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LIPSCHITZ STABILITY OF IMPULSIVE FUNCTIONAL

DIFFERENTIAL EQUATIONS BY RAZUMIKHIN METHOD

Qing Wang, Jianhua Shen and Xinzhi Liu

Abstract. This paper studies uniform Lipschitz stability for impulsive func-
tional differential equations. Several criteria on uniform Lipschitz stability are
established by using the method of Lyapunov and the Razumikhin technique.
Some examples are also worked out to illustrate our results.

1. Introduction and preliminaries

The notion of Lipschitz stability was proposed by Dannan and Elaydi in
[3], where some sufficient conditions for Lipschitz stability were given for or-
dinary differential equations and the relation between Lipschitz stability and
other type of Lyapunov stability was investigated. It is shown that this notion
lies between uniform stability and asymptotic stability in variation. But it
neither implies asymptotic stability nor is implied by it. An important feature
is that, unlike uniform stability, the linearized system preserves the property
of Lipschitz stability from the original nonlinear system [3,4]. The Lipschitz
stability criteria have been extended to integro-differential equations in [6]
and functional differential equations in [5,7]. But to the best of our knowl-
edge, Lipschitz stability results are not yet available for impulsive functional
differential equations.

The objective of this paper is to study the problem of Lipschitz stability for
impulsive functional differential equations, incorporating the ideas developed
recently in [1,8,9,11,14,15]. Several criteria on uniform Lipschitz stability are
established by using the method of Lyapunov and the Razumikhin technique.
Moreover, it is shown that impulses play an important role in stabilization
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of unstable systems. We also establish a stability theorem by using multiple
Lyapunov functions based on the idea developed in [16]. Some examples are
also worked out to illustrate our results.

Consider the impulsive functional differential equation
{

x′ =f(t, xt), t 6= tk,

x(tk) =Jk(x(t−k )), k ∈ N,
(1.1)

where N is the set of positive integers, f : [t0,∞) × PC → Rn and Jk(x) :
Rn → Rn for all k ∈ N and PC = PC([−τ, 0], Rn) = {Φ : [−τ, 0] → Rn, Φ(t)
is continuous everywhere except at a finite number of points t at which Φ(t+)
and Φ(t−) exist and Φ(t+) = Φ(t) }, τ > 0 is the upper bound of time delays
of our systems, t0 < t1 < t2 < · · · < tk < tk+1 < · · · with tk →∞ as k →∞
and x′(t) denotes the right hand derivative of x(t).

For any t ≥ t0, xt ∈ PC is defined by xt(s) = x(t + s),−τ ≤ s ≤ 0.
For φ ∈ PC, the norm of φ is defined by ‖ φ ‖= sup−τ≤s≤0 | φ(s) |, where
|x| = max1≤i≤n{xi} for any x = (x1, x2, · · · , xn) ∈ Rn.

We assume that f(t, 0) ≡ 0 and Jk(0) ≡ 0, so that equation (1.1) admits
the zero solution.

For any t0 ∈ R+ and φ ∈ PC, the initial value problem of equation (1.1)
is given by 




x′(t) = f(t, xt), t 6= tk,

x(tk) = Jk(x(t−k )), k ∈ N,

xt0 = φ.

(1.2)

A function x (t) : [t0 − τ,∞) → Rn with xt0 = φ is said to be a solu-
tion of system (1.2), if it is continuous and satisfies the differential equa-
tion x′(t) = f(t, xt) in each [ti, ti+1), i = 0, 1, · · · , and at t = ti it satisfies
x (ti) = Ji

(
x

(
t−i

))
.

We shall make the following assumptions.
(H1) f(t, ψ) is composite-PC, i.e., if for each t0 ∈ R+ and α > 0, where

[t0, t0 + α] ∈ R+, if x ∈ PC([t0 − τ, t0 + α], Rn) and x is continuous
at each t 6= tk in (t0, t0 + α], then the composite function g defined by
g(t) = f(t, xt) is an element of the function class PC([t0, t0 + α], Rn).

