iii) $\lim_{n\to\infty} \frac{f(2^n e)}{2^n}$ is invertible. Then the bijective mapping $f : \mathcal{B} \to \mathcal{C}$ is an algebra isomorphism.

Proof. Put $\mu = 1 \in \mathbb{T}^1$. Replacing y by x in (ii), we get

$$||f(2x) - 2f(x)|| \le \varphi(x, x)$$

for all $x \in \mathcal{B}$. So one can obtain that

$$||f(x) - \frac{1}{2}f(2x)|| \le \frac{1}{2}\varphi(x, x),$$

and hence

$$\left\|\frac{1}{2^n}f(2^nx) - \frac{1}{2^{n+1}}f(2^{n+1}x)\right\| \le \frac{1}{2^{n+1}}\varphi(2^nx, 2^nx)$$

for all $x \in \mathcal{B}$. So we get

$$\|f(x) - \frac{1}{2^n} f(2^n x)\| \le \frac{1}{2} \sum_{l=0}^{n-1} \frac{1}{2^l} \varphi(2^l x, 2^l x)$$
(1)

for all $x \in \mathcal{B}$.

Let x be an element in \mathcal{B} . For positive integers n and m with n > m,

$$\left\|\frac{1}{2^{n}}f(2^{n}x) - \frac{1}{2^{m}}f(2^{m}x)\right\| \le \frac{1}{2}\sum_{l=m}^{n-1}\frac{1}{2^{l}}\varphi(2^{l}x,2^{l}x),$$

which tends to zero as $m \to \infty$ by (i). So $\{\frac{1}{2^n}f(2^nx)\}$ is a Cauchy sequence for all $x \in \mathcal{B}$. Since \mathcal{C} is complete, the sequence $\{\frac{1}{2^n}f(2^nx)\}$ converges for all $x \in \mathcal{B}$. We can define a mapping $\Theta : \mathcal{B} \to \mathcal{C}$ by

$$\Theta(x) = \lim_{n \to \infty} \frac{1}{2^n} f(2^n x) \tag{2}$$

for all $x \in \mathcal{B}$.

By (i) and (2), we get

$$\|D_1\Theta(x,y)\| = \lim_{n \to \infty} \frac{1}{2^n} \|D_1f(2^n x, 2^n y)\| \le \lim_{n \to \infty} \frac{1}{2^n} \varphi(2^n x, 2^n y) = 0$$

for all $x, y \in \mathcal{B}$. Hence $D_1\Theta(x, y) = 0$ for all $x, y \in \mathcal{B}$. So one obtains that Θ is additive. Moreover, by passing to the limit in (1) as $n \to \infty$, we get the inequality

(iv)
$$||f(x) - \Theta(x)|| \le \frac{1}{2} \sum_{j=0}^{\infty} 2^{-j} \varphi(2^j x, 2^j x)$$

for all $x \in \mathcal{B}$.

By the assumption, for each $\mu \in \mathbb{T}^1$,

$$||f(2^{n}\mu x) - 2\mu f(2^{n-1}x)|| \le \varphi(2^{n-1}x, 2^{n-1}x)$$

for all $x \in \mathcal{B}$. And one can show that

$$\|\mu f(2^n x) - 2\mu f(2^{n-1}x)\| \le |\mu| \cdot \|f(2^n x) - 2f(2^{n-1}x)\| \le \varphi(2^{n-1}x, 2^{n-1}x)$$

for all $\mu \in \mathbb{T}^1$ and all $x \in \mathcal{B}$. So

$$\begin{aligned} \|f(2^{n}\mu x) - \mu f(2^{n}x)\| &\leq \|f(2^{n}\mu x) - 2\mu f(2^{n-1}x)\| + \|2\mu f(2^{n-1}x) - \mu f(2^{n}x)\| \\ &\leq \varphi(2^{n-1}x, 2^{n-1}x) + \varphi(2^{n-1}x, 2^{n-1}x) \end{aligned}$$

for all $\mu \in \mathbb{T}^1$ and all $x \in \mathcal{B}$. Thus $2^{-n} \|f(2^n \mu x) - \mu f(2^n x)\| \to 0$ as $n \to \infty$ for all $\mu \in \mathbb{T}^1$ and all $x \in \mathcal{B}$. Hence

$$\Theta(\mu x) = \lim_{n \to \infty} \frac{f(2^n \mu x)}{2^n} = \lim_{n \to \infty} \frac{\mu f(2^n x)}{2^n} = \mu \Theta(x)$$

for all $\mu \in \mathbb{T}^1$ and all $x \in \mathcal{B}$.

