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SOME EXISTENCE RESULTS FOR GENERALIZED

VECTOR QUASI-VARIATIONAL INEQUALITIES

A. Khaliq, A. H. Siddiqi and S. Krishan

Abstract. Some existence results for vector quasi-variational inequalities in-
volving multi-valued mappings in topological vector spaces are derived both
under compact and noncompact assumptions by employing the one person
game theorems. The results of this paper generalize and unify the correspond-
ing results of several authors and can be considered as a significant extension
of the previously known results.

1. Introduction

Let K be a nonempty set and f : K×K → R be a bifunction. The equilib-
rium problem [2] is defined to be the problem of finding a point x ∈ K such
that f(x, y) ≥ 0 for each y ∈ K. It is well known that equilibrium problems
are closely related to the game theory, economics and finance, mechanics and
physics and operation research, and are unified mathematical model of sev-
eral problems, for instance, optimization problems, variational inequalities,
complementarity problems, fixed point problems and saddle point problems.
Generally the set involved in the formulation of the variational inequality and
equilibrium, problems does not depend on the solution of the problem. If
the set does depend on the solution, then a problem in this class is called
quasi-variational inequality and quasi-equilibrium problem respectively. Lin
and Park [19] and Ding [6, 7] introduced and studied the quasi-equilibrium
problems in G-convex spaces and general topological spaces using fixed point
approach.
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Recently inspired by the concept of vector variational inequality problem
and its various extensions (see [11] and the references cited therein), quasi
variational inequalities and quasi-equilibrium problems has been extended to
vector-valued functions by many authors (see for example [6, 9, 11, 13-17]).
In this paper, we introduce a new class of vector quasi-variational inequality
problem involving multi-valued mappings, which extends and generalizes the
known equilibrium problems, and the corresponding results in [1, 2, 6, 7, 8, 11,
12-22]. We derive existence results for solution of the vector quasi-variational
inequality problem both under compact and noncompact settings.

2. Formulations and Preliminaries

Before the formal discussion, we introduce some notions and definitions.
Let X be a vector space and K ⊂ X. We shall denote by co(K), the convex
hull of K. If K is a subset of a topological space X, the interior of K in X is
denoted by intX(K) and closure of K in X is denoted by clX(K) or simply
int(K), and cl(K) if there is no ambiguity, respectively. Let X and Y be two
sets, we shall denote by 2X the family of all subsets of X and if F,G : X → 2Y

be multi-valued mappings then the mapping F ∩ G : X → 2Y is defined by
(F ∩G)(x) = F (x) ∩G(x) for each x ∈ X.

Let X and Y be topological vector spaces and T : X → 2Y be a multi-
valued mapping, the graph of T denoted by G(T ), is the set {(x, y) ∈ X ×Y :
x ∈ X, y ∈ T (x)} and the multi-valued mapping T : X → 2Y is defined by
T (x) = {y ∈ Y : (x, y) ∈ clX×Y G(T )}. The set clX×Y G(T ) is called adherence
of the graph of T. The multi-valued mapping clT : X → 2Y is defined by
(clT )(x) = clT (x) for each x ∈ X. It can be seen easily that clT (x) ⊂ T (x)
for each x ∈ X. The inverse of T denoted by T−1 is a multi-valued mapping
from R(T ), range of T , to X defined by x ∈ T−1(y) if and only if y ∈ T (x).
Also T is said to be upper semicontinuous on X if for each x ∈ X and each
open set U in Y containing T (x), there exists an open neighborhood V of x
in X such that T (y) ⊆ U, for each y ∈ V. We denote by L(X, Y ), the space
of all continuous linear operators from X to Y and by 〈u, x〉 the evaluation
of u ∈ L(X, Y ) at x ∈ X. Let K be a non-empty convex subset of X and
C : K → 2Y be a multi-valued mapping such that for each x ∈ K, C(x) is
a closed convex cone with intC(x) 6= ∅, where intC(x) denotes the interior
of C(x). It is clear that the cone C(x) for each x ∈ K can define on Y
a partial order ¹Cx by y ¹Cx z if and only if z − y ∈ C(x). We shall write
y ≺Cx z if z−y ∈ intC(x) in the case intC(x) 6= ∅. The multi-valued mapping
T : K → 2Y is said to be Cx − convex if for each x, y ∈ K and λ ∈ [0, 1],
T (λy + (1− λ)x) ¹Cx λT (y) + (1− λ)T (x).
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Let T : K → 2L(X,Y ) be a multi-valued mapping. For a given continuous
multi-valued mapping A : K → 2K and a vector-valued bifunction f : K ×
K → Y, we consider the following vector quasi-variational inequality problem
(for short, VQVIP): Find x∗ ∈ K such that for all y ∈ A(x∗) there is t∗ ∈
T (x∗) such that

x∗ ∈ clKA(x∗) and 〈t∗, y − x∗〉+ f(x∗, y) /∈ −intY C(x∗). (2.1)