(H2) f(t, ψ) is quasi-bounded, i.e., if for each t0 ∈ R+ and α > 0, where
[t0, t0 + α] ∈ R+, and for each compact set F ∈ Rn there exists
some M > 0 such that ‖f(t, ψ)‖ ≤ M for all (t, ψ) ∈ [t0, t0 + α] ×
PC([−τ, 0], F ).

(H3) For each fixed t ∈ R+, f(t, ψ) is continuous on PC([−τ, 0], Rn).
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It is shown in [2] that under Assumptions (H1)-(H3), the initial value
problem (1.1) has a solution x(t, t0, φ) , x(t) existing in a maximal interval
I. If, in addition, f(t, ψ) is locally Lipschitz in ψ, then the solution is unique.

Definition 1.1. The function V (t, x) : [t0 − τ,∞) × Rn → R+ belongs to
class νn

0 if

(A1) V is continuous on each of the sets [tk−1, tk)×Rn and for all x, y ∈ Rn

and k ∈ N , lim(t,y)→(t−k ,x) V (t, y) = V (t−k , x) exists.
(A2) V (t, x) is locally Lipschitzian in x ∈ Rn, and for all t ≥ t0, V (t, 0) ≡ 0.

Definition 1.2. Given a function V : [t0 − τ,∞) × Rn → R+, the upper
right-hand derivative of V with respect to system (1.1) is defined by

D+V (t, x) = lim sup
α→0+

1
α

[V (t + α, x + αf(t, x))− V (t, x)],

for (t, x) ∈ [t0 − τ,∞)×Rn.

Definition 1.3. The zero solution of (1.1) is said to be uniformly Lipschitz
stable through (t0, φ) ∈ R+×PC, if there exists a constant η > 0 independent
of t0 and M = M (η) ≥ 1, such that

| x(t, t0, φ) |≤ M · ‖ φ ‖, for t ≥ t0 and ‖ φ ‖< η.

Remark 1.1. From Definition 1.3, we know that uniformly Lipschitz stability
implies uniform stability.

We define the following sets for later use.

S(ρ) = {x ∈ Rn : | x |< ρ, for ρ > 0},
K0 =

{
H ∈ C(R+, R+) : H(0) = 0, H(s) > 0 for s > 0 } ,

K =
{
ω ∈ C(R+, R+) : strictly increasing and ω(0) = 0 } ,

K1 = {ψ ∈ K : ψ(s) < s for s > 0 } ,

K2 = {φ ∈ K : φ(u) ≥ u for u > 0 } ,

Ω =
{
ω(t, u) : ω ∈ C([tk−1, tk)×R+, R+) , k ∈ N ; for each x ∈ R+

and k ∈ N, lim
(t,u)→(t−k ,x)

ω(t, u) = ω(t−k , x) exists } .
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2. Stability criteria

We shall establish some Lipschitz stability criteria in this section by the
method of Lyapunov function and Razumkhin technique. Our first result
utilizes the comparison principle.

Theorem 2.1. Assume that there exist functions V ∈ νn
0 , ω1 ∈ K, g ∈ Ω

and ψk ∈ K2 such that
(i) V (tk, Jk(x)) ≤ ψk(V (t−k , x(t−k ))), k ∈ N ;
(ii) ω1(| x |) ≤ V (t, x), for any ‖φ‖ < η, there exist constant L = L(η) > 0

and function q with q(L) ≥ 1 for any L ≥ 1 such that ω−1
1 (L | x |) ≤

q(L) | x |, where ω−1
1 is the inverse function of ω1;

(iii) for any solution x(t) of (1.1), V (t + s, x(t + s)) ≤ V (t, x(t)), −τ ≤
s ≤ 0, (t, x) ∈ [tk−1, tk)× S(ρ) implies that

D+V (t, x(t)) ≤ g(t, V (t, x(t)));

(iv) the zero solution of the impulsive scalar equation




u′ = g(t, u), t ≥ t0,

u(tk) = ψk(u(t−k )), k ∈ N,

u(t0) = u0 ≥ 0,

(2.1)

is uniformly Lipschitz stable, where u0 is a constant such that u0 =
maxt0−τ≤s≤t0{V (s)}.

