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COINCIDENCE AND COMMON FIXED

POINTS OF NON-SELF HYBRID MAPPINGS

IN METRICALLY CONVEX SPACES

H. K. Pathak, M. S. Khan and Reny George

Abstract. Ahmed and Khan obtained some results on common fixed points
for a pair of multi-valued and single valued mappings in metrically convex
spaces which extends many known results. However the proofs of their results
contain some errors. In this paper we rectify these results and prove some
common fixed point theorems for a single valued and a pair of multi-valued
non self mappings in metrically convex metric spaces. Our results generalize
and extends the results of Ciric and Ume, Assad and Kirk, Assad, Itoh and
Khan.

1. Introduction

The study of fixed point theorems for multi-valued mappings was initiated
by Nadler [10] and Markin [9]. Subsequently a number of generalizations of
Nadler’s contraction principle were obtained by many authors. Recently non
linear hybrid contractions, that is contraction types involving single-valued
and multi-valued mappings have been studied by many authors. Sufficient
conditions for the existence of fixed points of multi-valued mappings of a
closed subset K of a complete metric space into a class of closed bounded
subsets of X have been studied by many authors([3],[4],[7],[8],[11]). Ahmed
and Khan [1] obtained some results on common fixed points for a pair of
multi-valued and single valued mappings in metrically convex spaces which
extends many known results. However the proofs of their results contain some
errors. In this paper we have rectified and improved the results of Ahmed and
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Khan [1] in a more general setting. Our results also generalize, improves and
extends the results of Ciric and Ume [6], Assad and Kirk [4], Assad [3], Itoh
[7] and Khan [8].

2. Preliminaries.

Let (X, d) be a metric space and CB(X) denote the family of nonempty
closed and bounded subsets of X. For A,B ∈ CB(X), let H(A,B) denote the
Hausdorff metric induced by d on CB(X) i.e.

H(A,B) = max{(sup D(a,B) : a ∈ A), (sup D(A, b) : b ∈ B)}

where D(x,A) = inf{d(x, a) : a ∈ A}. CB(X) is a metric space with the
distance function H.

Mappings f : X → X and S : X → CB(X) are said to commute at a point
z ∈ X iff fSz ⊂ Sfz; f and S are said to commute on X iff f and S commute
at every point of X. Weak commutativity, compatibility, weak compatibil-
ity and commutativity of two single valued self maps on a metric space are
equivalent at their coincidence point, but commutativity of f and S at their
coincidence point is more general than compatibility, weak compatibility and
weak commutativity of f and S. (Refer [12])

3. Main Results

Ahmed and Khan [1] established the following result:

Theorem A. [1, Theorem 3.1]. Let (X, d) be a metrically convex metric
space and K a nonempty closed subset of X. Let T be a mapping of K into
CB(X) and f be a mapping of K into X such that

(1) H(Tx, Ty) ≤ αd(fx, fy) + β{D(fx, Tx) + D(fy, Ty)}
+γ{D(fx, Ty) + D(fy, Tx)}

(2) where α, β, γ ≥ 0,
(α + β + γ)(1 + β + γ)

(1− β − γ)2
< 1

(3) ∂K ⊆ f(K), T (K) ⊆ f(K), f(x) ∈ K =⇒ Tx ⊆ K
(4) {T, f} is a weakly commuting pair and
(5) f is continuous on K,

then there exists a point z in K such that z = fz ∈ Tz.

Now we show that [1 ,Theorem 3.1] admits a counter example.
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Example 1. Let X = R be endowed with usual metric. K = [0, 1]. T : K →
CB(X) and f : K → X be such that Tx = {0, 1} and fx = 1 − x for all
x in K. We see that f and T satisfies all conditions of [1, Theorem 3.1].
Although 0 and 1 are coincident points of f and T, there do not exist any z
in K satisfying z = fz ∈ Tz.

The main problem with [1, Theorem 3.1] is in their proof (page 282) where
they have used the inequality d(Txn, T z) ≤ H(Fxn−1, F z) which is incorrect.
Similar error is found in [2] also.

