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STABLE ITERATIVE PROCEDURES FOR

A CLASS OF NONLINEAR INCREASING

OPERATOR EQUATIONS IN BANACH SPACES

Qikuan Liu and Hengyou Lan

Abstract. In this paper, by using weak order-Lipschitz-condition, we in-
troduce and study a class of nonlinear equations with increasing operators,
and prove the existence and uniqueness theorems of solutions for this kind of
nonlinear operator equations. We also discuss the convergence and stability of
perturbed iterative algorithm for solving the nonlinear operator equations, and
give some applications. Our results improve and generalize the corresponding
results of recent works.

1. Introduction and Preliminaries

Throughout this paper, we always assume that X is a real Banach space
with norm ‖ · ‖, θ is the null element of X and P ⊂ X is a cone on X, and
the cone P defines a half-order ≤ in X by x ≤ y if and only if y − x ∈ P
for all x, y ∈ X. A cone P in X is said to be normal if, there exists a
normal constant M > 0 such that θ ≤ x ≤ y implies ‖x‖ ≤ M‖y‖ for all
x, y ∈ X. For any u0, v0 ∈ X, u0 ≤ v0, we define the ordered interval
D = [u0, v0] = {u ∈ X : u0 ≤ u ≤ v0} (see [3, 13]).

In this paper, we need the following definitions.
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Definition 1.1. An operator T : D(T ) ⊂ X → X is called to be satisfying
weak order-Lipschitz-condition with operator L, if there exists a positive linear
operator L : X → X, where ‖L‖ < 1, such that

T (x)− T (y) ≤ L(x− y), ∀x, y ∈ D(T ) and x ≥ y.

If L is a positive numeral function, then T is called to be satisfying order-
Lipschitz-condition.

Remark 1.1. If T satisfies the order-Lipschitz-condition, then T satisfies the
weak order-Lipschitz-condition.

Definition 1.2. An operator F : D(F ) ⊂ X → X is said to be
(i) monotone increasing, if

F (x) ≤ F (y), ∀x, y ∈ D(F ) and x ≤ y;

(ii) having inferior solution u0 ∈ D(F ) (resp. superior solution v0 ∈
D(F )), if

u0 ≤ F (u0)(resp. F (v0) ≤ v0).

Let D ⊂ X be a subset and T : D → D be a nonlinear operator. We
consider the following problem:

Find x ∈ D such that
x− T (x) = 0. (1.1)

Equation (1.1) is said to be a nonlinear operator equation.
Du [2], Guo-Lakshmikantham [3], Li [6], Li-Liang [7], Sun [8] and many

other authors have studied existence and uniqueness theorems of fixed points
for increasing operators by using conditions of continuity, compactness or
convex-concave. Recently, Xu [10, 11] discussed existence results of fixed
points for nonlinear increasing operators by using cone theory and proved
the existence and uniqueness of fixed points without any compactness for
operators. In 2003, by virtue of Mann iterative technique, Yu-Guo [12] proved
some new theorems of solution for a class of nonlinear operator equations (1.1)
without the assumption of continuity, compactness or convex-concave.

On the other hand, stability results for certain classes of nonlinear mappings
have been shown in resent papers by many authors (see, for example, [1, 4, 5]
and the references therein).

In this paper, by using weak order-Lipschitz-condition, we introduce and
study a class of nonlinear equations with increasing operators, and prove the
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existence and uniqueness theorems of solutions for this nonlinear operator
equations. We also discuss the convergence and stability of perturbed iterative
algorithm for solving the nonlinear operator equations. As applications, we
work out a two point boundary value problem of the ordinary differential
equation and a Hammerstein integral equation on RN to illustrate our results.

2. Main Results

For our results, we need the following concept and lemma.