Now let $\lambda \in \mathbb{C}$ $(\lambda \neq 0)$ and M an integer greater than $4|\lambda|$. Then $|\frac{\lambda}{M}| < \frac{1}{4} < 1 - \frac{2}{3} = \frac{1}{3}$. By [3, Theorem 1], there exist three elements $\mu_1, \mu_2, \mu_3 \in \mathbb{T}^1$ such that $3\frac{\lambda}{M} = \mu_1 + \mu_2 + \mu_3$. And $\Theta(x) = \Theta(3 \cdot \frac{1}{3}x) = 3\Theta(\frac{1}{3}x)$ for all $x \in \mathcal{B}$. So $\Theta(\frac{1}{3}x) = \frac{1}{3}\Theta(x)$ for all $x \in \mathcal{B}$. Thus

$$\Theta(\lambda x) = \Theta(\frac{M}{3} \cdot 3\frac{\lambda}{M}x) = M \cdot \Theta(\frac{1}{3} \cdot 3\frac{\lambda}{M}x) = \frac{M}{3}\Theta(3\frac{\lambda}{M}x)$$
$$= \frac{M}{3}\Theta(\mu_1 x + \mu_2 x + \mu_3 x) = \frac{M}{3}(\Theta(\mu_1 x) + \Theta(\mu_2 x) + \Theta(\mu_3 x))$$
$$= \frac{M}{3}(\mu_1 + \mu_2 + \mu_3)\Theta(x) = \frac{M}{3} \cdot 3\frac{\lambda}{M}\Theta(x)$$
$$= \lambda\Theta(x)$$

for all $x \in \mathcal{B}$. Hence

$$\Theta(\zeta x + \eta y) = \Theta(\zeta x) + \Theta(\eta y) = \zeta \Theta(x) + \eta \Theta(y)$$

for all $\zeta, \eta \in \mathbb{C}(\zeta, \eta \neq 0)$ and all $x, y \in \mathcal{B}$. And $\Theta(0x) = 0 = 0\Theta(x)$ for all $x \in \mathcal{B}$. So the additive mapping $\Theta : \mathcal{B} \to \mathcal{C}$ is a \mathbb{C} -linear mapping.

Since f(xy) = f(x)f(y) for all $x, y \in \mathcal{B}$,

$$\Theta(xy) = \lim_{n \to \infty} \frac{1}{2^n} f(2^n xy) = \lim_{n \to \infty} \frac{1}{2^n} f(2^n x) f(y) = \Theta(x) f(y)$$
(3)

for all $x, y \in \mathcal{B}$. By the additivity of Θ and (3),

$$2^n \Theta(xy) = \Theta(2^n xy) = \Theta(x(2^n y)) = \Theta(x)f(2^n y)$$

for all $x \in \mathcal{B}$. Hence

$$\Theta(xy) = \frac{1}{2^n} \Theta(x) f(2^n y) = \Theta(x) \frac{1}{2^n} f(2^n y)$$
(4)

for all $x, y \in \mathcal{B}$. Taking the limit in (4) as $n \to \infty$, we obtain

$$\Theta(xy) = \Theta(x)\Theta(y)$$

for all $x, y \in \mathcal{B}$. So the additive mapping $\Theta : \mathcal{B} \to \mathcal{C}$ is an algebra homomorphism. By (3),

$$\Theta(e)\Theta(x) = \Theta(ex) = \Theta(e)f(x)$$

for all $x \in \mathcal{B}$. Since $\lim_{n \to \infty} \frac{f(2^n e)}{2^n} = \Theta(e)$ is invertible,

$$\Theta(x) = f(x)$$

for all $x \in \mathcal{B}$. Since the mapping $f : \mathcal{B} \to \mathcal{C}$ is bijective, the additive mapping $\Theta : \mathcal{B} \to \mathcal{C}$ is bijective. So the bijective mapping $f = \Theta : \mathcal{B} \to \mathcal{C}$ is an algebra isomorphism, as desired.

Corollary 2. Let $f : \mathcal{B} \to \mathcal{C}$ be a bijective mapping satisfying f(xy) = f(x)f(y) and f(0) = 0 for which there exist constants $\theta \ge 0$ and $p \in [0, 1)$ such that

$$||f(\mu x + \mu y) - \mu f(x) - \mu f(y)|| \le \theta(||x||^p + ||y||^p)$$

for all $\mu \in \mathbb{T}^1$ and all $x, y \in \mathcal{B}$. Assume that $\lim_{n \to \infty} \frac{f(2^n e)}{2^n}$ is invertible. Then the bijective mapping $f : \mathcal{B} \to \mathcal{C}$ is an algebra isomorphism.