Throughout this paper, we assume X to be metrically convex metric space
in the sense of Menger, that is, X has the property that for each x, y in X
with x 6= y, there exists z in X, x 6= z, y 6= z such that

d(x, z) + d(z, y) = d(x, y)

Further (Refer [4],[5]) if K is a closed subset of X and if x ∈ K, y /∈ K, then
there exist z in ∂K, such that

d(x, z) + d(z, y) = d(x, y)

In all that follows, C(A, f) denotes the set of coincidence points of the map-
pings A : X → CL(X) and f : X → X, i.e. C(A, f) = {u : fu ∈ Au},
C(A,B, f) denotes the set of coincidence points of the mappings A : X →
CL(X), B : X → CL(X) and f : X → X, i.e. C(A,B, f) = {u : fu ∈
Au

⋂
Bu}, where CL(X) denotes the family of closed subsets of X.

We now state the following lemma which will be used in our main theorem.

Lemma 1. ([6]) If A,B ∈ CB(X) and a ∈ A, then for any positive number
q < 1, there exists b in B such that qd(a, b) ≤ H(A, B).

Our main theorem is as follows.

Theorem 1. Let (X, d) be a metrically convex metric space and K a nonempty
closed subset of X. Let S, T be mappings of K into CB(X) and f be a mapping
of K into X such that

(3.1) H(Sx, Ty) ≤ αd(fx, fy)
+β max{D(fx, Sx)+D(fy, Ty), D(fx, Ty)+D(fy, Sx)}
+γ max{D(fx, Sx)+D(fy, Sx), D(fx, Ty)+D(fy, Ty)}

(3.2) λ = α + 3(β + 2γ) + α(β + 2γ) < 1, α, β, γ ≥ 0,
(3.3) S(∂K) ⊆ f(K), T (∂K) ⊆ f(K) and ∂(f(K)) ⊆ f(∂K), and
(3.4) f(K) is complete
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Then, (1) f, S and T has a coincidence point.
Further if f{C(S, T, f)} ⊂ K, then
(2) f, S and T has a common fixed point fu provided f(fu) = fu and f
commutes with S and T at u ∈ C(S, T, f).

Proof. Construct the sequences {xn} in K and {yn}, {zn} in X, as follows:
For some arbitrary x0 in ∂K choose x1 in K such that z1 = y1 = fx1 ∈ Sx0.
Let a be any fixed number such that 0 < a < 1/2. Put

q = λa.

Then from (3.2), q < 1. By Lemma 1 we can choose y2 ∈ Tx1 such that

qd(y1, y2) ≤ H(Sx0, Tx1)

If y2 ∈ f(K), put z2 = y2 = fx2. If y2 /∈ f(K) then choose z2 ∈ ∂(f(K)) such
that d(z1, z2) + d(z2, y2) = d(z1, y2). By (3.3) there will exist x2 in K such
that z2 = f(x2). Choose y3 ∈ Sx2 such that

qd(y2, y3) ≤ H(Tx1, Sx2)

Continuing this process we can form sequences {zn} and {yn} in X and {xn}
in K such that

(i) yn ∈ Sxn−1 if n is odd and yn ∈ Txn−1 if n is even
(ii) qd(yn, yn+1)≤H(Sxn−1, Txn) if n is odd and

qd(yn, yn+1)≤H(Txn−1, Sxn) if n is even
(iii) zn = f(xn) for all n ∈ N
(iv) yn = zn if yn ∈ f(K) else xn ∈ K and

d(zn−1, zn) + d(zn, yn) = d(zn−1, yn)
Let P = {zi ∈ {zn} : zi = yi}, Q = {zi ∈ {zn} : zi 6= yi}.
Observe that if zn ∈ Q for some n, then zn−1 and zn+1 belong to P, as two
consecutive terms of {zn} cannot be in Q.
We claim that sequence {zn} is a Cauchy sequence. We consider the following
three cases.
Case 1. zn ∈ P and zn+1 ∈ P. If n is odd, then from (ii) and (2.3) we have

qd(zn, zn+1) = qd(yn, yn+1) ≤ H(Sxn−1, Txn)

≤ αd(fxn−1, fxn) + β max{D(fxn−1, Sxn−1) + D(fxn, Txn),

D(fxn−1, Txn) + D(fxn, Sxn−1)}
+ γ max{D(fxn−1, Sxn−1) + D(fxn, Sxn−1),

D(fxn−1, Txn) + D(fxn, Txn)}
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≤ αd(fxn−1, fxn)

+ β max{d(fxn−1, fxn) + d(fxn, fxn+1), d(fxn−1, fxn+1)}
+ γ max{d(fxn−1, fxn), d(fxn−1, fxn+1) + d(fxn, fxn+1)}

≤ αd(fxn−1, fxn) + β{d(fxn−1, fxn) + d(fxn, fxn+1)}
+ γ{d(fxn−1, fxn) + 2d(fxn, fxn+1)}

≤ αd(fxn−1, fxn) + β{d(fxn−1, fxn) + d(fxn, fxn+1)}
+ γ{2d(fxn−1, fxn) + 2d(fxn, fxn+1)}.