Definition 2.1. Let S be a selfmap of X and xn+1 = h(S, xn)(n ≥ 0) define
an iteration procedure which yields a sequence of points {xn}∞n=0 in X. Sup-
pose that {x ∈ X|Sx = x} 6= ∅ and {xn}∞n=0 converges to a fixed point x∗

of S. Let {un} ⊂ X and εn = ‖un+1 − h(S, un)‖. If lim εn = 0 implies that
un → x∗, then the iteration procedure defined by xn+1 = h(S, xn) is said to
be S-stable or stable with respect to S.

Lemma 2.1. ([9]) Let {γn} be a nonnegative real sequence and {λn} be a

real sequence in [0, 1] such that
∞∑

n=0
λn = ∞. If there exists a positive integer

N such that
γn+1 ≤ (1− λn)γn + λnσn, ∀n ≥ N,

where σn ≥ 0 for all n ≥ 0 and σn → 0 as n →∞, then lim
n→∞

γn = 0.

Algorithms 2.1. For given x0 ∈ D ⊂ X, the sequence {xn} is defined by:

xn+1 = αnxn + (1− αn)T (xn), n ≥ 0,

where {αn} is a real sequence in [0, 1) satisfying some conditions. Let {yn}
be any sequence in D and define {εn} by

εn = ‖yn+1 − {αnyn + (1− αn)T (yn)}‖, n ≥ 0, (2.1)

If αn = 0 for all n ≥ 0, then Algorithms 2.1 is reduced to the following
algorithm.

Algorithms 2.2. For given x0 ∈ D ⊂ X, the sequence {xn} is defined by:

xn+1 = T (xn), n ≥ 0.

Let {yn} be any sequence in D and define {εn} by

εn = ‖yn+1 − T (yn)‖, n ≥ 0,
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Remark 2.1. The iterative procedures {xn} in Algorithms 2.2 is studied by
many authors (see, for example, [6, 7, 10, 11] and the references therein).

Theorem 2.1. Let u0, v0 ∈ X, u0 < v0 and D = [u0, v0]. Let T : D → D be
a monotone increasing operator with inferior solution u0 and superior solution
v0 and satisfy weak order-Lipschitz-condition with positive linear operator L :
X → X. Suppose following conditions hold:

(1) ‖L‖ ≤ min{M−1, 1};
(2) αn is monotone increasing and αn → α ∈ [0, 1).

Then the sequence {xn} generated by Algorithm 2.1 converges strongly to the
unique solution x̄ of problem (1.1) and

‖xn − x̄‖ ≤ M [ε + α(1− ε)]n min{‖x0 − u0‖+
‖u1 − u0‖

(1− α)(1− ε)
,

‖v0 − x0‖+
‖v0 − v1‖

(1− α)(1− ε)
},

where u1 = α0u0 + (1− α0)T (u0) and v1 = α0v0 + (1− α0)T (v0). Moreover,

if
∞∑

n=0
(1− αn) = ∞, then lim

n→∞
yn = x̄ if and only if lim

n→∞
εn = 0, where εn is

defined by (2.1).

Proof. Let

un+1 = αnun + (1− αn)T (un), ∀n ≥ 0, (2.2)

vn+1 = αnvn + (1− αn)T (vn), ∀n ≥ 0. (2.3)

Since T : D → D is a monotone increasing operator with inferior solution u0

and superior solution v0, it follows from (2.2) and (2.3) that
{

u0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ vn ≤ · · · ≤ v1 ≤ v0,

un ≤ T (un), T (vn) ≤ vn, ∀n ≥ 0.
(2.4)

In fact, when n = 1, by (2.2), (2.3) and the monotone increasing property of
T , we have

u1 − u0 = [α0u0 + (1− α0)T (u0)]− u0 = (1− α0)[T (u0)− u0] ≥ 0,

T (u1)− u1 = T (u1)− [α0u0 + (1− α0)T (u0)]

= T (u1)− T (u0) + α0[T (u0)− u0] ≥ 0,

v1 − u1 = [α0v0 + (1− α0)T (v0)]− [α0u0 + (1− α0)T (u0)]

= α0(v0 − u0) + (1− α0)[T (v0)− T (u0)] ≥ 0,

v0 − v1 = v0 − [α0v0 + (1− α0)T (v0)] = (1− α0)[v0 − T (v0)] ≥ 0
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and

v1 − T (v1) = [α0v0 + (1− α0)T (v0)]− T (v1)

= T (v0)− T (v1) + α0[v0 − T (v0)] ≥ 0.

