Nonlinear Funct. Anal. & Appl., Vol. 10, No. 4 (2005), pp. 677-679

NOTE ON THE EXPONENTIAL STABILITY OF C₀-SEMIGROUP

YU QING CHEN, JONG KYU KIM AND DING PING WU

ABSTRACT. In this note, we give a necessary and sufficient chracterization of exponential stability of C_0 semigroups in Banach spaces, some known results can be derived from our theorem.

1. INTRODUCTION

Let X be a Banach space, a family of linear bounded operators $\{T(t) : X \to X, t \in [0, \infty)\}$ is said to be a C_0 semigroup if it satisfies the following conditions

- 1. T(0) = I, I- the identity operator on X,
- 2. T(s+t) = T(s)T(t) for all $t, s \in [0, \infty)$,
- 3. $\lim_{t\to 0^+} ||T(t)x x|| = 0$ for all $x \in X$.

If $\{T(t) : t \in [0,\infty)\}$ is a C_0 semigroup, we call the operator A, defined by

$$Ax = \lim_{h \to 0^+} \frac{T(h)x - x}{h}, \quad x \in D(A),$$

the infinitesimal generator of C_0 semigroup $\{T(t)\}$. See Pazy [2]. In the past decade, characterization of asymptotical stability of C_0 group has been well studied, see [1], [5] and the references therein, but for exponential stability of C_0 group, there is not much known work, see [3], [4], no well characterization of exponential stability of C_0 group has been given. In this note, we give a chracterization of exponential stability of C_0 semigroups in Banach spaces, and also we derive some known results from our theorem.

Received January 2, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 34D20, 47D03, 47D06.

Key words and phrases: C_0 semigroup, exponential stability.

2. Main Results

Theorem 1. Let $A : D(A) \to E$ be the generator of a C_0 semigroup T(t). Suppose $Re\lambda < 0$ for all $\lambda \in \sigma(A)$. Then T(t) is exponential stable if and only if T(t) does not have continuous spectrum λ with $|\lambda| \ge 1$.

Proof. We only need to show that r(T(1)) < 1. Since $\sigma(T(1)) = \sigma_p(T(1)) \cup \sigma_r(T(1)) \cup \sigma_c(T(1))$ and $\sigma_c(T(1)) \cap \{\lambda : |\lambda| \ge 1\} = \emptyset$, we only need to show that $|\lambda| < 1$ for all $\lambda \in \sigma_p(T(1)) \cup \sigma_r(T(1))$.

For $\lambda \in \sigma_p(T(1)) \cup \sigma_r(T(1))$ with $\lambda \neq 0$, by the spectrum mapping theorem, we know that there exists $\lambda_0 \in \sigma_p(A) \cup \sigma_r(A)$ such that $\lambda = e^{\lambda_0}$. It follows that $|\lambda| = e^{Re\lambda_0}$. But $Re\lambda < 0$ for all $\lambda \in \sigma(A)$. So we have $|\lambda| < 1$. This completes the proof.

From Theorem 1, one easily see the solution of the following differential system is exponential stable, which is also well known by Lyapunov Theorem

$$\begin{cases} x'(t) = -Ax(t), t \in R, \\ x(0) = x_0 \in R^N, \end{cases}$$

where $A: \mathbb{R}^N \to \mathbb{R}^N$ is a positive matrix.

Corollary 1. If $Re\lambda < 0$ for all $\lambda \in \sigma(A)$, and $T(t_0)$ is compact for some $T_0 > 0$, then T(t) is exponential stable.

Proof. By assumption, we know that T(t) is compact for all $t \ge t_0$, so T(1) can not have continuous spectrum λ with $|\lambda| = 1$.

Corollary 2. If T(t) is asymptotically stable, then T(t) is exponential stable if and only if T(1) has no continuous spectrum λ with $|\lambda| = 1$.

Proof. Since T(t) is asymptotically stable, $Re\lambda \leq 0$ for all $\lambda \in \sigma(A)$. Because $e^{\sigma(A)} \subseteq T(1)$, so we must have $\lambda < 0$ for all $\lambda \in \sigma(A)$, in virtue of Theorem 1, we know that Corollary 2 is true.

Definition 1. ([6]) Let T(t) be a C_0 semigroup, and let Ω be a compact set, we say that Ω attracts unit sphere if $T(t)\partial B \subseteq \Omega$ for sufficiently large t > 0, where $\partial B = \{x : ||x|| = 1\}$.

678

The following result is known in [6], here we give a different proof.

Corollary 3. If T(t) is asymptotical stable and a compact subset Ω attracts unit sphere, then T(t) is exponentially stable.

Proof. Suppose there exists $\lambda \in \sigma(T(1))$ such that $|\lambda| = 1$. Then there exist $x_n \in E$ with $||x_n|| = 1$ such that $T(1)^n x_n - \lambda^n x_n \to 0$ as $n \to \infty$.

Since the compact Ω attracs unit sphere, $T(1)^n x_n$ has a convergence subsequence, without loss of generality, we may assume that $T(1)^n x_n$ conveges to y_0 , therefore x_n has a subsequence converges to y_0 , we may still denote it by x_n .

Since $||T(1)^n y_0 - \lambda^n y_0|| \le ||T(1)^n|| ||y_0 - x_n|| + ||y_0 - x_n||$, it follows that $T(1)^n y_0$ does not converge to 0, which is a contradiction.

References

- C. J. K.Batty and Q. P. Vu, Stability of individual elements under one-parameter semigroups, Trans. Amer. Math. Soc. 322 (1990), 805-818.
- 2. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983.
- J. M. A. M. Van Neerven, Characterization of exponential stability of a semigroup of operators in terms of its action by convolution on vector valued function spaces over R⁺, J. Diff. Equat. **124** (1996), 324-342.
- 4. Q. P. Vu, On the exponential stability and dichotomy of C_0 semigroups, Studia Math. **132** (1999), 141-149.
- 5. Q. P. Vu, On the stability of C_0 semigroups, Proc. Amer. Math. Soc. **129** (2001), 2871-2879.
- Q. P. Vu and F. Y. Yao, On similarity to contraction semigroups in Hilbert space, Semigroup Forum 56 (1998), 197-204.

Y. Q. CHEN DEPARTMENT OF MATHEMATICS FOSHAN UNIVERSITY FOSHAN, GUANGDONG 528000, P. R. CHINA. *E-mail address*: yqchen@foshan.net

J. K. KIM DEPARTMENT OF MATHEMATICS KYUNGNAM UNIVERSITY MASAN 631-701, KOREA *E-mail address*: jonkyuk@kyungnam.ac.kr

D. P. WU DEPARTMENT OF MATHEMATICS COLLEGE OF YIBIN YIBIN, SICHUAN, P. R. CHINA