Hence using (iii) we get,

d(zn, zn+1) ≤ [(α + β + 2γ)/(q − β − 2γ)]d(zn−1, zn) (1)

A similar inequality is obtained for an even n.
Case 2. zn ∈ P and zn+1 ∈ Q then using (iv) we have

qd(zn, zn+1) ≤ qd(zn, yn+1) = qd(yn, yn+1).

Proceeding as in Case 1, we have for odd and even n

d(zn, zn+1) ≤ [(α + β + 2γ)/(q − β − 2γ)]d(zn−1, zn) (2)

Case 3. zn ∈ Q and zn+1 ∈ P, now we have

d(zn, zn+1) ≤ d(zn, yn) + d(yn, zn+1) = d(zn, yn) + d(yn, yn+1).

Let n be odd. Then from (ii) and (3.1) we have

qd(zn, zn+1)

≤ qd(zn, yn) + qd(yn, yn+1) ≤ qd(zn, yn) + H(Sxn−1, Txn)

≤ qd(zn, yn) + αd(fxn−1, fxn)

+βmax{D(fxn−1,Sxn−1)+D(fxn,Txn),D(fxn−1,Txn)+D(fxn,Sxn−1)}
+γmax(D(fxn−1,Sxn−1)+D(fxn,Sxn−1),D(fxn−1,Txn)+D(fxn,Txn)}

≤ qd(zn, yn) + αd(fxn−1, fxn) (3)

+ β max{d(fxn−1, yn) + d(fxn, yn+1), d(fxn−1, fxn+1) + d(fxn, yn)}
+ γ max{d(fxn−1, yn) + d(fxn, yn), d(fxn−1, zn+1) + d(fxn, zn+1)}

since α < λa = q and d(zn, yn) + d(zn−1, zn) = d(zn−1, yn) we have

qd(zn, yn) + αd(zn−1, zn) < qd(zn−1, yn). (4)
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Also by the triangle inequality,

d(fxn−1, fxn+1) + d(fxn, yn) ≤ d(fxn−1, fxn) + d(fxn, fxn+1) + d(fxn, yn)

= d(fxn−1, yn) + d(fxn, fxn+1) (5)

and, using (iv) we have

d(zn−1, zn+1) + d(zn, zn+1) ≤ d(zn−1, zn) + 2d(zn, zn+1)

≤ d(zn−1, yn) + 2d(zn, zn+1)

≤ 2d(zn−1, yn) + 2d(zn, zn+1)
(6)

Thus we have, using (3), (4), (5) and (6)

d(zn, zn+1) ≤ [(q + β + 2γ)/(q − β − 2γ)]d(zn−1, yn). (7)

A similar inequality is obtained for an even n.
Since zn ∈ Q we have zn−1 ∈ P, and hence proceeding as in Case 2 we get

d(zn−1, yn) ≤ [(α + β + 2γ)/(q − β − 2γ)]d(zn−2, zn−1). (8)

Hence, using (7) and (8)

d(zn, zn+1) ≤ (α + β + 2γ)(q + β + 2γ)
(q − β − 2γ)(q − β − 2γ)

d(zn−2, zn−1).

Let

h =
(α + β + 2γ)(q + β + 2γ)
(q − β − 2γ)(q − β − 2γ)

= 1 +
(α + β + 2γ)(q + β + 2γ) + 2qβ + 4qγ − 4βγβ2 − q2 − 4γ2

(q − β − 2γ)2

Since q = λa < 1, we have

h ≤ 1 +
(α + β + 2γ)(q + β + 2γ) + 2qβ + 4qγ − 4βγβ2 − q2 − 4γ2

(q − β − 2γ)2

= 1− q2 − (α + 3(β + 2γ) + α(β + 2γ))
(q − β − 2γ)2

.