Therefore, u0 ≤ u1 ≤ v1 ≤ v0, i.e, (2.4) holds for n = 1.
Suppose now that (2.4) holds for n = k, i.e., uk−1 ≤ uk ≤ vk ≤ vk−1 and

uk ≤ T (uk), T (vk) ≤ vk. We shall show that it holds for n = k + 1. In fact,
by the monotonicity of T and induction hypothesis, we have

uk+1 − uk = [αkuk + (1− αk)T (uk)]− uk

= (1− αk)[T (uk)− uk] ≥ 0,

T (uk+1)− uk = T (uk+1)− [αkuk + (1− αk)T (uk)]

= T (uk+1)− T (uk) + αk[T (uk)− uk] ≥ 0,

vk+1 − uk+1 = [αkvk + (1− αk)T (vk)]− [αkuk + (1− αk)T (uk)]

= αk(vk − uk) + (1− αk)[T (vk)− T (uk)] ≥ 0,

vk − vk+1 = vk − [αkvk + (1− αk)T (vk)] = (1− αk)[vk − T (vk)] ≥ 0,

vk+1 − T (vk+1) = [αkvk + (1− αk)T (vk)]− T (vk+1)

= T (vk)− T (vk+1) + αk[vk − T (vk)] ≥ 0.

Thus uk ≤ uk+1 ≤ vk+1 ≤ vk and uk+1 ≤ T (uk+1), T (vk+1) ≤ vk+1. There-
fore, (2.4) is true. Again, since T satisfies weak order-Lipschitz-condition with
operators L and {αn} is a monotone increasing sequence, it follows from (2.2)
that

θ ≤ (un+1 − un)− (un − un−1)

= (1− αn)[T (un)− un]− (1− αn−1)[T (un−1)− un−1]

≤ (1− αn−1){[T (un)− T (un−1)]− (un − un−1)}
≤ (1− αn−1)(L− I)(un − un−1).

Therefore,
θ ≤ (un+1 − un)

≤ [(1− αn−1)L + αn−1I](un − un−1)

≤ [(1− αn−1)L + αn−1I][(1− αn−2)L + αn−2I](un−1 − un−2)

= Qn−1Qn−2(un−1 − un−2)
≤ · · ·

≤ (u1 − u0)
n−1∏

i=0

Qi,

(2.5)
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where Qi = (1− αi)L + αiI for i = 0, 1, 2, · · · . Since αn ∈ [0, 1) is monotone
increasing and αn → α ∈ [0, 1), for any ε ∈ (‖L‖, 1) and i = 0, 1, 2, · · · , we get

‖Qi‖ ≤ (1− αi)‖L‖+ αi ≤ ε(1− αi) + αi ≤ σ,

where σ = ε+α(1− ε) and 0 < σ < 1. It follows from (2.5) and the normality
of P that

‖un+1 − un‖ ≤ M‖u1 − u0‖σn. (2.6)

For any n,m ≥ 1, (2.6) implies

‖un+m − un‖ ≤
m∑

i=1

‖un+i − un+i−1‖ ≤
m∑

i=1

M‖u1 − u0‖σn+i−1

≤ Mσn(1− σm)
1− σ

‖u1 − u0‖.
(2.7)

It follows from (2.7) that {un} is a Cauchy sequence. The completeness of X
and un ∈ D imply that there exists x∗ ∈ D such that un → x∗ as n → +∞.
Similarly, we can obtain that {T (un)} is also Cauchy sequence and so there
exists w∗ ∈ D such that T (un) → w∗ (n →∞).