Proof. Define $\varphi(x, y) = \theta(||x||^p + ||y||^p)$, and apply Theorem 1.

Theorem 3. Let $f : \mathcal{B} \to \mathcal{C}$ be a bijective mapping satisfying f(xy) = f(x)f(y) and f(0) = 0 for which there exists a function $\varphi : \mathcal{B} \times \mathcal{B} \to [0, \infty)$ satisfying (i) and (iii) such that

(v)
$$||f(\mu x + \mu y) - \mu f(x) - \mu f(y)|| \le \varphi(x, y)$$

for $\mu = 1, i$, and all $x, y \in \mathcal{B}$. If f(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{B}$, then the bijective mapping $f : \mathcal{B} \to \mathcal{C}$ is an algebra isomorphism.

Proof. Put $\mu = 1$ in (v). By the same reasoning as the proof of Theorem 1, there exists an additive mapping $\Theta : \mathcal{B} \to \mathcal{C}$ satisfying the inequality (iv). By the same reasoning as the proof of [6, Theorem], the additive mapping $\Theta : \mathcal{B} \to \mathcal{C}$ is \mathbb{R} -linear.

Put $\mu = i$ in (v). By the same method as the proof of Theorem 1, one can obtain that

$$\Theta(ix) = \lim_{n \to \infty} \frac{f(2^n ix)}{2^n} = \lim_{n \to \infty} \frac{if(2^n x)}{2^n} = i\Theta(x)$$

for all $x \in \mathcal{B}$.

For each element $\lambda \in \mathbb{C}$, $\lambda = s + it$, where $s, t \in \mathbb{R}$. So

$$\Theta(\lambda x) = \Theta(sx + itx) = s\Theta(x) + t\Theta(ix) = s\Theta(x) + it\Theta(x)$$
$$= \lambda\Theta(x)$$

for all $\lambda \in \mathbb{C}$ and all $x \in \mathcal{B}$. So

$$\Theta(\zeta x + \eta y) = \Theta(\zeta x) + \Theta(\eta y) = \zeta \Theta(x) + \eta \Theta(y)$$

for all $\zeta, \eta \in \mathbb{C}$, and all $x, y \in \mathcal{B}$. Hence the additive mapping $\Theta : \mathcal{B} \to \mathcal{C}$ is \mathbb{C} -linear.

The rest of the proof is the same as the proof of Theorem 1.

3. Stability of *-isomorphisms between unital C^* -algebras

In this section, let \mathcal{B} be a unital C^* -algebra with unitary group $\mathcal{U}(\mathcal{B})$, and \mathcal{C} a unital C^* -algebra.

We are going to show the generalized Hyers-Ulam-Rassias stability of *-isomorphisms between unital C^* -algebras.

Theorem 4. Let $f : \mathcal{B} \to \mathcal{C}$ be a bijective mapping satisfying f(xy) = f(x)f(y) and f(0) = 0 for which there exists a function $\varphi : \mathcal{B} \times \mathcal{B} \to [0, \infty)$ satisfying (i), (ii), and (iii) such that

(vi)
$$||f(2^n u^*) - f(2^n u)^*|| \le \varphi(2^n u, 2^n u),$$

for all $u \in \mathcal{U}(\mathcal{B})$ and all $n = 0, 1, \cdots$. Then the bijective mapping $f : \mathcal{B} \to \mathcal{C}$ is an algebra *-isomorphism.

Proof. By the same reasoning as the proof of Theorem 1, there exists a \mathbb{C} linear mapping $\Theta : \mathcal{B} \to \mathcal{C}$ satisfying the inequality (iv), and the bijective mapping $f : \mathcal{B} \to \mathcal{C}$ is an algebra isomorphism with $f = \Theta$. The \mathbb{C} -linear mapping $\Theta : \mathcal{B} \to \mathcal{C}$ is given by

$$\Theta(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$$

for all $x \in \mathcal{B}$.