Since λa > λ2a > l, by (3.2) we conclude that h < 1
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Thus we see that in all cases

d(zn, zn+1) ≤ h max{(d(zn−2, zn−1), d(zn−1, zn)}, for all n ≥ 2.

Hence we have

d(zn, zn+1) ≤ h
n−1

2 max{(d(z0, x1), d(z1, z2)},
For m > n > N, we get

d(zn, zm) ≤
∞∑

i=N

d(zi, zi+1) ≤ hN/2

h1/2 − h
max{d(z0, z1), d(z1, z2)},

Thus {zn} is a Cauchy sequence. Since f(K) is complete, the sequence {zn}
being contained in f(K) has a limit say z in f(K). Let u ∈ f−1z. Thus there
exist u in K such that fu = z. From the way in which the {zn} is constructed,
there exists an infinite subsequence {znk

} of {zn} such that {znk
} ∈ P. Then

for an odd nk = m, we have
D(znk

, Tu)≤ H(Sxm−1, Tu)

≤ αd(fxm−1, fu) + β max{(D(fxm−1, Sxm−1) + D(fu, Tu),

D(fxm−1, Tu) + D(fu, Sxm−1)}+ γ max{(D(fxm−1, Sxm−1)

+ D(fu, Sxm−1), D(fxm−1, Tu) + D(fu, Tu)}
≤ αd(fxm−1, fu) + β max{(D(fxm−1, fxm) + D(fu, Tu),

D(fxm−1, Tu) + D(fu, fxm)}
+γ max{(D(fxm−1,fxm)+D(fu,fxm), D(fxm−1,Tu)+D(fu,Tu)}.

Taking the limit as k →∞ yields

D(fu, Tu) ≤ (β + 2γ).D(fu, Tu),

which implies, as β+2γ < 1 that D(fu, Tu) = 0. Since Tu is closed, fu ∈ Tu.
Similarly, we can show that fu ∈ Su.
From (3.1)
H(Su, Tu) ≤ αd(fu, fu)

+ β max{D(fu, Su) + D(fu, Tu), D(fu, Tu) + D(fu, Su)}
+ γ max{D(fu, Su) + D(fu, Su), D(fu, Tu) + D(fu, Tu)}= 0,

Which implies Su = Tu. Thus u is a coincidence point of f, S and T.
To prove (2), let w = f(u). Then using commutativity of f and S at u we
have w = fu = f(fu) ∈ f(Su) ⊆ S(fu) = Sw. Thus w is a common fixed
point of f and S. Similar argument yields that w is a common fixed point of
f and T. ¤

We now apply Theorem 1 to prove the following:
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Theorem 2. Let (X, d) be a metrically convex metric space and K a nonempty
closed subset of X. Let S, T be mappings of K into CB(X) and f be a mapping
of K into X such that (3.3), (3.4) and the following hold;

(3.5) H(Sx, Ty) ≤ αd(fx, fy) + β(D(fx, Sx) + D(fy, Ty)) + γ(D(fx, Ty)
+D(fy, Sx)) + δ(D(fx, Sx) + D(fy, Sx))
+η(D(fx, Ty) + D(fy, Ty)),

(3.6) where α, β, γ, δ, η ≥ 0,
(α+β+γ + 2δ + 2η)(1 + β + γ + 2δ + 2η)

(1− β − γ − 2δ − 2η)2
< 1

Then, (1) f, S and T has a coincidence point.
Further if f{C(S, T, f)} ⊂ K, then
(2) f, S and T has a common fixed point fu provided f(fu) = fu and f
commutes with S and T at u ∈ C(S, T, f).

Proof. It is clear that (3.5) implies

H(Sx, Ty) ≤ αd(fx, fy)

+(β+γ)max{D(fx, Sx)+D(fy, Ty)), (D(fx, Ty)+D(fy, Sx))

+(δ+η)max{D(fx, Sx)+D(fy, Sx)), (D(fx, Ty)+D(fy, Ty))

Also, (3.6) implies

λ = α + 3(β + γ + 2(δ + η)) + α(β + γ + 2(δ + η)) < 1,

Thus we see that all assumptions of Theorem 1 (with β + γ instead of βand
δ + η instead of γ) are fulfilled. ¤
Theorem 3. Let (X, d) be a metrically convex metric space, K a nonempty
closed subset of X and let F = {Tj}j ∈ J be a family of multi-valued mapping
of K into CB(X) and f be a mapping of K into X. Suppose that there exists
some Ti ∈ F such that for each Tj ∈ F
(3.7) H(Tix, Tjy) ≤ αjd(fx, fy)

