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MEASURE SOLUTIONS FOR EVOLUTION EQUATIONS

WITH DISCONTINUOUS VECTOR FIELDS

N. U. Ahmed

Abstract. In this paper we present some results on the question of existence
of generalized or measure valued solutions for semilinear evolution equations on
Banach spaces with the nonlinear part being merely measurable and bounded
on bounded sets. This admits discontinuities and exponential growth of the
nonlinear term. This is a far reaching generalization of the previous results of
the author and others.

1. Motivation

Let us consider the evolution equation

ẋ = Ax + f(x), t ≥ 0

x(0) = ξ
(1.1)

in a Banach space E where A is the infinitesimal generator of a C0-semigroup,
S(t), t ≥ 0, on E and f : E −→ E is a continuous map. It is well known
that if E is finite dimensional, mere continuity of f is good enough to prove
the existence of local solutions with possibly finite blow up time. If E is an
infinite dimensional Banach space this is no longer true unless the semigroup
S(t), t > 0 is compact. For example, see [1, Theorem 5.3.6, p172]. In recent
years [2,3,4,5,6,9], a generalized notion of solution (measure solution) has been
introduced extending the standard notions such as classical, strong, mild and
weak. This has made it possible to prove the existence of (generalized) so-
lutions without requiring either of the hypothesis: the Lipschitz property of
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f and the compactness of the semigroup. In all these papers, except [5], it
was assumed that f is a continuous map and that it is locally Lipschitz and
that A is the generator of a C0-semigroup on E. In [5] the requirement of
local Lipschitz condition for f was removed and relaxed to a much broader
condition requiring that f is continuous and bounded on bounded sets. This
admits f having polynomial and even exponential growth. In this paper we
relax this condition further. Here we require f to be only measurable and
bounded on bounded sets. The rest of the paper is organized as follows. In
section 2, we present some basic concepts related to finitely additive measures
and associated function spaces including the definition of measure solutions.
In section 3, we present our new results. In section 4, we discuss the question
of uniqueness of measure solutions. The paper is concluded with some open
questions.

2. Introduction

For the purpose of formulation of measure solutions, we need the charac-
terization of the dual of the Banach space L1(I, X) where I ≡ [0, T ] is a finite
interval of the real line and X is a Banach space. Let X∗ denote the dual of
X, and < . > the duality pairing of X∗ and X. It is well known that if both
X and X∗ satisfy Radon-Nikodym property (RNP) then the dual of L1(I, X)
is given by L∞(I, X∗). See Diestel Jr and Uhal [7]. In general it follows
from the theory of “Lifting” [10, Theorem 7 and its Corollary , p94] that the
dual of L1(I, X) is given by Lw

∞(I, X∗) which is the class of w∗-measurable
X∗-valued functions {g} with weak forms given by t −→< g(t), x > being
essentially bounded measurable real valued functions. The space is furnished
with the norm ‖ g ‖Lw∞(I,X∗)= α where α is the smallest number for which
the inequality

ess-sup{|(g(t), x))|, t ∈ I} ≤ α ‖ x ‖X

is satisfied.
Let Z denote any topological space and B0(Z) the space of bounded scalar

valued functions on Z with the topology of sup norm given by

‖ f ‖≡ sup{|f(z)|, z ∈ Z}.

This is a Banach space. However the elements of this space may not be mea-
surable. Let Σ denote a field of subsets of the set Z and let B(Z) ≡ B(Z, Σ)
denote the class of scalar functions which are uniform limits of characteristic
functions of sets from Σ. The space B(Z) is furnished with the same topology
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as in B0(Z). An element f of this space is said to be Σ measurable if for every
Borel set σ in the range space, the set

{z ∈ Z : f(z) ∈ σ} ∈ Σ.

The class of all bounded Σ measurable functions is dense in B(Z). It is clear
that B(Z) is a closed subspace of B0(Z) and hence it is also a Banach space.
Let Mba(Z) ≡ Mba((Z, Σ)) denote the class of all scalar valued finitely ad-
ditive measures defined on the algebra Σ. Furnished with the total variation
norm, Mba(Z) is a Banach space.