If T ≡ 0, then the (VQVIP) reduces to the problem of finding x∗ ∈ K such
that for all y ∈ A(x∗)

x∗ ∈ clKA(x∗) and f(x∗, y) /∈ −intY C(x∗). (2.2)

It is called vector quasi-equilibrium problem (for short, VQEP) considered by
Khaliq and Krishan [16].

If f(x, y) ≡ 0, A(x) ≡ K for all x, y ∈ K, (VQVIP) becomes generalized
vector variational inequality problem (for short, GVVIP) of finding x∗ ∈ K
such that for all y ∈ K there is t∗ ∈ T (x∗) such that

〈t∗, y − x∗〉 /∈ −intY C(x∗). (2.3)

This problem was introduced and studied by Lin et al.[20] and Konnov and
Yao [18].

If T is single valued mapping, A(x) = K, C(x) = P and f(x, y) = 〈S(x), y−
x〉 for all x, y ∈ K, (VQVIP) reduces to the problem of finding x∗ ∈ K such
that

〈S(x∗) + T (x∗), y − x∗〉 /∈ −intY P, for all y ∈ K, (2.4)

which is known as strongly nonlinear vector variational inequality problem (for
short, SNVVIP) studied by Ansari [1].

The vector variational inequalities are very useful from the application
point of view in optimization, optimal control, economic equilibrium and free
boundary value problems and have been shown to be a useful tool in the
geometrical features of optimization.

The following one person game theorems will be used to establish the main
results of this paper.

Theorem 2.1. Let Γ = (K; A,P ) be a 1-person game such that
(i) K is a nonempty compact convex subset of a Hausdorff topological

vector space,
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(ii) A, clXA : K → 2K be multi-valued mappings such that for each x ∈
K, A(x) is nonempty convex set in K, for each y ∈ K, A−1(y) is open
set in K and clXA is upper semicontinuous,

(iii) P : K → 2K be a multi-valued mapping such that for each x ∈ K, x /∈
coP (x) and for each y ∈ K,P−1(y) is open set in K.

Then there exists x∗ ∈ K such that x∗ ∈ clKA(x∗) and A(x∗)
⋂

P (x∗) = ∅.
Theorem 2.2. Let Γ = (K; A,P ) be a 1-person game such that

(i) K is a nonempty convex subset of a locally convex Hausdorff topological
vector space and D be a nonempty compact subset of K,

(ii) A : K → 2D and clXA : K → 2K be multi-valued mappings such that
for each x ∈ K, A(x) is nonempty convex set, for each y ∈ D,A−1(y)
is open set in K and clXA is upper semicontinuous,

(iii) P : K → 2D be a multi-valued mapping such that for each x ∈ K, x /∈
coP (x) and for each y ∈ D, P−1(y) is open in K.

Then there exists x∗ ∈ K such that x∗ ∈ clKA(x∗) and A(x∗)
⋂

P (x∗) = ∅.
Remark 2.1. Theorem 2.1 is a special case of [9, Theorem 2] and Theorem
2.2 is a special case of [10, Theorem 2].

3. Existence Results

In this section we establish some existence results under compact and non-
compact assumptions. We need the following:

Lemma 3.1 [8]. Let X and Y be topological vector spaces and let L(X, Y )
be equipped with the uniform convergence topology δ. Then the bilinear form
〈., .〉 : L(X, Y )×X → Y is continuous on (L(X,Y ), δ)×X.

Now we are ready to establish the main result of this paper on the existence
of a solution of (VQVIP).