+βj max{D(fx, Tix)+D(fy, Tjy), D(fx, Tjy)+D(fy, Tix)}
+γj max{D(fx, Tix)+D(fy, Tix), D(fx, Tjy)+D(fy, Tjy)}

Where αj , βj , γj ≥ 0 are such that
(3.8) λj = αj + 3(βj + 2γj) + αj(βj + 2γj) < 1

If in addition for each Tj ∈ F
(3.9) Tj(∂K) ⊆ f(K) and ∂(f(K)) ⊆ f(∂K)
(3.10) f(K) is complete
Then (1) there exists some u ∈ K, such that fu ∈ Tju for all Tj ∈ F.
Further if f{C(Tj , f)} ∈ K, then
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(2) f, and Tj has a common fixed point fu provided f(fu) = fu and f com-
mutes with Tj at u ∈ C(Tj , f) for all Tj in F.

Proof. Let Tj0 be an arbitrary, fixed member of F. Then from Theorem 1 with
S = Ti and T = Tj0, there will exist u in K such that fu ∈ Tj0u = Tiu. Let
Tj ∈ F, Tj 6= Tj0 be arbitrary. Then from (3.7) we have

D(fu, Tju) ≤ H(Tiu, Tju) ≤ αjd(fu, fu)

+ βj max{D(fu, Tiu) + D(fu, Tju), D(fu, Tju) + D(fu, Tiu)

+ γj max{D(fu, Tiu) + D(fu, Tiu), D(fu, Tju) + D(fu, Tju)}

And hence
(1− βj − 2γj)D(fu, Tju) ≤ 0.

Since 1 − βj − 2γj < 1 we have D(fu, Tju) = 0, hence fu ∈ Tju, which
completes the proof.
To prove (2), let w = f(u). Then using commutativity of f and Tj at u we
have w = f(w) = f(fu) ∈ f(Tju) ⊆ Tj(fu) = Tjw. Thus w is a common
fixed point of f and Tj . ¤

In view of Example 1, we see that [1, Theorem 3.3] is also incorrect. With
a view of giving a corrected and improved versions of [1 Theorem 3.3], we now
present the following results:

Theorem 4. Let (X, d) be a metrically convex metric space and K a nonempty
compact subset of X. Let S, T be continuous mappings of K into CB(X) and f
be a continuous mapping of K into X such that (3.3), (3.4) and the following
hold:

(3.11) H(Sx, Ty) < αd(fx, fy)
+β max{D(fx, Sx)+D(fy, Ty), D(fx, Ty)+D(fy, Sx)}
+γ max{D(fx, Sx)+D(fy, Sx), D(fx, Ty)+D(fy, Ty)}

(3.12) where λ = α + 3(β + 2γ) + α(β + 2γ) = 1, α, β, γ ≥ 0

Then (1) f, S and T has a coincidence point.
Further if f{C(S, T, f)} ∈ K, then
(2) f, S and T has a common fixed point fu provided f(fu) = fu and f
commutes with S and T at u ∈ C(S, T, f).

Proof. Define g1(x) = D(fx, Sx) and g2(x) = D(fx, Tx) for all x ∈ K. Since
for all x, y ∈ K
D(fx, Sx) = d(fx, fy) + D(fy, Sx) and D(fy, Sx) = D(fy, Sy) + H(Sy, Sx)
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We have

|g1(x)− g1(y)| = |D(fx, Sx)−D(fy, Sx)|+ |D(fy, Sx)−D(fy, Sy)|
= d(fx, fy) + H(Sx, Sy).

Since f and S are continuous, g1(x) is continuous. Similarly it can be shown
that g2(x) is continuous. Hence the function h(x) = min{g1(x), g2(x)} is
continuous, and since K is compact, there exists z ∈ K such that h(z) =
min{h(x) : x ∈ K}. Suppose h(z) = D(fz, Sz). i.e.

D(fz, Sz) ≤ min{D(fx, Sx), D(fx, Tx)} for all x ∈ K.