Then the zero solution of (1.1) is uniformly Lipschitz stable.

Proof. By condition (i) and (iii), it follows by Lemma 3.1 of [12] that

V (t, x) ≤ u(t, t0, u0), (2.2)

where u(t, t0, u0) is the maximal solution of (2.1).
Since the zero solution of (2.1) is uniformly Lipschitz stable, then there

exists η > 0, M = M(η) > 0 such that

u1(t, t0, u0) ≤ M · u0, (2.3)

where u1(t, t0, u0) is the solution of (2.1) with u1(t0, t0, u0) = u0.
Choose M(η) ≥ 1 such that ‖φ‖ < η implies

u0 ≤ M · ‖ φ ‖ (2.4)
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By the inequalities (2.2)-(2.4) we get

ω1(| x |) ≤ V (t, x) ≤ u(t, t0, u0) ≤ M · u0 ≤ M2· ‖ φ ‖ .

By condition (ii) we have, for any solution x(t) of (1.1) with ‖φ‖ < η

| x |≤ ω−1
1 (M2· ‖ φ ‖) ≤ q(M2)· ‖ φ ‖, q(M2) ≥ 1,

which completes the proof. ¤
An interesting special case is given in the following corollary.

Corollary 2.1. Assume that there exist functions V ∈ νn
0 , ω1 ∈ K, g ∈ Ω

such that
(i) V (tk, Jk(x)) ≤ (1 + bk)(V (t−k , x(t−k ))), k ∈ N , where bk > 0 and∑∞

k=1 bk < ∞;
(ii) ω1(| x |) ≤ V (t, x), for any ‖φ‖ < η, there exist constant L = L(η) > 0

and function q with q(L) ≥ 1 for any L ≥ 1 such that ω−1
1 (L | x |) ≤

q(L) | x |, where ω−1
1 is the inverse function of ω1;

(iii) for any solution x(t) of (1.1), V (t + s, x(t + s)) ≤ V (t, x(t)), −τ ≤
s ≤ 0, (t, x) ∈ [tk−1, tk)× S(ρ) implies that

D+V (t, x(t)) ≤ 0;

Then the zero solution of (1.1) with the initial function φ satisfying ‖φ‖ ≥
maxt0−τ≤s≤t0{V (s, φ(s))} is uniformly Lipschitz stable.

Proof. Choose ψk(s) = (1 + bk)s for any s ∈ R+, k ∈ N and g(t, u) ≡ 0 for
any t, u ∈ R+ in Theorem 2.1. ¤

Our next result incorporates the positive effects of the impulses.

Theorem 2.2. Assume that there exist functions V ∈ νn
0 , ω1, ω2 ∈ K, H ∈

K0 and ψ ∈ K1 such that
(i) ω1(| x |) ≤ V (t, x) ≤ ω2(| x |), and there exist η > 0 and M = M(η) ≥

1 such that ‖φ‖ < η implies that

ψ−1(ω2(‖φ‖)) ≤ ω1(M · ‖φ‖),

where ψ−1 is the inverse function of ψ;
(ii) V (tk, Jk(x(t−k ))) ≤ ψ(V (t−k , x(t−k )), k ∈ N ;
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(iii) for any solution x(t) of (1.1), V (t+s, x(t+s)) ≤ ψ−1(V (t, x(t))),−τ ≤
s ≤ 0, (t, x) ∈ [tk−1, tk)× S(ρ) implies that

D+V (t, x(t)) ≤ g(t)H(V (t, x(t))),

where g : [t0,∞) → R+ is locally integrable;
(iv) H is nondecreasing and for all k ∈ N and any µ > 0,

∫ ψ−1(µ)

µ

du

H(u)
>

∫ tk

tk−1

g(s)ds.

