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APPLICATION OF SCALING GROUP OF

TRANSFORMATIONS TO VISCOELASTIC

SECOND-GRADE FLUID FLOW

T. Tapanidis, Gr. Tsagas and H. P. Mazumdar

Abstract. A scaling group of transformations is applied to the steady two-
dimensional viscoelastic second grade fluid flow over a stretching sheet. It is
shown that the system remain invariant due to some relations among the pa-
rameters of the transformations. Two absolute invariants are then found out
and utilized to derive a fourth-order standard differential equation correspond-
ing to the momentum equation. This fourth-order differential equation admits
an exact solution to the problem.

1. Introduction

In many applied flow problems, the partial differential equations governing
the motion of the fluid are nonlinear and hence can not be solved easily. A
popular goal is to obtain similarity solution wherever possible by employing
transformations that reduce the system of partial differential equations to a
system of ordinary differential equations. A systematic method namely, the
group-theoretic method has been developed from Sophus Lie’s idea of continu-
ous group of transformations. Ames [1], Birkhoff [3], Bluman-Cole [4], Hansen
[5], Ibragimov [6], Olver [7], Seshadri-Na [12] and Stephani [14] have discussed
application of groups and symmetries to partial differential equations arising
from physical problems along with the boundary conditions. In the present
analysis, we apply a special form of Lie’s group transformations namely, the
scaling group of transformations to the problem of flow of viscoelastic second
grade fluid over a stretching sheet.
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2. Formulation of the problem

Sakiadis [11] first studied the boundary layer flow of a viscous fluid due
to the motion of an inextensible plane sheet in its own plane. Beard-Walters
[2], Rajgopal et al. [9, 10], Siddappa-Abel [13] and many others have inves-
tigated the boundary layer flow of viscoelastic fluid past a stretching sheet.
The results of this type of investigation are considered important to gain in-
sight into polymer processing industry namely, the continuous extrusion of a
polymer sheet from a die. Beard-Walters [2] derived the steady two dimen-
sional boundary layer equations for the viscoelastic second grade fluid past a
stretching sheet y = 0, as

∂u

∂x
+

∂v

∂y
= 0 (2.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− κ

[
∂

∂x

(
u

∂2u

∂y2

)
+

∂u

∂y
· ∂2v

∂y2
+ v

∂3u

∂y3

]
(2.2)

where u and v are the components of velocity, respectively in the x and y
direction; ν = µ/ρ is the kinematic viscosity, µ is the viscosity and ρ is
the density of the fluid and κ is a positive parameter associated with the
viscoelastic fluid.

The boundary conditions for x ≥ 0, are given by

u = Cx and v = 0 at y = 0
u → 0 as y →∞ (2.3)

The sheet is moving in its own plane with a speed proportional to the distance
from the origin, C being the constant of proportionality.

In the next section, our aim will be to reduce the momentum equation (2.2)
into an ordinary differential equation.

3. Application of scaling group of transformations

To non-dimensionalize the equations, we introduce L as half length of the
sheet, U = CL and the Reynolds number Re = UL/ν and write

x =
x

L
, y =

y

L

√
Re, u =

u

U
, v =

v

U

√
Re. (3.1)

Substituting the relations (3.1) in equations (2.1) and (2.2), we obtain
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where K = κC/ν.
The boundary conditions (2.3) are reduced to

u = x and v = 0 at y = 0
u → 0 as y →∞ (3.4)

Let us introduce the stream function ψ as

u =
∂ψ

∂y
, v = −∂ψ

∂x
(3.5)

Clearly, the relations (3.5) satisfy the continuity equation (3.2).
Substituting (3.5) in equation (3.3), we obtain
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The boundary conditions (3.4) are transformed to
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= x,
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= 0 at y = 0

∂ψ
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→ 0 as y →∞

(3.7)

We now introduce the simplified form of Lie-group transformations namely,
the scaling group of transformations (see Patel-Timol [8]) as

Γ :





x∗ = e∈ax; y∗ = e∈by;
ψ∗ = e∈cψ

u∗ = e∈fu; v∗ = e∈gv

(3.8)

(3.8) may be considered as a point-transformation which transforms coordi-
nates (x, y, ψ, u, v) to the coordinates (x∗, y∗, ψ∗, u∗, v∗).
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Substituting (3.8) into (3.6), we obtain
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In order that the system will remain invariant under the group of transfor-
mation Γ, we would have the following relations among the transformation
parameters, namely

a + 2b− 2c = 3b− c = a + 4b− 2c (3.10)

From (3.10), we obtain easily b = 0 and a = c. In view of this, the boundary
conditions are transformed to

∂ψ∗

∂y∗
= x∗;

∂ψ∗

∂x∗
= 0 at y∗ = 0

∂ψ∗

∂y∗
→ 0 as y∗ →∞ (3.11)

with the additional conditions a = c = f and g = 0. Thus the set Γ reduces
to a one-parameter group of transformations :

x∗ = e∈ax, y∗ = y, ψ∗ = ea∈ψ, u∗ = ea∈u, v∗ = v (3.12)

Absolute invariants :
First we find an absolute invariant, which is a function of the independent

variable, namely η = y xs

For this purpose, we write

x∗ = Ax, A = e∈a ; y∗ = Ab/ay ; ψ∗ = Ac/aψ (3.13)

To establish y∗x∗s = y xs, we have

y∗x∗s = yAb/a ·Asxs = As+ b
a y xs

Putting s + b
a = 0, we obtain y∗x∗s = y xs
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Now, since b = 0 and s = 0, we obtain for the present case η = y∗x∗0 = y∗,

Thus η = y∗ is an absolute invariant. (3.14)

We now find a second absolute invariant G, which involves the dependent
variable ψ. Let us assume that G = xrψ. We will find r such that

xrψ = x∗
r

ψ∗

Now,
x∗

r

ψ∗ = ArxrAc/aψ = Ar+ c
a xrψ

Putting r + c
a = 0, or, r = − c

a = −1, since c = a.
Thus, the second absolute invariant G is, given by

G = x∗
−1

ψ∗

Now, putting G = F (η), we can write

ψ∗ = x∗F (η) (3.15)

4. Solution of the problem

In view of the relations (3.14) and (3.15), we obtain easily the transformed
version of equation (3.9) with b = 0, a = c, as

F ′′′(η)+F (η)F ′′(η)−F ′
2
(η) = K[2F ′(η)F ′′′(η)−F ′′

2
(η)−F (η)F iv(η)] (3.16)

It can easily verified that equation (3.16) admits an exact solution

F (η) =
1
p

(
1− e−pη

)
, (3.17)

where
p = (1−K)−1/2; 0 < K < 1 (3.18)

Remarks : The problem of flow of a viscoelastic second grade fluid has been
studied by many authors. Unlike these authors, in the present approach it is
shown that the application of scaling group of transformations to the prob-
lem is unique. It turns out to be a one-parameter group of transformations
which helped, finally in deducing the desired equation. As the scaling-group
of transformations originate from Lie’s group theory, its application to the
problems of hydrodynamics is highly desirable.
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