The following Lemma characterizes the topological dual B∗(Z) of the Ba-
nach space B(Z).

Lemma 2.1. The space B∗(Z) ∼= Mba(Z), that is B∗(Z) is isometrically
isomorphic to the space of bounded finitely additive measures on Z ≡ (Z, Σ)
in the sense that, for every ` ∈ B∗(Z), there exists a unique µ ∈Mba(Z) such
that

`(f) =
∫

Z

f(z)µ(dz), f ∈ B(Z),

and conversely, every µ ∈ Mba(Z) determines a unique continuous linear
functional on B(Z).

Proof. see Dunford and Schwartz [8, Theorem IV.5.1, p 258]. ¤
Let Πba(Z) ⊂Mba(Z) denote the class of finitely additive probability mea-

sures furnished with the relative topology. The Banach space B(Z) and its
dual Mba(Z) do not satisfy RNP. Therefore it follows from the characteriza-
tion result discussed in the introduction that the dual of L1(I, B(Z)) is given
by Lw

∞(I,Mba(Z)) which is furnished with the weak star topology.
We consider the Cauchy problem in a Banach space E,

ẋ = Ax + f(t, x), t ∈ I ≡ [0, τ ],

x(0) = x0 ∈ E,
(2.1)

where A is the generator of a C0-semigroup S(t), t ≥ 0, in E, and f is map
from I × E to E. Let B denote the sigma algebra of Borel subsets of the
interval I and Σ a field or algebra of subsets of the set E, generated by closed
subsets of E. Our general assumption is that f is a B × Σ measurable map
with values in E.

The following general notion of measure solutions was introduced by the
author in [3,4,5,6], where regular bounded finitely additive measures Mrba(Z)
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were used instead of Mba(Z) ⊃Mrba
∼= (BC(Z))∗. This generalization allows

measurable vector fields in the evolution equations. For an earlier definition
of measure solutions, which is somewhat restrictive, see Fattorini [9].

Let Dφ denote the Frechet derivative of φ ∈ BC(E) whenever it exists and
introduce the class of test functions F , given by

F ≡ {φ ∈ BC(E) : Dφ exists, Dφ ∈ B(E,E∗)}.

Define the operator A with domain given by

D(A) ≡ {φ ∈ F : Aφ ∈ B(E)}

where

(Aφ)(t, ξ) =< A∗Dφ(ξ), ξ >E∗,E + < Dφ(ξ), f(t, ξ) >E∗,E , for φ ∈ D(A).
(2.4)

Note that D(A) 6= ∅, for example, for ψ ∈ F , the function φ given by φ(x) ≡
ψ(λR(λ,A)x), belongs to D(A) for each λ ∈ ρ(A), the resolvent set of A.

Consider the system (2.1) with A and f as defined above. We shall write

(A(t)φ)(ξ) ≡ (Aφ)(t, ξ).

Definition 2.2. A measure valued function µ ∈ Lw
∞(I,Mba(E)) is said to

be a generalized solution of equation (2.1) if, for every φ ∈ D(A) with Dφ
having bounded supports, the following equality holds

µt(φ) = φ(x0) +
∫ t

0

µs(Aφ)ds, t ∈ I, (2.5)

where
µt(ψ) ≡

∫

E+
ψ(ξ)µt(dξ), t ∈ I.

For simplicity of notation we shall use D(A) to denote the common domain
of the operators A(t), t ∈ I.

3. Existence of measure solution

The following result proves the existence of measure solutions for equation
(2.1) under the assumption that f is a bounded B × Σ measurable map on
I × E with values in E.
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Theorem 3.1. Consider the system (2.1) and suppose E is a separable Ba-
nach space. Let A be the generator of a C0-semigroup in E and f : I×E −→ E
be a bounded B × Σ measurable map satisfying the following approximation
property:

(ai): there exists a sequence {fn} such that fn(t, x) ∈ D(A) for x ∈ E and
almost all t ∈ I; and, further, for almost all t ∈ I, and e∗ ∈ E∗,

< e∗, fn(t, x) >E∗,E−→< e∗, f(t, x) >E∗,E for each x ∈ E.