Then the zero solution of (1.1) is uniformly Lipschitz stable.

Proof. Let V (t) = V (t, x(t)), where x(t) = x(t, t0, φ) is the solution of (1.1)
through (t0, φ) with ‖φ‖ < η, t0 ∈ R+. Then

ω1(| x(t) |) ≤ V (t, x) ≤ ω2(| x(t) |) ≤ ω2(‖φ‖)
≤ ψ−1(ω2(‖φ‖)), t0 − τ ≤ t ≤ t0.

We claim that

V (t) ≤ ψ−1(ω2(‖φ‖)), t0 ≤ t < t1. (2.5)

Otherwise, there exists a t ∈ (t0, t1) such that

V (t) > ψ−1(ω2(‖φ‖)) > ω2(‖φ‖) ≥ V (t0),

which implies that there is a t∗ ∈ (t0, t) such that

V (t∗) = ψ−1(ω2(‖φ‖)), V (t) ≤ ψ−1(ω2(‖φ‖)), t0 − τ ≤ t ≤ t∗,

and there exists a t ∈ [t0, t∗) such that

V (t) = ω2(‖φ‖), V (t) ≥ ω2(‖φ‖), t ≤ t ≤ t∗,

therefore, for all t ∈ [t, t∗],

V (t + s) ≤ ψ−1(ω2(‖φ‖)) ≤ ψ−1(V (t)), −τ ≤ s ≤ 0,

choose ρ > 0 such that ψ−1(ω2(η)) < ω1(ρ), then we have, for all t ∈ [t, t∗]

ω1(|x(t)|) ≤ V (t) ≤ ψ−1(ω2(‖φ‖)) ≤ ψ−1(ω2(η)),
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i.e., |x(t)| < ρ for all t ∈ [t, t∗]. Thus by condition (iii) we have V ′(t, x(t)) ≤
g(t)H(V (t, x(t))), t ≤ t ≤ t∗, so

∫ V (t∗)

V (t)

du

H(u)
≤

∫ t∗

t

g(s)ds ≤
∫ t1

t0

g(s)ds,

i.e. ∫ ψ−1(ω2(‖φ‖))

ω2(‖φ‖)

du

H(u)
≤

∫ t1

t0

g(s)ds,

a contradiction and hence (2.5) holds. From (2.5) and condition (ii), we get

V (t1) = V (t1, J1(x(t−1 ))) ≤ ψ(V (t−1 ))) ≤ ω2(‖φ‖), (2.6)

In a similar way as in the proof of (2.5) and (2.6) we can get

V (t) ≤ ψ−1(ω2(‖φ‖)), t1 ≤ t < t2, V (t2) ≤ ω2(‖φ‖).
By a simple induction and the fact s < ψ−1(s), we can prove in general that

V (t) ≤ ψ−1(ω2(‖φ‖)), tm ≤ t ≤ tm+1, m = 0, 1, 2 · · · ,

which, together with (2.5), yields

ω1(| x |) ≤ V (t) ≤ ψ−1(ω2(‖φ‖)) ≤ ω1(M · ‖φ‖), t ≥ t0,

which completes the proof. ¤
Remark 2.1. It should be noted that the underlying system without im-
pulses may be unstable. Theorem 2.2 shows that impulses can be used to
stabilize an unstable system.

3. Method of multiple Lyapunov functions

In this section, we shall establish a Razumkhin-type theorem with multiple
Lyapunov functions.