We claim that D(fz, Sz) = 0. Suppose not. Then h(x) > 0 for all x ∈ K.
Consider the sequence {zn} in Sz, such that

Limn→∞d(fz, zn) = D(fz, Sz). (9)

Suppose there exists an infinite subsequence {znk
} of {zn} which is contained

in f(K). Then since f(K) is compact {znk
} will converge to some z0 = f(x0).

Since Sz is closed, f(x0) ∈ Sz. Thus d(fz, fx0 = D(fz, Sz). From (3.11) we
have,

D(fx0, Tx0) = H(Sz, Tx0)

<αd(fz, fx0) + β max{D(fz, Sz)+D(fx0, Tx0), D(fz, Tx0)}
+ γ max{D(fz, Sz), D(fz, Tx0) + D(fx0, Tx0)}

Now since D(fz, Tx0)=d(fz, fx0) + D(fx0, Tx0)=D(fz, Sz) + D(fx0, Tx0)
we have

D(fx0, Tx0) < αd(fz, Sz) + β{D(fz, Sz) + D(fx0, Tx0)

+ γ{D(fz, Sz) + 2D(fx0, Tx0)}

Since D(fz, Sz) = D(fx0, Tx0), we have

D(fx0, Tx0) = (α + 2β + 3γ)D(fx0, Tx0) < D(fx0, Tx0),

a contradiction.
Now suppose zn /∈ f(K) for all sufficiently large n. Then since X is convex
and fz ∈ f(K), for each zn there exists yn ∈ ∂f(K) such that

d(fz, yn) + d(yn, zn) = d(fz, zn). (10)
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By (3.3) there will exist wn ∈ ∂K, such that yn = f(wn).
Since ∂K is compact, let {wn} converge to some w0 ∈ ∂K. Since g2 is

continuous,
lim

n→∞
D(fwn, Twn) = D(fw0, Tw0). (11)

By (10), (3.11) and triangle inequality, we have

D(fwn, Twn) ≤ d(fwn, zn) + D(zn, Twn)

= d(fz, zn)− d(fz, fwn) + H(Sz, Twn)

< d(fz, zn)− d(fz, fwn) + αd(fz, fwn)

+β max{D(fz, Sz)+D(fwn, Twn), D(fz, Twn)+D(fwn, Sz)}
+γ max{D(fz, Sz)+D(fwn, Sz), D(fz, Twn)+D(fwn, Twn)}

≤ d(fz, zn) + β max{D(fz, Sz) + D(fwn, Twn),

D(fz, fwn) + D(fwn, Twn) + D(fwn, zn)}
+ γ max{D(fz, Sz) + d(fwn, fz) + D(fz, Sz),

d(fz, fwn) + D(fwn, Twn) + D(fwn, Twn)}
≤ d(fz, zn)

+β max{D(fz, Sz)+D(fwn, Twn), D(fz, zn)+D(fwn, Twn)}
+ γ max{2D(fz, Sz) + D(fz, zn) + 2D(fwn, Twn)}

Taking the limit as n tends to infinity and considering (9) and (11), we get

D(fw0, Tw0) ≤ D(fz, Sz) + β{D(fz, Sz) + D(fw0, Tw0)}
+ γ{2D(fz, Sz) + 2D(fw0, Tw0)}.

Hence

D(fw0, Tw0) ≤ (1 + β + 2γ)
(1− β − 2γ)

D(fz, Sz) (12)

Since w0 ∈ ∂K, Tw0 ⊆ f(K). Thus Tw0 is compact and so there exists
u ∈ Tw0 such that d(fw0, u) = D(fw0, Tw0). Let u = fv, for some v ∈ K.
From (3.11),

D(fv, Sv) ≤ H(Tw0, Sv)

< αd(fv, fw0) + β max{D(fv, Sv) + D(fw0, Tw0), D(fw0, Sv)}
+ γ max{D(fv, Sv) + D(fw0, Sv), D(fw0, Tw0)}
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Since D(fw0, Sv) ≤ d(fw0, fv) + D(fv, Sv) = D(fw0, Tw0) + D(fv, Sv), we
have

D(fv, Sv) < αD(fw0, Tw0) + β{D(fv, Sv) + D(fw0, Tw0)}
+ γ{2D(fv, Sv) + 2D(fw0, Tw0)}

Hence

D(fv, Sv) <
α + β + 2γ

1− β − 2γ
D(fw0, Tw0).