Next, we prove that T (x∗) = x∗ = w∗. Indeed, letting n →∞ in (2.2), we
have

x∗ = αx∗ + (1− α)w∗

and so x∗ = w∗. Since T is monotone increasing and un ≤ x∗, T (un) ≤ T (x∗).
It follows from T (un) → w∗ (n → ∞) that w∗ ≤ T (x∗). On the other hand,
T (un) ≤ T (x∗) implies

θ ≤ T (x∗)− T (un) ≤ L(x∗ − un)

and so
‖T (x∗)− T (un)‖ ≤ M‖L‖‖x∗ − un‖,

i.e., T (un) → T (x∗) as n → ∞. Since {T (un)} is a monotone increasing
sequence, T (un) ≤ w∗ and so T (x∗) ≤ w∗. It follows from w∗ ≤ T (x∗) that
w∗ = T (x∗) = x∗.

By the same method as above, we can know that {vn} and {T (vn)} are also
Cauchy sequences, and there exists x∗ ∈ D such that vn → x∗ as n → +∞
and T (x∗) = x∗. Since x0 ∈ [u0, v0], if uk ≤ xk ≤ vk, then

T (uk) ≤ T (xk) ≤ T (vk)
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and

αkuk + (1− αk)T (uk) + (1− αk)ωk ≤ αkxk + (1− αk)T (xk) + (1− αk)ωk

≤ αkvk + (1− αk)T (vk) + (1− αk)ωk,

i.e.,
uk+1 ≤ xk+1 ≤ vk+1.

By induction, we know that un ≤ xn ≤ vn for all n ≥ 0. If x̄ is a fixed point
of T in D, then x∗ ≤ x̄ ≤ x∗ and

θ ≤ x∗ − x∗ = T (x∗)− T (x∗) ≤ L(x∗ − x∗),

and so
‖x∗ − x∗‖ ≤ M‖L‖‖x∗ − x∗‖. (2.8)

It follows from (2.8) and ‖L‖ ≤ M−1 that x∗ = x∗ and so T has a unique
fixed point x̄ in D, and xn → x̄. In fact, Since un ≤ xn ≤ vn for all n ≥ 0,

θ ≤ xn − un = αn−1(xn−1 − un−1) + (1− αn−1)[T (xn−1)− T (un−1)].

By the proof of (2.6), we have

‖xn − un‖ ≤ Mσn‖x0 − u0‖. (2.9)

Letting m →∞ in (2.7), we have

‖x̄− un‖ = ‖x∗ − un‖ ≤ Mσn‖u1 − u0‖
1− σ

. (2.10)

Combining (2.9) and (2.10), we get

‖xn − x̄‖ ≤ ‖xn − un‖+ ‖un − x̄‖

≤ Mσn(‖x0 − u0‖+
‖u1 − u0‖

1− σ
)

= M [ε + α(1− ε)]n[‖x0 − u0‖+
‖u1 − u0‖

(1− α)(1− ε)
],

(2.11)

and so xn → x̄. Similarly, we have

‖xn − x̄‖ ≤ ‖vn − xn‖+ ‖vn − x̄‖

≤ M [ε + α(1− ε)]n[‖v0 − x0‖+
‖v0 − v1‖

(1− α)(1− ε)
].

(2.12)
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It follows from (2.11) and (2.12) that

‖xn − x̄‖ ≤ M [ε + α(1− ε)]n min{‖x0 − u0‖+
‖u1 − u0‖

(1− α)(1− ε)
,

‖v0 − x0‖+
‖v0 − v1‖

(1− α)(1− ε)
}.

Now, we prove yn → x̄ if and only if εn → 0. By (2.1), we obtain

‖yn+1 − x̄‖ ≤ ‖yn+1 − {αnyn + (1− αn)T (yn)}‖
+ ‖αnyn + (1− αn)T (yn)− x̄‖

= ‖αnyn + (1− αn)T (yn)− x̄‖+ εn.