In what follows, we separate x = (x1, x2, · · · , xn)T into several vectors, i.e.

x = (x(1), x(2), · · · , x(m))T ,

where x(j) = (x(j)
1 , x

(j)
2 , · · · , x

(j)
nj ), j = 1, 2, · · · ,m, and

∑m
j=1 nj = n. We

denote the norms by |x(j)| = max1≤k≤nj

{
|x(j)

k |
}

, j = 1, 2, · · · ,m, and |x| =

max1≤j≤m

{
|x(j)|

}
.
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Theorem 3.1. Assume that there exist functions Vj(t, x(j)) ∈ ν
nj

0 , aj , bj ∈
K, Hj ∈ K0, j = 1, 2, · · · ,m, such that

(i) aj(|x(j)|) ≤ Vj(t, x(j)) ≤ bj(|x(j)|), and for any η > 0 there exist con-
stant L = L(η) > 0 and function q with q(L) ≥ 1 for any L ≥ 1 such
that ‖φ‖ < η implies max1≤i≤m{a−1

i (L
∑m

k=1 bk(‖φ‖))} ≤ q(L)‖φ‖;
(ii) for all k ∈ N , Vj(t−k , x(j)(t−k )) = max1≤i≤m{Vi(t−k , x(i)(t−k ))} implies

max
1≤i≤m

{Vi(tk, x(i)(tk))} ≤ (1 + dk)Vj(t−k , x(j)(t−k )),

where dk ≥ 0 with
∑∞

i=1 dk < ∞;
(iii) for any solution x(t) = (x(1)(t), x(2)(t), · · · , x(m)(t)) of (1.1), and for

any βj γj > 0, there exist λj = λj(βj , γj) > 0, such that Vj(t +
s, x(j)(t + s)) ≤ Vj(t, x(j)(t)) for s ∈ [−τ, 0], t ∈ [tk−1, tk) and γj ≤
|x(j)(t)| ≤ βj imply

D+Vj(t, x(j)(t)) ≤ −Hj(|x(j)(t)|) + λj ,

where Vj(t, x(j)(t)) = max1≤i≤m{Vi(t, x(i)(t))}.
Then the zero solution of (1.1) is uniformly Lipschitz stable.

Proof. Let x(t) = x(t, t0, φ) be any solution of (1.1) with ‖φ‖ < η for some
η > 0, define V (t) = max1≤i≤m{Vi(t)}, where Vi(t) = Vi(t, x(i)(t)) for i =
1, 2, · · · , m.

We claim that
(C1). 1

m

∑m
i=1 ai(|x(i)(t)|) ≤ V (t) ≤ ∑m

i=1 bi(|x(i)(t)|);
(C2). V (tk) ≤ (1 + dk)V (t−k ), k ∈ N ;
(C3). V (t + s) ≤ V (t) for s ∈ [−τ, 0], t ∈ [tk−1, tk) implies

D+V (t) ≤ −Hj(|x(j)(t)|) + λj ,

where j ∈
{

k ∈ {1, 2, · · · ,m} : Vk(t) = max1≤i≤m{Vi(t)}
}

.

Proof of (C1) and (C2):
By condition (i) and the definition of V (t), we have

V (t) = max
1≤i≤m

{Vi(t)} ≥ 1
m

m∑

i=1

Vi(t) ≥ 1
m

m∑

i=1

ai(|x(i)(t)|),
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and

V (t) = max
1≤i≤m

{Vi(t)} ≤
m∑

i=1

Vi(t) ≤
m∑

i=1

bi(|x(i)(t)|),

which implies (C1) holds. (C2) comes directly from condition (ii) and the
definition of V (t).

Proof of (C3):
Assume V (t) = Vj(t) for t ∈ [αljk, βljk) ⊂ [tk−1, tk), where [tk−1, tk) =

∪1≤j≤m[αljk, βljk). When V (t+ s) ≤ V (t) for s ∈ [−τ, 0], we have Vj(t+ s) ≤
V (t + s) ≤ V (t) = Vj(t), then by condition (iii) and the right continuity of
V (t), we obtain