By (2) and (vi), we get

$$\Theta(u^*) = \lim_{n \to \infty} \frac{f(2^n u^*)}{2^n} = \lim_{n \to \infty} \frac{f(2^n u)^*}{2^n} = (\lim_{n \to \infty} \frac{f(2^n u)}{2^n})^*$$
$$= \Theta(u)^*$$

for all $u \in \mathcal{U}(\mathcal{B})$. Since Θ is \mathbb{C} -linear and each $x \in \mathcal{B}$ is a finite linear combination of unitary elements (see [4, Theorem 4.1.7]), i.e., $x = \sum_{j=1}^{m} \lambda_j u_j$, $\lambda_j \in \mathbb{C}, u_j \in \mathcal{U}(\mathcal{B})$,

$$\Theta(x^*) = \Theta(\sum_{j=1}^m \overline{\lambda_j} u_j^*) = \sum_{j=1}^m \overline{\lambda_j} \Theta(u_j^*) = \sum_{j=1}^m \overline{\lambda_j} \Theta(u_j)^* = (\sum_{j=1}^m \lambda_j \Theta(u_j))^*$$
$$= \Theta(\sum_{j=1}^m \lambda_j u_j)^* = \Theta(x)^*$$

for all $x \in \mathcal{B}$. Hence the algebra isomorphism $\Theta : \mathcal{B} \to \mathcal{C}$ is a *-mapping. So the bijective mapping $f : \mathcal{B} \to \mathcal{C}$ is an algebra *-isomorphism, as desired. \Box

Corollary 5. Let $f : \mathcal{B} \to \mathcal{C}$ be a bijective mapping satisfying f(xy) = f(x)f(y) and f(0) = 0 for which there exist constants $\theta \ge 0$ and $p \in [0, 1)$ such that

$$\begin{aligned} \|f(\mu x + \mu y) - \mu f(x) - \mu f(y)\| &\leq \theta(\|x\|^p + \|y\|^p), \\ \|f(2^n u^*) - f(2^n u)^*\| &\leq 2 \cdot 2^{np} \theta \end{aligned}$$

for all $\mu \in \mathbb{T}^1$, all $u \in \mathcal{U}(\mathcal{B})$, all $n = 0, 1, \cdots$, and all $x, y \in \mathcal{B}$. Assume that $\lim_{n\to\infty} \frac{f(2^n e)}{2^n}$ is invertible. Then the bijective mapping $f : \mathcal{B} \to \mathcal{C}$ is an algebra *-isomorphism.

Proof. Define $\varphi(x, y) = \theta(||x||^p + ||y||^p)$, and apply Theorem 4.

Theorem 6. Let $f : \mathcal{B} \to \mathcal{C}$ be a bijective mapping satisfying f(xy) = f(x)f(y) and f(0) = 0 for which there exists a function $\varphi : \mathcal{B} \times \mathcal{B} \to [0, \infty)$ satisfying (i), (iii), (v), and (vi). If f(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{B}$, then the bijective mapping $f : \mathcal{B} \to \mathcal{C}$ is an algebra *-isomorphism.

Proof. By the same reasoning as the proof of Theorem 1, there exists a \mathbb{C} linear mapping $\Theta : \mathcal{B} \to \mathcal{C}$ satisfying the inequality (iv), and the bijective
mapping $f : \mathcal{B} \to \mathcal{C}$ is an algebra isomorphism with $f = \Theta$.

By the same method as the proof of Theorem 4, we obtain that the bijective mapping $f : \mathcal{B} \to \mathcal{C}$ is an algebra *-isomorphism, as desired. \Box

4. Stability of *-isomorphisms between unital JB^* -algebras

The original motivation to introduce the class of nonassociative algebras known as Jordan algebras came from quantum mechanics (see [7]). Let \mathcal{H} be a

complex Hilbert space, regarded as the "state space" of a quantum mechanical system. Let $\mathcal{L}(\mathcal{H})$ be the real vector space of all bounded self-adjoint linear operators on \mathcal{H} , interpreted as the (bounded) observables of the system. In 1932, Jordan observed that $\mathcal{L}(\mathcal{H})$ is a (nonassociative) algebra via the anticommutator product $x \circ y := \frac{xy+yx}{2}$. A commutative algebra X with product $x \circ y$ is called a Jordan algebra if $x^2 \circ (x \circ y) = x \circ (x^2 \circ y)$ holds.

A complex Jordan algebra \mathcal{B} with product $x \circ y$, unit element e and involution $x \mapsto x^*$ is called a JB^* -algebra if \mathcal{B} carries a Banach space norm $\|\cdot\|$ satisfying $\|x \circ y\| \leq \|x\| \cdot \|y\|$ and $\|\{xx^*x\}\| = \|x\|^3$. Here $\{xy^*z\} := x \circ (y^* \circ z) - y^* \circ (z \circ x) + z \circ (x \circ y^*)$ denotes the Jordan triple product of $x, y, z \in \mathcal{B}$. Throughout this section, let \mathcal{B} and \mathcal{C} be unital JB^* -algebras.

We are going to show the generalized Hyers-Ulam-Rassias stability of *-isomorphisms between unital JB^* -algebras.