So by (12) we have

D(fv, Sv) <
(α + β + 2γ)(1− β − 2γ)
(1− β − 2γ)(1− β − 2γ)

D(fz, Sz). (13)

Since,

(α + β + 2γ)
(1− β − 2γ)

(1− β − 2γ)
(1− β − 2γ)

=
α+3(β+2γ)+α(β+2γ)−2(β−2γ)+(β−2γ)2

1− 2(β − 2γ) + (β − 2γ)2

by (3.12) we get
(α + β + 2γ)
(1− β − 2γ)

(1− β − 2γ)
(1− β − 2γ)

≤ 1.

Hence by (13), we have

D(fz, Sz) < D(fz, Sz),

a contradiction.
Hence D(fz, Sz) = 0. Since Sz is closed, we get fz ∈ Sz.

If fz /∈ Tz, then by (3.11) we have

D(fz, Tz) ≤ H(Sz, Tz) < (β + 2γ)D(fz, Tz),

a contradiction.
Thus z is a coincidence point of f, S and T. The remaining proof goes on the
same lines as that of Theorem 1. ¤
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Theorem 5. Let (X, d) be a metrically convex metric space and K a nonempty
compact subset of X. Let S, T be continuous mappings of K into CB(X) and f
be a continuous mapping of K into X such that (3.3), (3.4) and the following
hold:
(3.13) H(Sx, Ty) < αd(fx, fy) + β{D(fx, Sx) + D(fy, Ty)}

+γ{D(fx, Ty)+D(fy, Sx)}+ δ{D(fx, Sx)+D(fy, Sx)}
+η{D(fx, Ty) + D(fy, Ty)}

(3.14) where α, β, γ ≥ 0,
(α + β + γ + 2δ + 2η)(1 + β + γ + 2δ + 2η)

(1− β − γ − δ − 2η)2
≤ 1

Then (1) f, S and T has a coincidence point.
Further if f{C(S, T, f)} ∈ K, then
(2) f, S and T has a common fixed point fu provided f(fu) = fu and f
commutes with S and T at u ∈ C(S, T, f).

Proof. It is clear that (3.13) implies

H(Sx, Ty) < αd(fx, fy)

+(β+γ)max{(D(fx, Sx)+D(fy, Ty)), D(fx, Ty)+D(fy, Sx)}
+ (δ+η) max{(D(fx, Sx)+D(fy, Sx)), D(fx, Ty)+D(fy, Ty)}

Since (3.14) implies

λ = α + 3(β + γ + 2(δ + η)) + α(β + γ + 2(δ + η)) ≤ 1,

we see that all assumptions of Theorem 4 (with β + γ instead of β and δ + η
instead of γ) are fulfilled. Hence the proof follows from Theorem 4. ¤

Now we derive certain corollaries from our Theorems, which contain and
improve many coincidence and fixed point theorems in convex metric spaces.
Taking γ = 0, in Theorem 1 we have the following.

Corollary 1. Let (X, d) be a metrically convex metric space and K a nonempty
closed subset of X. Let S, T be mappings of K into CB(X) and f be a mapping
of K into X such that (3.3), (3.4) and the following holds
(3.15) H(Sx, Ty) ≤ αd(fx, fy)

+β max{D(fx, Sx) + D(fy, Ty), D(fx, Ty) + D(fy, Sx)}
(3.16) where α, β ≥ 0, λ = α + 3β + αβ < 1
Then all conclusions of Theorem 1 are true.

Taking δ, η = 0 in Theorem 2 we have the following:
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Corollary 2. Let (X, d) be a metrically convex metric space and K a non
empty closed subset of X. Let S, T be mappings of K into CB(X) and f be a
mapping of K into X such that (3.3), (3.4) and the following holds
(3.17) H(Sx, Ty) ≤ αd(fx, fy) + β(D(fx, Sx) + D(fy, Ty))

+γ(D(fx, Ty) + D(fy, Sx))

(3.18) where α, β, γ ≥ 0,
(α + β + γ)(1 + β + γ)

(1− β − γ)2
< 1

Then all conclusions of Theorem 1 are true.