D+V (t) = lim sup
h→0+

V (t + h)− V (t)
h

= lim sup
h→0+

Vj(t + h)− Vj(t)
h

= D+Vj(t) ≤ −Hj(|x(j)(t)|) + λj ,

which implies (C3) holds.
Next, we shall prove the uniform Lipschitz stability of the zero solution of

(1.1).
We claim that

V (t) ≤
k−1∏

i=0

(1 + di)
m∑

i=1

bi(‖φ‖), t ∈ [tk−1, tk), k ∈ N, (3.1)

where d0 = 0.
Firstly, for t ∈ [t0− τ, t0], we have, by (C1) and the fact |x(i)(t)| ≤ |x(t)| ≤

‖φ‖
V (t) ≤

m∑

i=1

bi(|x(i)(t)|) ≤
m∑

i=1

bi(‖φ‖). (3.2)

Secondly, we show (3.1) holds for k = 1, i.e.

V (t) ≤
m∑

i=1

bi(‖φ‖), t ∈ [t0, t1). (3.3)

Suppose (3.3) is not true, then there exists some t̂ ∈ [t0, t1) such that

V (t̂) =
m∑

i=1

bi(‖φ‖), V (t̂ + s) ≤ V (t̂), for s ∈ [−τ, 0] and D+V (t̂) ≥ 0,

(3.4)



622 Qing Wang, Jianhua Shen and Xinzhi Liu

since V (t) is continuous in t ∈ [t0, t1). Assume V (t̂) = Vj(t̂), by condi-
tion (i), bj(|x(j)(t̂)|) ≥ V (t̂) =

∑m
i=1 bi(‖φ‖) ≥ aj(|x(j)(t̂)|), i.e., |x(j)(t̂)| ≥

b−1
j (

∑m
i=1 bi(‖φ‖)) , γj and |x(j)(t̂)| ≤ a−1

j (
∑m

i=1 bi(‖φ‖)) , βj . Choose
0 < λj < infγj≤s≤βj

{Hj(s)}, then by (C3) and (3.4) we have

D+V (t̂) ≤ −Hj(|xj(t)|) + λj

< λj + λj = 0,

this contradicts (3.4), and hence (3.1) holds for k = 1.
Assume (3.1) holds for k = p, i.e.

V (t) ≤
p−1∏

i=0

(1 + di)
m∑

i=1

bi(‖φ‖), t ∈ [tp−1, tp), (3.5)

then we have

V (tp) ≤ (1 + dp)V (t−p ) ≤
p∏

i=0

(1 + di)
m∑

i=1

bi(‖φ‖), (3.6)

we now prove (3.1) holds for k = p + 1. Suppose not, then repeat the same
argument as we prove (3.3), we will get a contradiction which shows (3.1)
holds for k = p + 1. Then by induction, we know (3.1) is true.

Then we have, from (3.1) and condition (i),

V (t) ≤ M
m∑

i=1

bi(‖φ‖),

where M =
∏∞

i=1(1 + dk), and then by (C1)

1
m

ai(|x(i)(t)|) ≤ 1
m

m∑

i=1

ai(|x(i)(t)|)

≤ V (t) ≤ M
m∑

i=1

bi(‖φ‖),

that is.,

|x(i)(t)| ≤ a−1
i (mM

m∑

i=1

bi(‖φ‖)),
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so we have, for any solution x(t) of (1.1) with ‖φ‖ < η,

|x(t)| = max
1≤i≤m

{|x(i)(t)|}

≤ max
1≤i≤m

{a−1
i (mM

m∑

i=1

bi(‖φ‖))}

≤ q(mM)‖φ‖,

where q(mM) ≥ 1, this completes the proof. ¤

4. Examples

In this section, we shall discuss some examples to illustrate our results given
in previous sections.

Example 4.1. Consider the impulsive nonlinear delay differential equation

x′(t) = −2x(t− 1)[1 + x(t)], t 6= k

8
, k ∈ N,

x(tk) =
1
2
x(t−k ), tk =

k

8
.