(aii): for any r > 0, there exists a sequence {αr,n} ∈ L+
1 (I), possibly

‖ αr,n ‖→ ∞ as n →∞, such that

‖ fn(t, x)− fn(t, y) ‖≤ αr,n(t) ‖ x− y ‖, x, y ∈ Br

where Br ⊂ E is a ball of radius r around the origin.
Then, for every x0 ∈ E, the evolution equation (2.1) has at least one gener-
alized solution µ ∈ Lw

∞(I,Mba(E)) in the sense of definition (2.2). Further,
µ ∈ Lw

∞(I,Πba(E)) and it is w∗ continuous.

Proof. Let ρ(A) denote the resolvent set of the operator A and R(λ,A) the
corresponding resolvent operator for λ ∈ ρ(A). Since A is the infinitesimal
generator of a C0-semigroup there exists a nonnegative number ω such that
(ω,∞) ⊂ ρ(A). Let An ≡ nAR(n,A) denote the Yosida approximation of A
defined for all n ∈ ρ(A). Now consider the sequence of evolution equations

ẋ = Anx + fn(t, x), t ∈ I,

x(0) = x0,n ≡ nR(n,A)x0.
(2.1)n

By assumption, f is bounded measurable, and the sequence fn converges to f
in the sense described by hypothesis (ai). Thus {fn} must also be a bounded
sequence. Let the common bound be denoted by bf , that is,

sup{‖ f(t, ξ) ‖E , ‖ fn(t, ξ) ‖E , (t, ξ) ∈ I × E} ≤ bf .

Since fn is contained in D(A) and, by assumption (aii), they are locally Lip-
schitz and the data x0,n ∈ D(A), it follows from semigroup theory [see 1,
p156] that for each n ∈ ρ(A) this equation has a unique strong solution xn

with values xn(t) ∈ D(A) and ẋn ∈ L1(I, E) satisfying the first identity of
equation (2.1)n, for almost t ∈ I. Since every strong solution is also a mild
solution, xn must also satisfy the integral equation

xn(t) = Sn(t)x0,n +
∫ t

0

Sn(t− s)fn(s, xn(s))ds, t ∈ I, (3.1)
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where Sn(t), t ≥ 0, is the semigroup generated by An. In fact these are uni-
formly continuous semigroups since their generators are bounded operators.
Since

sup{‖ S(t) ‖, t ∈ I} ≤ M

and
Sn(t) −→ S(t)

in the strong operator topology in L(E) uniformly on compact intervals, it
follows from uniform boundedness principle that there exists a finite positive
number M̃ ≥ M such that

sup{‖ Sn(t) ‖, t ∈ I} ≤ M̃.

Hence it follows from equation (3.1) that that there exists a finite positive
number r̃ such that

sup{‖ xn(t) ‖, t ∈ I} ≤ M̃{‖ xo ‖ +bfT} ≡ r̃ ∀n ∈ N.

Thus for any r ≥ r̃, we have xn(t) ∈ Br ⊂ E for all t ∈ I and all n ∈ N. Since
{xn} is a sequence of strong solutions of equation (2.1)n, it is clear that, for
every φ ∈ F ,

φ(xn(t)) = φ(x0,n)+
∫ t

0

< Dφ(xn(s)), Anxn(s)+fn(s, xn(s)) >E∗,E ds. (3.2)

Let δe(·) denote the Dirac measure on E with its mass concentrated at the
point e ∈ E and define

λn
t (dξ) ≡ δxn(t)(dξ) and λn

0 (dξ) = δx0,n(dξ).

Using this notation we can rewrite equation (3.2) in the form

λn
t (φ) = λn

0 (φ) +
∫ t

0

λn
s (An(s)φ)ds, t ∈ I, (3.3)

where the operator An is given by

(Anφ)(t, ξ) =< A∗nDφ(ξ), ξ >E∗,E + < Dφ(ξ), fn(t, ξ) >E∗,E , (3.4)

for φ ∈ D(A). Clearly, for each integer n ∈ ρ(A), λn ∈ Lw
∞(I,Πba(E)) ⊂

Lw
∞(I,Mba(E)) and it follows from our preceding analysis that

supp(λn
t ) ⊂ Br, ∀t ∈ I, n ∈ N.
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Our concern now is to show that the sequence {λn} has a limit and that the
limit is a generalized solution of our original problem. Towords this goal,
consider the sequence of linear functionals {`n} given by

`n(ϕ) ≡
∫

I×E

ϕ(t, ξ)λn
t (dξ)dt. (3.5)

Clearly this is well defined for each ϕ ∈ L1(I, B(E)) and

|`n(ϕ)| ≤‖ ϕ ‖L1(I,B(E)), ∀n ∈ ρ(A).