Theorem 3.1. Let K be a nonempty compact convex subset of a Hausdorff
topological vector space X and Y be an ordered Hausdorff topological vector
space. Let f : K×K → Y be a vector-valued bifunction and T : K → 2L(X,Y ) a
multi-valued mapping with compact values. Let C : K → 2Y and A : K → 2K

be the multi-valued mappings. Assume that

(i) for each x ∈ K, f(x, x) = 0,
(ii) f is continuous in the first argument and Cx − convex in the second

argument,
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(iii) the mapping W : K → 2Y defined by W (x) = Y \ (−intY C(x)) for
each x ∈ K, has a closed graph in K × Y,

(iv) for each x ∈ K, C(x) is closed, convex and pointed cone in Y such
that intY C(x) is nonempty,

(v) for each x ∈ K, A(x) is nonempty convex and for each y ∈ K, A−1(y)
is open in K. Also clKA : K → 2K is upper semicontinuous.

Then there exists x∗ ∈ K such that for all y ∈ A(x∗) there is t∗ ∈ T (x∗) such
that

x∗ ∈ clKA(x∗) and 〈t∗, y − x∗〉+ f(x∗, y) /∈ −intY C(x∗).

Proof. Define a multi-valued mapping P : K → 2K as

P (x) = {y ∈ K : 〈T (x), y − x〉+ f(x, y) ⊆ −intY C(x)}, for all x ∈ K.

We show first that x /∈ coP (x), for each x ∈ K. Suppose that x ∈ coP (x), for
some x ∈ K. Then there exists xo ∈ K such that xo ∈ coP (xo). This implies
that xo can be expressed as

xo =
∑

i∈I

λiyi, with λi ≥ 0,
∑

i∈I

λi = 1, i = 1, · · · , n,

where {yi : i ∈ N} be a finite subset of K, I ⊂ N be arbitrary nonempty
subset where N denotes the set of natural numbers. This follows

〈T (xo), yi − xo〉+ f(xo, yi) ⊆ −intY C(xo) for all i = 1, · · · , n.

Therefore for each t ∈ T (xo),

∑

i∈I

λi[〈t, yi − xo〉+ f(xo, yi)] ∈ −intY C(xo). (3.1)

By assumptions (i) and (ii) we have

0 = 〈t, xo − xo〉+ f(xo, xo) ¹Cxo

∑

i∈I

λi[〈t, yi − xo〉+ f(xo, yi)].

Hence ∑

i∈I

λi[〈t, yi − xo〉+ f(xo, yi)] ∈ C(xo). (3.2)
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From (3.1) and (3.2) we have
∑

i∈I

λi[〈t, yi − xo〉+ f(xo, yi)] ∈ {−intY C(xo)} ∩ C(xo) = ∅,

which is a contradiction.
Now we show that for each y ∈ K the set

P−1(y) = {x ∈ K : y ∈ P (x)}
= {x ∈ K : 〈T (x), y − x〉+ f(x, y) ⊆ −intY C(x)},

is open in K, which is equivalent to showing that the set

[P−1(y)]c = K \ P−1(y)

= {x ∈ K : 〈T (x), y − x〉+ f(x, y) * −intY C(x)}
= {x ∈ K : ∃ t ∈ T (x) such that

〈t, y − x〉+ f(x, y) /∈ −intY C(x)}

is closed in K. For this purpose, let {xλ}λ∈Λ be a net in [P−1(y)]c converging
to u ∈ K. Then for each λ there is a tλ ∈ T (xλ) such that

〈tλ, y − xλ〉+ f(xλ, y) ∈ W (xλ).

Since T (x) is compact, without loss of generality we may assume that tλ
converges to some t ∈ T (x). By (ii) f is continuous in the first argument and
by Lemma 3.1 we have for each y ∈ K and for all t ∈ T (x), x → 〈t, y − x〉 is
continuous. Since W has a closed graph in K×Y by assumption (iii) we have

〈t, y − u〉+ f(u, y) ∈ W (u),

that is, 〈t, y−u〉+ f(u, y) /∈ −intY C(u). Hence u ∈ [P−1(y)]c. From assump-
tion (v), it follows that all the hypothesis of Theorem 2.1 are satisfied. Hence
there exists x∗ ∈ K such that

x∗ ∈ clKA(x∗) and A(x∗)
⋂

P (x∗) = ∅.