(4.1)

Choose V (t, x) = |x|, ψ(s) = 1
2s, M = 2, then condition (i) and (ii) of

Theorem 2.2 hold.
Let g(s) = 5s, H(s) = s, ρ = 1

4 , then for any solution x(t) of (4.1), when
V (t + s, x(t + s)) ≤ ψ−1(V (t, x(t))), i.e., |x(t + s)| ≤ 2|x(t)|, s ∈ [−1, 0], and
|x| < ρ

D+V (t, x(t)) ≤ sgn(x(t)){−2x(t− 1)[1 + x(t)]}
≤ 2|x(t− 1)|(1 + |x(t)|)
≤ 5|x(t)| = 5V (t, x)

≤ g(t)V (t, x),

and for any µ > 0 and k ∈ N

∫ ψ−1(µ)

µ

du

H(u)
=

∫ 2µ

µ

ds

s
= ln2

>

∫ tk

tk−1

g(s)ds =
5
8
,
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which implies that condition (iii) and (iv) of Theorem 2.2 hold, then by
Theorem 2.2, the zero solution of (4.1) is uniformly Lipschitz stable.

Remark 4.1. It was proven by Wright in 1995 that the zero solution of x′(t) =
−2x(t − 1)[1 + x(t)] is unstable(see [10,13]). Example 4.1 shows that appro-
priate impulses can make unstable system stable.

Example 4.2. Consider the impulsive nonlinear delay differential equation

x′1(t) = −x1(t) + e−tx
1
3
3 (t− 2), t 6= k,

x′2(t) = cos(2t)x
2
3
1 (t)x

1
3
2 (t− 1)− 2x2(t), t 6= k,

x′3(t) = 3x2(t− 2) + 2x3(t), t 6= k,

x1(k) =
1
3
x1(k−)− 1

3k
x2(k−) +

1
5
x3(k−),

x2(k) =
3
2k

x2(k−)− x3(k−),

x3(k) = −1
4
x1(k−) +

1
2k

x2(k−)− 2
3
x3(k−), k ∈ N.

(4.2)

We separate x = (x1, x2, x3)T into two groups, i.e. x = (x(1), x(2))T , where
x(1) = (x1, x3) and x(2) = x2, and choose V1(t, x(1)) = |x(1)| = max{x1, x3}
and V2(t, x(2)) = |x(2)| = |x2|.

Let ai(s) = bi(s) = s, i = 1, 2, then ai(|x(i)|) ≤ Vi(t, x(i)) ≤ bi(|x(i)|), and
let q(L) = 2L, we have a−1

i (L
∑2

k=1 bk(‖φ‖)) = L(‖φ‖+ ‖φ‖) ≤ q(L)‖φ‖, i =
1, 2, i.e., condition (i) of Theorem 3.1 is satisfied.

For any k ∈ N , if V1(t−k , x(1)(t−k )) ≥ V2(t−k , x(2)(t−k )), that is,
max{|x1(k−)|, |x3( k−)|} ≥ |x2(k−)|, then we have

V1(k, x(1)(k)) = max{|1
3
x1(k−)− 1

3k
x2(k−) +

1
5
x3(k−)|,

| − 1
4
x1(k−) +

1
2k

x2(k−)− 2
3
x3(k−)|}

≤ 1
3
|x1(k−)|+ 1

2k
|x2(k−)|+ 2

3
|x3(k−)|

≤ (1 +
1
2k

)max{|x1(k−)|, |x3(k−)|}

≤ (1 +
1
2k

)V1(k−, x(1)(k−)),
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and

V2(k, x(2)(k)) = | 3
2k

x2(k−)− x3(k−)|

≤ 3
2k
|x2(k−)|+ |x3(k−)|

≤ (1 +
3
2k

)max{|x1(k−)|, |x3(k−)|}

≤ (1 +
3
2k

)V1(k−, x(1)(k−)),

which gives max1≤i≤2{Vi(tk, x(i)(tk))} ≤ (1 + 3
2k )V1(t−k , x(1)(t−k )).