In other words {`n} is a sequence of bounded linear functionals contained in
a bounded subset of (L1(I, B(E)))∗ the dual of L1(I, B(E)). Thus it follows
from the characterization of the dual space of the Banach space L1(I, B(E)),
that the sequence {λn} is confined in a bounded subset of Lw

∞(I,Mba(E)).
Hence by Alaoglu’s theorem there exists a subsequence (subnet) of the se-
quence (net) {λn}, relabeled as {λn}, and a λo ∈ Lw

∞(I,Mba(E)) such that

λn w∗−→ λo, in Lw
∞(I,Mba(E)). (3.6)

We must show that λo is a measure (generalized) solution of the evolution
equation (2.1) in the sense of Definition 2.2. Let φ ∈ D(A) with both φ and
Dφ being continuous and bounded having compact supports which may be
different for different φ. Define

(Bnφ)(ξ) ≡< (A∗n −A∗)Dφ(ξ), ξ >E∗,E

(Cn(t)φ)(ξ) ≡ (Cnφ)(t, ξ)

≡< Dφ(ξ), fn(t, ξ)− f(t, ξ) >E∗,E , (t, ξ) ∈ I × E.

(3.7)

Using these expressions, equation (3.3) can be rewritten as

λn
t (φ) = λn

0 (φ) +
∫ t

0

λn
s (A(s)φ)ds

+
∫ t

0

λn
s (Bnφ)ds +

∫ t

0

λn
s (Cn(s)φ)ds, t ∈ I.

(3.8)

Consider the first expression of equation (3.7). Since An −→ A on D(A) in
the strong operator topology and, for φ ∈ D(A), Dφ(ξ) ∈ D(A∗), and by our
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choice Dφ is continuous and bounded having compact support, it is clear that
Bnφ ∈ B(E) and that

(Bnφ) s−→ 0 in B(E).

Since Bnφ is independent of t and I is a finite interval, it is evident that

(Bnφ) s−→ 0 in L1(I, B(E)) (3.9)

as n → ∞. Consider the second expression of (3.7). By use of similar ar-
guments and assumption (ai) along with Lebesgue dominated convergence
theorem, one can easily verify that

(Cnφ) s−→ 0 in L1(I, B(E)) (3.10)

also as n →∞. Let χσ denote the characteristic function of any set σ ∈ B. In
view of (3.6), (3.9) and (3.10), we have, for each t ∈ I,

∫ t

0

λn
s (Bnφ)ds ≡

∫

I

χ[0,t](s)λn
s (Bnφ)ds −→ 0

∫ t

0

λn
s (Cnφ)ds ≡

∫

I

χ[0,t](s)λn
s (Cnφ)ds −→ 0,

(3.11)

as n → ∞. Note that for φ ∈ D(A) with Dφ having bounded support, it
follows from B×Σ measurability and boundedness of f thatAφ ∈ L1(I, B(E)).
Hence for the second term on the right hand side of equation (3.8), it follows
from (3.6) that

∫ t

0

λn
s (A(s)φ)ds ≡

∫

I

χ[0,t](s)λn
s (A(s)φ)ds

−→
∫

I

χ[0,t](s)λo
s(A(s)φ)ds =

∫ t

0

λo
s(A(s)φ)ds,

(3.12)

as n →∞. Since x0,n
s−→ x0 in E and φ is continuous and bounded we have

φ(x0,n) −→ φ(x0) (3.13)

as n →∞. Thus letting n →∞ in (3.8), it follows from (3.11), (3.12), (3.13)
and (3.6) that