(2.13)

Without losing generality, let yn ≥ x̄ for all n ≥ 0. Since T satisfies weak
order-Lipschitz condition, we have

‖αnyn + (1− αn)T (yn)− x̄‖ ≤ αn‖yn − x̄‖+ (1− αn)‖T (yn)− T (x̄)‖
≤ [αn + (1− αn)‖L‖]‖yn − x̄‖
= [1− (1− αn)(1− ‖L‖)]‖yn − x̄‖.

(2.14)
Since 0 ≤ αn ≤ α, it follows from (2.13) and (2.14) that

‖yn+1 − x̄‖ ≤ [1− (1− αn)(1− ‖L‖)]‖yn − x̄‖
+ (1− αn)(1− ‖L‖)[ 1

1− ‖L‖
εn

1− α
].

(2.15)

If lim
n→∞

εn = 0, then
∞∑

n=0
(1 − αn) = ∞. Therefore, (2.15) and Lemma 2.1

imply lim
n→∞

yn = x.

Conversely, if lim
n→∞

yn = x, then from (2.1) and (2.14), we get

εn ≤ ‖yn+1 − x̄‖+ ‖αnyn + (1− αn)T (yn)− x̄‖
≤ ‖yn+1 − x̄‖+ [1− (1− αn)(1− ‖L‖)]‖yn − x̄‖ → 0 (n →∞).

This completes the proof. ¤
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Theorem 2.2. Let u0, v0 ∈ X, u0 < v0 and D = [u0, v0]. Let T be the same
as in Theorem 2.1. If ‖L‖ ≤ min{M−1, 1}, then the sequence {xn} generated
by Algorithm 2.2 converges strongly to the unique solution x̄ of problem (1.1)
and for any ε ∈ (‖L‖, 1), we have

‖xn − x̄‖ ≤ Mεn min{‖x0 − u0‖+
‖u1 − u0‖

1− ε
,

‖v0 − x0‖+
‖v0 − v1‖

1− ε
},

where u1 = T (u0) and v1 = T (v0). Moreover, lim
n→∞

yn = x̄ if and only if
lim

n→∞
εn = 0, where εn is defined by Algorithm 2.2.

Remark 2.2. In Theorems 2.1 and 2.2, we have not required any compact-
ness, continuity, strongly increasing property and convex-concave condition.
Our results improve and generalize many known corresponding results, see,
for example, [6, 7, 10-12] and the references therein.

3. Applications

In this section, we will consider some examples by using our results in
section 2.

Definition 3.1. A operator f : R×X → X is said to be monotone increasing
with respect to the second argument if

f(t, x1) ≤ f(t, x2),

where 0 ≤ t ≤ 1, θ ≤ x1 ≤ x2.

Let f : [0, 1]× [0,+∞) → (0,+∞) be a continuous function and f(t, 0) = 0
for all t ∈ [0, 1]. We denote by C[0, 1] the space of continuous functions on
[0, 1] and C2[0, 1] the class of functions having continuous second derivative
on [0, 1]. Assume that f satisfies following conditions :

(i) f(t, x) is monotone increasing with respect to x;
(ii) f(t, x) > 0 for all 0 < t < 1, x > 0;
(iii) f(t,x)

x converges uniformly to 0 with respect to t ∈ [0, 1] as x →∞;
(iv) there exists a constant function L : [0,+∞) → [0, +∞) with 0 < L < 1

such that for any x(t), y(t) ∈ C[0, 1] with x(t) ≥ y(t),

λ

∫ 1

0

g(t, s)[f(s, x(s))− f(s, y(s))]ds ≤ L(x(t)− y(t)),
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where λ is a parameter and

g(t, s) =

{
t(1− s),t ≤ s,

s(1− t),t > s,

is a Green function corresponding to the following two point boundary
value problem of the ordinary differential equation:

{
d2x
dt2 = λf(t, x),
x(0) = x(1) = 0.