On the other hand, if V2(t−k , x(2)(t−k )) ≥ V1(t−k , x(1)(t−k )), i.e., |x2(k−)| ≥
max{|x1(k−)|, |x3(k−)|}, then we have

V1(k, x(1)(k)) = max{|1
3
x1(k−)− 1

3k
x2(k−) +

1
5
x3(k−)|,

| − 1
4
x1(k−) +

1
2k

x2(k−)− 2
3
x3(k−)|}

≤ 1
3
|x1(k−)|+ 1

2k
|x2(k−)|+ 2

3
|x3(k−)|

≤ (1 +
1
2k

)|x2(k−)|

≤ (1 +
1
2k

)V2(k−, x(2)(k−)),

and

V2(k, x(2)(k)) = | 3
2k

x2(k−)− x3(k−)|

≤ 3
2k
|x2(k−)|+ |x3(k−)|

≤ (1 +
3
2k

)|x2(k−)|

≤ (1 +
3
2k

)V2(k−, x(2)(k−)),

so we have

max
1≤i≤2

{Vi(tk, x(i)(tk))} ≤ (1 +
3
2k

)V2(t−k , x(2)(t−k )).
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Thus by choosing dk = 3
2k , the condition (ii) of Theorem 3.1 is satisfied.

For any β1, γ1 > 0, choose λ1 = max{β
1
3
1 , 5β1} > 0, if V1(t, x(1)(t)) ≥

V2(t, x(2)(t)), that is, max{|x1(t)|, |x3(t)|} ≥ |x2(t)|, V1(t + s, x(1)(t + s)) ≤
V1(t, x(1) (t)), that is, max{|x1(t + s)|, |x3(t + s)|} ≤ max{|x1(t), x3(t)|} for
s ∈ [−2, 0], and β1 ≥ |x(1)(t)| ≥ γ1, then

1. for those t such that |x(1)(t)| = |x1(t)|, we have

D+V1(t, x(1)(t)) ≤ sgn(x1(t))x′1(t)

≤ −|x1(t)|+ |x
1
3
3 (t− 2)|

≤ −|x1(t)|+ β
1
3
1 ≤ −|x(1)(t)|+ β

1
3
1

≤ λ1,

2. for those t such that |x(1)(t)| = |x3(t)|, we have

D+V1(t, x(1)(t)) ≤ sgn(x3(t))x′3(t)

≤ 3|x2(t− 2)|+ 2|x3(t)|
≤ 5|x(1)(t)| ≤ 5β1 ≤ λ1,

by choosing H1(s) ≡ 0, we know condition (iii) of Theorem 3.1 holds for the
case V1(t, x(1)(t)) = max{V1(t, x(1)(t)), V2(t, x(2)(t))}.

By choosing H2(s) = s and λ2 = 1, we have, if

V2(t, x(2)(t)) = max{V1(t, x(1)(t), V2(t, x(2)(t)},

that is,

|x2(t)| ≥ max{|x1(t)|, |x3(t)|}, V2(t + s, x(2)(t + s)) ≤ V2(t, x(2)(t)),

that is,
|x2(t + s)| ≥ |x2(t)| for s ∈ [−2, 0],

then

D+V2(t, x(2)(t)) ≤ sgn(x2(t))x′2(t)

≤ |x
2
3
1 (t)| × |x

1
3
2 (t− 1)| − 2|x2(t)|

≤ −|x2(t)| ≤ −H2(|x(2)(t)|) + λ2,
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which implies condition (iii) of Theorem 3.1 holds, then by Theorem 3.1, the
zero solution of (4.2) is uniformly Lipschitz stable.

Remark 4.2. Example 4.2 illustrates the advantages of using multiple Lya-
punov functions which share the conditions usually imposed on a single Lya-
punov function. Indeed, it would be difficult to find a single Lyapunov function
for system (4.2) to satisfy all the necessary requirements.
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