Which implies that there exists x∗ ∈ K such that for all y ∈ A(x∗) there is
t∗ ∈ T (x∗) such that

x∗ ∈ clKA(x∗) and 〈t∗, y − x∗〉+ f(x∗, y) /∈ −intY C(x∗).

The proof is complete. ¤
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Corollary 3.1. Let K be a nonempty compact convex subset of a Hausdorff
topological vector space X and Y be an ordered Hausdorff topological vector
space. Let T : K → 2L(X,Y ) be a multi-valued mapping with compact values
and h : K → Y be a continuous convex vector-valued function. Let C : K →
2Y and A : K → 2K be the multi-valued mappings. Assume that conditions
(iii)-(v) of Theorem 3.1 holds. Then there exists x∗ ∈ K such that for all
y ∈ A(x∗) there is t∗ ∈ T (x∗) such that

x∗ ∈ clKA(x∗) and 〈t∗, y − x∗〉+ h(y)− h(x∗) /∈ −intY C(x∗).

Proof. If we set f(x, y) = h(y)− h(x), then we see that all the assumptions
of Theorem 3.1 holds and hence the conclusion follows from Theorem 3.1. ¤

Corollary 3.2. If in Corollary 3.1 we assume that C(x) = R+ for each
x ∈ K, L(X, Y ) = X∗ and all the assumptions are satisfied then there exists
x∗ ∈ K such that for all y ∈ A(x∗) there is t∗ ∈ T (x∗) such that

x∗ ∈ clKA(x∗) and <〈t∗, x∗ − y〉 ≤ h(x∗)− h(y).

For the noncompact case we need the following concept of escaping se-
quences introduced in Border [3].

Definition 3.1. Let X be a topological space and K a subset of X such that

K =
∞⋃

n=1

Kn, where {Kn}∞n=1 is an increasing sequence of nonempty compact

sets in the sense that Kn ⊆ Kn+1 for all n ∈ N . A sequence {xn}∞n=1 in K
is said to be escaping sequence from K (relative to {Kn}∞n=1) if for each n
there is an M such that k ≥ M, xk /∈ Kn.

Theorem 3.2. Let K be a nonempty subset of a Hausdorff topological vec-

tor space X and K =
∞⋃

n=1

Kn, where {Kn}∞n=1 is an increasing sequence of

nonempty, compact and convex subsets of K. Let Y, f, T, C, W and A be the
same as in Theorem 3.1 and satisfies all the conditions. In addition, suppose
that for each sequence {xn}∞n=1 in K with xn ∈ Kn, n ∈ N which is escaping
from K relative to {Kn}∞n=1, there exists m ∈ N and ym ∈ Km

⋂
A(xm) such

that for each xm ∈ clKA(xm), there is tm ∈ T (xm) such that

〈tm, ym − xm〉+ f(xm, ym) ∈ −intY C(xm). (3.3)
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Then there exists x∗ ∈ K such that for all y ∈ A(x∗) there is t∗ ∈ T (x∗) such
that

x∗ ∈ clKA(x∗) and 〈t∗, y − x∗〉+ f(x∗, y) /∈ −intY C(x∗).

Proof. Since for each n ∈ N, Kn is compact and convex set in X, Theorem
3.1 implies that for all n ∈ N , there exists xn ∈ Kn such that for all z ∈ A(xn)
there is tn ∈ T (xn) such that

xn ∈ clKA(xn) and 〈tn, z − xn〉+ f(xn, z) /∈ −intY C(xn). (3.4)

Suppose that the sequence {xn}∞n=1 be escaping from K relative to {Kn}∞n=1.
By assumption (3.3), there exists m ∈ N and zm ∈ Km

⋂
A(xm) such that

for each xm ∈ clKA(xm), there is tm ∈ T (xm) such that

〈tm, zm − xm〉+ f(xm, zm) ∈ −intY C(xm),

which contradicts (3.4). Hence {xn}∞n=1 is not an escaping sequence from K
relative to {Kn}∞n=1. Since T is a multi-valued mapping with compact values,
thus using the arguments similar to those used in proving [14,Theorem 3.2] and
[16,Theorem 2], there exists r ∈ N and x∗ ∈ Kr such that xn → x∗ and there
is t ∈ T (x∗) such that 〈t, y − x∗〉 + f(x∗, y) ∈ W (x∗). Since clKA : K → 2K

is upper semicontinuous with compact values, hence there exists x∗ ∈ K such
that for all y ∈ A(x∗) there is t∗ ∈ T (x∗) such that

x∗ ∈ clKA(x∗) and 〈t∗, y − x∗〉+ f(x∗, y) /∈ −intY C(x∗).