(3.1)

Theorems 3.1. Let f satisfies the conditions (i)-(iv). Then

(1) for any M > 0, there exists a real number h such that for all λ ≥
h, problem (3.1) has a unique continuous positive solution xλ(t) ∈
C2[0, 1] satisfying xλ(t) ≥ Mt(1− t) for all 0 ≤ t ≤ 1;

(2) for initial value x0(t) = Mt(1− t), if the iterative sequence {xn(t)} is
defined as follows :

xn+1(t) = αnxn(t) + (1− αn)λ
∫ 1

0

g(t, s)f(s, xn(s))ds, n ≥ 0,

where αn ∈ [0, 1) is monotone increasing and αn → α ∈ [0, 1), σ =
ε+α(1− ε), M

∫ 1

0
g(t, s)ds < ε < 1, then {xn} converges uniformly to

xλ(t) and

sup
t∈[0,1]

‖xn(t)− x∗(t)‖

≤ M [ε + α(1− ε)]n min{ sup
t∈[0,1]

‖x0(t)− u0‖

+
1− α0

(1− α)(1− ε)
‖T (u0)− u0‖,

sup
t∈[0,1]

‖c− x0‖+
1− α0

(1− α)(1− ε)
‖c− T (c)‖},

where T (u) =
∫ 1

0
g(t, s)f(s, u)ds, u0 = inf

t∈[0,1]
Mt(1 − t) and v0 = c >

M ;



Stable iterative procedures for a class of nonlinear increasing operator equations 355

(3) if
∞∑

n=0
(1−αn) = ∞, then lim

n→∞
yn(t) = xλ(t) if and only if lim

n→∞
εn(t) =

0 for all t ∈ [0, 1], where {yn(t)} be any sequence in [u0, v0] and εn(t)
is defined by

εn(t) = ‖yn+1(t)− {αnyn(t) + (1− αn)T (yn(t))}‖, n ≥ 0.

Proof. Obviously, xλ(t) ∈ C2[0, 1] is a solution of the problem (3.1) if and
only if it is a solution of the following integral equation on C[0, 1]:

x(t) = λ

∫ 1

0

g(t, s)f(s, x(s))ds.

Let

T (x(t)) = λ

∫ 1

0

g(t, s)f(s, x(s))ds,

and X = C[0, 1], P = {x(t) ∈ C[0, 1]|x(t) ≥ 0, ∀0 ≤ t ≤ 1}. It is easy
to know that P is a normal cone on X and the operator T : P → X is
continuous. Let u0(t) = Mt(1 − t). Then from [3], for any λ ≥ h we have
λT (u0(t)) ≥ u0(t) for all t ∈ [0, 1]. Since f(t,x)

x converges uniformly to 0
with respect to t ∈ [0, 1] as x → ∞, there exists a constant c > M such
that f(t,c)

c ≤ 8
λ for all t ∈ [0, 1]. Let v0(t) ≡ c. Then for every t ∈ [0, 1],

u0(t) < v0(t) and λT (v0(t)) ≤ v0(t). It follows from (iv) that there exists a
constant function L : [0, +∞) → [0, +∞) with 0 < L < 1 such that for any
x(t), y(t) ∈ [u0, v0] = {z(t) ∈ C[0, 1]|u0(t) ≤ z(t) ≤ v0(t), ∀t ∈ [0, 1]} with
x(t) ≥ y(t), we have

λT (x(t))− λT (y(t)) ≤ L(x(t)− y(t)).

Since f(t, x) is monotone increasing with respect to x, operator λT :
[u0, v0] → X is monotone increasing. Therefore, from Theorem 2.1, the proof
is completed.