Theorem 7. Let $f : \mathcal{B} \to \mathcal{C}$ be a bijective mapping satisfying $f(x \circ y) = f(x) \circ f(y)$ and f(0) = 0 for which there exists a function $\varphi : \mathcal{B} \times \mathcal{B} \to [0, \infty)$ satisfying (i) and (ii) such that

(vii)
$$||f(x^*) - f(x)^*|| \le \varphi(x, x)$$

for all $x \in \mathcal{B}$. Assume that (viii) $\lim_{n\to\infty} \frac{f(2^n e)}{2^n} = e'$. Then the bijective mapping $f: \mathcal{B} \to \mathcal{C}$ is an algebra *-isomorphism.

Proof. By the same reasoning as the proof of Theorem 1, there exists a \mathbb{C} linear mapping $\Theta : \mathcal{B} \to \mathcal{C}$ satisfying the inequality (iv), and the bijective mapping $f : \mathcal{B} \to \mathcal{C}$ is an algebra isomorphism with $f = \Theta$. The \mathbb{C} -linear mapping $\Theta : \mathcal{B} \to \mathcal{C}$ is given by

$$\Theta(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$$

for all $x \in \mathcal{B}$.

It follows from (2) and (vii) that

$$\Theta(x^*) = \lim_{n \to \infty} \frac{f(2^n x^*)}{2^n}$$
$$= \lim_{n \to \infty} \frac{f(2^n x)^*}{2^n} = (\lim_{n \to \infty} \frac{f(2^n x)}{2^n})^*$$
$$= \Theta(x)^*$$

for all $x \in \mathcal{B}$. Hence the algebra isomorphism $\Theta : \mathcal{B} \to \mathcal{C}$ is a *-mapping. So the bijective mapping $f : \mathcal{B} \to \mathcal{C}$ is an algebra *-isomorphism, as desired. \Box

Corollary 8. Let $f : \mathcal{B} \to \mathcal{C}$ be a bijective mapping satisfying $f(x \circ y) = f(x) \circ f(y)$ and f(0) = 0 for which there exist constants $\theta \ge 0$ and $p \in [0, 1)$ such that

$$\begin{aligned} \|f(\mu x + \mu y) - \mu f(x) - \mu f(y)\| &\leq \theta(\|x\|^p + \|y\|^p), \\ \|f(x^*) - f(x)^*\| &\leq 2\theta \|x\|^p \end{aligned}$$

for all $\mu \in \mathbb{T}^1$ and all $x, y \in \mathcal{B}$. Assume that

$$\lim_{n \to \infty} \frac{f(2^n e)}{2^n} = e'.$$

Then the bijective mapping $f : \mathcal{B} \to \mathcal{C}$ is an algebra *-isomorphism.

Proof. Define $\varphi(x, y) = \theta(||x||^p + ||y||^p)$, and apply Theorem 7.

Theorem 9. Let $f : \mathcal{B} \to \mathcal{C}$ be a bijective mapping satisfying $f(x \circ y) = f(x) \circ f(y)$ and f(0) = 0 for which there exists a function $\varphi : \mathcal{B} \times \mathcal{B} \to [0, \infty)$ satisfying (i), (v), (vii), and (viii). If f(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{B}$, then the bijective mapping $f : \mathcal{B} \to \mathcal{C}$ is an algebra *-isomorphism.

Proof. By the same reasoning as the proof of Theorem 1, there exists a \mathbb{C} linear mapping $\Theta : \mathcal{B} \to \mathcal{C}$ satisfying the inequality (iv), and the bijective
mapping $f : \mathcal{B} \to \mathcal{C}$ is an algebra isomorphism with $f = \Theta$.

By the same method as the proof of Theorem 7, we obtain that the bijective mapping $f : \mathcal{B} \to \mathcal{C}$ is an algebra *-isomorphism, as desired.

References

- F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, Heidelberg and Berlin, 1973.
- P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
- R.V. Kadison and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249-266.
- 4. R.V. Kadison and J.R. Ringrose, *Fundamentals of the Theory of Operator Algebras*, Elementary Theory, Academic Press, New York, 1983.
- C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002), 711-720.
- Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
- H. Upmeier, Jordan Algebras in Analysis, Operator Theory, and Quantum Mechanics, Regional Conference Series in Mathematics No. 67, Amer. Math. Soc., Providence, 1987.

 A.R. Villena, Derivations on Jordan-Banach algebras, Studia Math. 118 (1996), 205-229.

CHUN-GIL PARK DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY DAEJEON 305-764 SOUTH KOREA *E-mail address*: cgpark@math.cnu.ac.kr