The proof is complete. ¤
Theorem 3.3. Let K be a nonempty convex subset of a locally convex Haus-
dorff topological vector space X and D be a nonempty compact subset of K.
Let Y be an ordered Hausdorff topological vector space. Let f : K ×K → Y
be a vector-valued bifunction, T : K → 2L(X,Y ) a multi-valued mapping with
compact values and C : K → 2Y a multi-valued mapping such that for each
x ∈ K, C(x) is closed, convex and pointed cone in Y with intY C(x) 6= ∅. Let
A, clKA : K → 2D be multi-valued mappings such that for each x ∈ K, A(x)
is nonempty convex, for each y ∈ K, A−1(y) is open in K and clKA is upper
semicontinuous. Suppose that conditions (i)-(iii) of Theorem 3.1 holds. Then
there exists x∗ ∈ K such that for all y ∈ A(x∗) there is t∗ ∈ T (x∗) such that

x∗ ∈ clKA(x∗) and 〈t∗, y − x∗〉+ f(x∗, y) /∈ −intY C(x∗).
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Proof. Define a multivalued mapping P : K → 2K as

P (x) = {y ∈ D : 〈T (x), y − x〉+ f(x, y) ⊆ −intY C(x)} for all x ∈ K.

Then using the arguments similar to those used in proving Theorem 3.1, we
have x /∈ coP (x) for each x ∈ K and P−1(y) is open for each y ∈ D. Thus all
the conditions of Theorem 2.2 are satisfied. Hence there exists x∗ ∈ K such
that

x∗ ∈ clKA(x∗) and A(x∗) ∩ P (x∗) = ∅.
Which implies that there exists x∗ ∈ K such that for all y ∈ A(x∗) there is
t∗ ∈ T (x∗) such that

x∗ ∈ clKA(x∗) and 〈t∗, y − x∗〉+ f(x∗, y) /∈ −intY C(x∗).

The proof is complete. ¤
Corollary 3.3. Let K be a nonempty convex subset of a locally convex Haus-
dorff topological vector space X and D be a nonempty compact subset of K.
Let Y be an ordered Hausdorff topological vector space. Let T : K → 2L(X,Y )

be a multi-valued mapping with compact values and h : K → Y be a continuous
convex vector-valued function. Let C : K → 2Y be a multi-valued mapping
such that for each x ∈ K, C(x) is closed, convex and pointed cone in Y with
intY C(x) 6= ∅. Let A, clKA : K → 2D be multi-valued mappings such that
for each x ∈ K, A(x) is nonempty convex, for each y ∈ K, A−1(y) is open
in K and clKA is upper semicontinuous. Suppose that conditions (i)-(iii) of
Theorem 3.1 holds. Then there exists x∗ ∈ K such that for all y ∈ A(x∗)
there is t∗ ∈ T (x∗) such that

x∗ ∈ clKA(x∗) and 〈t∗, y − x∗〉+ h(y)− h(x∗) /∈ −intY C(x∗).

Proof. If we set f(x, y) = h(y)− h(x), then we see that all the assumptions
of Theorem 3.3 holds and hence the conclusion follows from Theorem 3.3. ¤
Corollary 3.4. If in Corollary 3.3 we assume that C(x) = R+ for each
x ∈ K, L(X, Y ) = X∗ and all the assumptions are satisfied, then there exists
x∗ ∈ K such that for all y ∈ A(x∗) there is t∗ ∈ T (x∗) such that

x∗ ∈ clKA(x∗) and <〈t∗, x∗ − y〉 ≤ h(x∗)− h(y).
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Remark 3.1. The results of section 3 generalizes and improves the corre-
sponding results in [1, 2, 14, 15, 17]. Corollary 3.3 is a noncompact gener-
alization of Theorem 2.2 and Theorem 2.4 of Chowdhury and Tan [5]. We
note that our proof of Corollary 3.3 depends on the existence theorem of one
person game instead of generalized version of Ky Fan’s minimax inequality.
Corollary 3.4 is a noncompact generalization of Corollary 1 of Chowdhury and
Tan [4].
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