¤
Theorems 3.2. Let f : RN × [0, +∞) → R be a increasing function, where
RN denotes n-dimension Euclidean space and R is the set of all real numbers.
Assume that

(i) k(t, s) is a nonnegative measurable function on RN ×RN and

lim
t→t0

∫

RN

|k(t, s)− k(t0, s)|ds = 0



356 Qikuan Liu and Hengyou Lan

for all t0 ∈ RN ;
(ii) there exist m, M ∈ R such that 0 < m <

∫
RN k(t, s)ds ≤ M for all

t ∈ RN ;
(iii) f(t, u) satisfies Caratheodary condition, i.e., for any u ∈ [0,∞), f(·, u)

is a measurable function on RN and f(t, ·) is a continuous function
on [0,∞) for all t ∈ RN ;

(iv) there exist l, q > 0 such that f(t, l) ≥ l
m and f(t, q) ≤ q

m for all
t ∈ RN ;

(v) there exists a constant d ∈ (0, 1
M ) such that

f(t, x(t))− f(t, y(t)) ≤ d(x(t)− y(t)),

∀t ∈ RN , x(t), y(t) ∈ CB(RN ) and x(t) ≥ y(t),

where CB(RN ) is the family of continuous and bounded function.
Then

(1) the following Hammerstein integral equation on RN :

x(t) =
∫

RN

k(t, s)f(s, x(s))ds

has a unique continuous bounded positive solution x∗(t) ∈ R for all
t ∈ RN ;

(2) for any initial value x0(t) ∈ R, the iterative sequence {xn(t)} defined
by

xn+1(t) = αnxn(t) + (1− αn)
∫

RN

k(t, s)f(s, xn(s))ds, n ≥ 0,

converges uniformly to x∗(t), where αn ∈ [0, 1) is monotone increasing
and αn → α ∈ [0, 1). And for any M

∫
RN k(t, s)ds < ε < 1, we have

sup
t∈RN

‖xn(t)− x∗(t)‖

≤ M [ε + α(1− ε)]n min{ sup
t∈RN

‖x0(t)− l‖

+
1− α0

(1− α)(1− ε)
‖T (l)− l‖,

sup
t∈RN

‖q − x0‖+
1− α0

(1− α)(1− ε)
‖q − T (q)‖},
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where T (u) =
∫

RN k(t, s)f(s, u)ds;

(3) if
∞∑

n=0
(1−αn) = ∞, then lim

n→∞
yn(t) = x∗(t) if and only if lim

n→∞
εn(t) =

0 for all t ∈ RN , where {yn(t)} be any sequence in [l, q] and εn(t) is
defined by

εn(t) = ‖yn+1(t)− {αnyn(t) + (1− αn)T (yn(t))}‖, n ≥ 0.

Proof.. Let ‖x‖CB
= sup

t∈RN

‖x(t)‖ be a norm on CB(RN ). We denote by

CB+(RN ) the class of nonnegative functions on CB(RN ). Then CB+(RN ) is
a normal cone with normal constant M on CB(RN ). Letting

X = CB(RN ), P = CB+(RN ),

u0 = u0(t) ≡ l, v0 = v0(t) ≡ q, D = {x ∈ CB(RN )|u0 ≤ x ≤ v0}
and

T (x(t)) =
∫

RN

k(t, s)f(s, x(s))ds.

Then T : D → D is monotone increasing and for any x, y ∈ D, x ≥ y, i.e.,
x(t) ≥ y(t) for all t ∈ RN , we have

T (x(t))− T (y(t)) =
∫

RN

k(t, s)f(s, x(s))ds−
∫

RN

k(t, s)f(s, y(t))ds

≤
∫

RN

k(t, s)d(x(s)− y(t))ds.

Now we prove that ‖L‖ ≤ 1, where L(w) =
∫

RN k(t, s)dw(s)ds is a linear
operator on CB(RN ). In fact, for any t ∈ RN , w ∈ CB(RN ), we have

‖L(w)‖ ≤
∫

RN

k(t, s)d‖w(s)‖ds ≤ dM‖w‖CB

and so ‖L‖ ≤ dM < 1. It follows from Theorem 2.1 that the conclusions of
Theorem 3.2 are obtained.

¤
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