λo
t (φ) = λ0(φ) +

∫ t

0

λo
s(A(s)φ)ds, t ∈ I, (3.14)
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where λ0(φ) = δx0(φ) = φ(x0). Since λo ∈ Lw
∞(I,Mba(E)) and the second

term on the right hand side of the above identity is bounded for any φ ∈ D(A)
and the first term holds for any continuous (even bounded) φ, it is clear that
equation (3.14) holds for all φ ∈ D(A), and not just for only those having
compact supports. Since λo ∈ Lw

∞(I,Mba(E)) and it is the (unique) weak
star limit of a sequence {λn} from Lw

∞(I, Πba(E)) and that this set is weak
star closed we have λo ∈ Lw

∞(I, Πba(E)). This proves that λo is a generalized
solution of the evolution equation (2.1) in the sense of Definition 2.2. The last
part of the theorem, asserting w∗ continuity, follows readily from the integral
expression (3.14). This completes the proof. ¤

Remark. We have seen that supp(λn
t ) ⊂ Br for all t ∈ I and for all n ∈ N

where the number r = r(M̃, bf , T, ‖ x0 ‖) is as defined earlier which depends
on the parameters as displayed. Using this fact it is easy to verify that the
limit has similar support properties. Precisely, we have

supp(λo
t ) ⊂ B̄r

for all t ∈ I.

The result given above depends on the existence of an approximating se-
quence {fn} approximating the nonlinear measurable map f . The existence
of such an approximating sequence follows from the following result. Thus
these assumptions are natural and do not in any way limit the results.

Proposition 3.2. Suppose E is a separable Banach space, A is a linear (gen-
erally unbounded) operator with domain and range in E having nonempty re-
solvent set ρ(A) with resolvent denoted by R(λ,A). Then, for every bounded
B × Σ measurable map f = f(t, x) which is Lebesgue-Bochner integrable in
t on I, uniformly with respect to x in bounded subsets of E, there exists a
sequence {fn} satisfying the hypotheses (ai) and (aii) of Theorem 3.1.

Proof. By virtue of separability, the Banach space E has a Schauder basis
{ei}. Corresponding to this basis, let {En} ⊆ E be an increasing family of n-
dimensional subspaces of E and {Qn} the corresponding family of projections
of E to En. Let Λn : E −→ Rn denote the linear map taking each element
x of E into it’s first n Fourier coefficients. That is Λnx = col{(`i(x)), i =
1, 2, 3 · · ·n}, where {`i} is a sequence of continuous linear functionals on E
with ‖ `i ‖E∗= 1 associated with the Schauder basis {ei} of E. We use C∞

molifiers to construct a smooth family {fn} approximating the given f. Let
n ∈ N and ρn ∈ C∞0 (Rn) be a family of C∞ functions on Rn with compact
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supports satisfying

ρn(ξ) ≥ 0, ρn(ξ) = ρn(−ξ), supp(ρn) ⊆ {ξ ∈ Rn : |ξ|Rn ≤ (1/n)}

and
∫

Rn

ρn(ξ)dξ = 1, n ∈ N.

Let Jn ≡ nR(n,A) for n ∈ ρ(A)∩N and recall that Jn converges in the strong
operator topology to the identity operator in E and that Jn(E) ⊂ D(A).
Define

fn(t, x) ≡
∫

Rn

Jnf(t,Qnx−
n∑

i=1

ξiei)ρn(ξ)dξ.

By a simple change of variables this can be written as

fn(t, x) ≡
∫

Rn

Jnf(t,
n∑

i=1

ηiei)ρn(Λnx− η)dη. (3.15)

Since f is a bounded (B ×Σ) measurable map on I ×E and ρn has compact
support, the integral is well defined and hence the sequence {fn} is well defined
satisfying fn(t, x) ∈ D(A) for all (t, x) ∈ I × E. Further, for any e∗ ∈ E∗, it
follows from the following expression,