Corollary 3. Let (X, d) be a metrically convex metric space and K a non
empty closed subset of X. Let T be a mapping of K into CB(X) and f be a
mapping of K into X such that (3.3), (3.4) and the following holds
(3.19) H(Tx, Ty) ≤ αd(fx, fy) + β(D(fx, Tx) + D(fy, Ty))

+γ(D(fx, Ty) + D(fy, Tx))

(3.20) where α, β, γ ≥ 0,
(α + β + γ)(1 + β + γ)

(1− β − γ)2
< 1

Then f and T has a coincidence point.
Further if fC(T, f) ⊆ K, then
(2) f, and T has a common fixed point fu provided f(fu) = fu and f com-
mutes with T at u ∈ C(T, f).

Proof. The proof follows by taking S = T in Corollary 2. ¤

Taking γ = 0, in Theorem 3 we have the following:

Corollary 4. Let (X, d) be a metrically convex metric space, K a nonempty
closed subset of X and let F = {Tj}jinj be a family of multi-valued mapping
of K into CB(X) and f be a mapping of K into X. Suppose that there exists
some Ti ∈ F such that for each Tj ∈ F, (3.10), (3.11), (3.12) and the following
holds
(3.21) H(Tix, T jy) ≤ αjd(fx, fy) + βj max{(D(fx, Tix) + D(fy, Tjy)),

(D(fx, Tjy) + D(fy, Tjx))}
Where αj , βj ≥ 0 are such that
(3.22) λj = αj + 3βj + αjβj < 1
Then all conclusions of Theorem 3 are true.

Taking δ, η = 0 in Theorem 5 we have the following:

Corollary 5. Let (X, d) be a metrically convex metric space and K a non
empty compact subset of X. Let S, T be continuous mappings of K into CB(X)
and f a continuous mapping of K into X such that (3.3), (3.4) and the fol-
lowing holds
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(3.23) H(Sx, Ty) < αd(fx, fy) + β(D(fx, Sx) + D(fy, Ty))
+γ(D(fx, Ty) + D(fy, Sx))

(3.24) where α, β, γ ≥ 0,
(α + β + γ)(1 + β + γ)

(1− β − γ)2
≤ 1

Then all conclusions of Theorem 1 are true.

Corollary 6. Let (X, d) be a metrically convex metric space and K a non
empty compact subset of X. Let T be a continuous mapping of K into CB(X)
and f a continuous mapping of K into X such that (3.3), (3.4) and the fol-
lowing holds
(3.25) H(Tx, Ty) < αd(fx, fy) + βb(D(fx, Tx) + D(fy, Ty))

+γg(D(fx, Ty) + D(fy, Tx))

(3.26) where α, β, γ ≥ 0,
(α + β + γ)(1 + β + γ)

(1− β − γ)2
≤ 1

Then, (1) f and T has a coincidence point.
Further if fC(T, f) ⊆ K, then
(2) f, and T has a common fixed point fu provided f(fu) = fu and f com-
mutes with T at u ∈ C(T, f).

Proof. The proof follows by taking S = T in Corollary 5. ¤

Remark 1. Corollary 3 and Corollary 6 are the corrected and improved ver-
sions of [1, Theorem 3.1] and [1, Theorem 3.3] respectively.

Remark 2. Corollary 2 and Corollary 5 are the corrected and improved ver-
sions of [2, Theorem 3.1] and [2, Theorem 3.4] respectively.

Remark 3. If f = idx (the identity map of X), then Corollary 1, 2, 4 and 5
reduces to Theorem 2.1, Corollary 2.1 Theorem 2.2 and Theorem 2.3 respec-
tively of [6]. Moreover we require the completeness of f(K) only instead of
the completeness of the entire space X as used in [6]. Hence our result is a
substantial generalization, extension and improvement of the results of Ciric
and Ume [6], Khan [8], Assad [3] and Itoh [7].

Remark 4. There exists many coincident point theorems for non self map-
pings. It seems that there do not exist fixed point results for hybrid non self
mappings. Our results shows the existence of fixed points for hybrid mappings
even if the mappings under consideration are not self maps.

The following example supports our claims.

Example 2. Let X = (0,∞), K = [1, 2], S, T : K → CB(X) and f : K → X
be given by Sx = Tx = {1, 3/2, 2} and fx = 3− x. We see that all conditions
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of Theorem 1 are satisfied and 3/2 is a common fixed point of f, S and T,
where as Theorem 2.1 of Ciric and Ume [6] is not applicable as X is not
complete. Moreover, we see that the mappings f and S are not self mappings.
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