< fn(t, x), e∗ >E,E∗=
∫

Rn

< Jnf(t,
n∑

i=1

ηiei), e∗ >E,E∗ ρn(Λnx−η)dη, (3.16)

that, for almost all t ∈ I, and every x ∈ E, fn(t, x) converges weakly to f(t, x).
This is weak star convergence of fn point wise in x ∈ E. Clearly this also
implies uniform convergence on compact subsets of E. Thus the hypothesis
(ai) is satisfied. For the local Lipschitz property, note that

fn(t, y)−fn(t, x) ≡
∫

Rn

Jnf(t,
n∑

i=1

ηiei){ρn(Λny−η)−ρn(Λnx−η)}dη. (3.17)

Using Lagrange formula applied to the modifier, we have

ρn(η) = ρn(ξ) +
∫ 1

0

(Dρn(ξ + θ(η − ξ)), η − ξ)dθ, η, ξ ∈ Rn

where D denotes the first Frechet derivative. Taking any ball Br ⊂ E, r > 0,
and using this formula in equation (3.17) one can verify that there exists an
αr,n ∈ L+

1 (I) such that

‖ fn(t, y)− fn(t, x) ‖E≤ αr,n(t) ‖ y − x ‖E ,∀t ∈ I,
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for all x, y ∈ Br. Indeed, by simple computation one can discover that the
function αr,n can be chosen as

αr,n(t) ≡
∫

Rn

γ{‖ Jnf(t,
n∑

i=1

ηiei) ‖E}gr,n(η)dη

where the function gr,n is given by

gr,n(η) ≡ sup
0≤θ≤1;x,y∈Br

|Dρn(Λnx− η + θ(Λny − Λnx))|Rn

and γ is the smallest positive number for which |Λnx|Rn ≤ γ ‖ x ‖E for all x ∈
E and for all n ∈ N. Since Dρn is also a C∞ function having compact support,
it is clear that gr,n vanishes outside a bounded subset of Rn. Thus for the
given f which is a bounded B×Σ measurable map taking values from E, the
integral defining the function αr,n is finite almost every where. Hence {αr,n}
is a well defined sequence of finite (actually bounded) measurable functions.
Since by our assumption, t −→ f(t, x) is Bochner integrable, uniformly with
respect to x on bounded subsets of E, it follows from Fubini’s theorem that
αr,n ∈ L+

1 (I). Thus hypothesis (aii) holds. This completes the proof. ¤

Remark. Note that, for the proof of the previous proposition, we have only
used the B×Σ measurability of f and its uniform boundedness on E. In other
words it is not necessary that f be a bounded B×Σ measurable map on I×E.

Now we are prepared to prove the existence result for unbounded B × Σ
measurable map f defined on I×E taking values from E. We prove this result
under the assumption that f is B×Σ measurable and that it is bounded only
on bounded subsets of E.

Theorem 3.3. Let A be the infinitesimal generator of a C0-semigroup in the
Banach space E and f : I ×E 7→ E is B ×Σ measurable, integrable in t on I
uniformly with respect to x on bounded subsets of E, and, for almost all t ∈ I,
it is bounded on bounded subsets of E. Then, for each x0 ∈ E, the evolution
equation (2.1) has at least one measure solution λ ∈ Lw

∞(I,Πba(E)). Further
t → λt is w∗ continuous.

Proof. The basic technique is similar to that of [5, Theorem 3.2, p1341]. We
give a brief outline. Define for each γ > 0,

fγ(t, x) ≡ f(t, Rγ(x))
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where Rγ is the retraction of the ball Bγ ⊂ E, that is,

Rγ(ξ) ≡
{

ξ, if ξ ∈ Bγ

(γ/ ‖ ξ ‖)ξ, otherwise.

Clearly, fγ is B×Σ measurable, and, for each ξ ∈ E, t −→ fγ(t, ξ) is integrable
while for almost all t ∈ I, ξ −→ fγ(t, ξ) is uniformly bounded on all of E.
Thus, for each γ < ∞, it follows from Theorem 3.1 that the evolution equation

ẋ = Ax + fγ(t, x), t ∈ I,

x(0) = x0,
(3.18)γ

has at least one measure solution λγ ∈ Lw
∞(I, Πba(E)). In other words, λγ is

a measure solution of the evolution equation (3.18)γ satisfying

λγ
t (φ) = λγ

0(φ) +
∫ t

0

λγ
s (Aγφ)ds,

= φ(x0) +
∫ t

0

λγ
s (Aγ(s)φ)ds, t ∈ I,

(3.19)

for each φ ∈ D(Aγ), with Dφ having bounded support, where the operator
Aγ(t) is given by

(Aγ(t)φ)(ξ) ≡< A∗Dφ(ξ), ξ > + < Dφ(ξ), fγ(t, ξ) > . (3.20)

Clearly for φ ∈ D(A), the identity (3.20) can be rewritten as

Aγ(t)φ = A(t)φ + Bγ(t)φ, (3.21)

where
Bγ(t)φ(ξ) ≡< Dφ(ξ), fγ(t, ξ)− f(t, ξ) >E∗,E . (3.22)

Now for each γ > 0, the functional `γ given by

`γ(ψ) ≡
∫

I

λγ
t (ψ)dt

≡
∫

I

∫

E

ψ(t, ξ)λγ
t (dξ)dt,

(3.23)

is well defined on L1(I, B(E)). Indeed, for all γ > 0, we have

|`γ(ψ)| ≤‖ ψ ‖L1(I,B(E)) (3.24)
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for all ψ∈L1(I, B(E)). Thus {`γ , γ >0} is a bounded subset of (L1(I,B(E)))∗,
and hence by the characterization of the dual spaces, the set {λγ , γ > 0} is con-
tained in a bounded subset of Lw

∞(I,Mba(E)). Therefore, again by Alaoglus
theorem, there exists a subnet or a generalized subsequence {λk ≡ λγk} and
a λo ∈ Lw

∞(I,Mba(E)) such that

λk w∗−→ λo as k →∞ (3.25)

in Lw
∞(I,Mba(E)). Defining Ak ≡ Aγk

,Bk ≡ Bγk
, it follows from (3.19) and

(3.21) that

λk
t (φ) = λk

0(φ) +
∫ t

0

λk
s(Ak(s)φ)ds,

= φ(x0) +
∫ t

0

λk
s(A(s)φ)ds +

∫ t

0

λk
s(Bk(s)φ)ds, t ∈ I,

(3.26)

for all φ ∈ D(A). Since, for almost all t ∈ I,

fk ≡ fγk
−→ f as k →∞

uniformly on bounded subsets of E, and fk is integrable in t on I uniformly
with respect to x in bounded subsets of E, for each φ ∈ D(A) with Dφ having
bounded support, it follows from dominated convergence theorem that

Bkφ
s−→ 0 in L1(I,B(E)).

This, combined with (3.25), implies that for each t ∈ I,

∫ t

0

λk
s(Bk(s)φ)ds −→ 0. (3.27)

Similarly, for each φ ∈ D(A) having Frechet derivatives with bounded support,
Aφ ∈ L1(I, B(E)). Thus letting k →∞ in (3.26), it follows from (3.25), (3.27)
that, for each φ ∈ D(A) having Frechet derivative with bounded support, we
obtain

λo
t (φ) = λ0(φ) +

∫ t

0

λo
s(A(s)φ)ds, t ∈ I. (3.28)

Hence λo ∈ Lw
∞(I,Mba(E)) is a measure solution of the evolution equation

(2.1) in the sense of Definition 2.2. Since for each integer k ∈ N, λk ∈
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Lw
∞(I, Πba(E)) and this set is a weak star closed subset of Lw

∞(I,Mba(E)),
we conclude that λo ∈ Lw

∞(I, Πba(E)). The last part of the statement asserting
w∗-continuity follows trivially from the expression (3.28). This completes the
proof. ¤

In fact the evolution equation (2.1) has measure solution not only for initial
data given by a Dirac measure but also for any initial data described by a
measure π0 ∈ Πba(E). This is proved in the following corollary.

Corollary 3.4. The conclusions of Theorems 3.1 and Theorem 3.3 remain
valid for any initial state π0 ∈ Πba(E).

Proof. For any ξ ∈ E, let λξ ∈ Lw
∞(I,Πba(E)) denote the measure solution

(see Definition 2.2) of evolution equation (2.1) with initial state given by
x0 = ξ, that is λ0 = δξ. Then clearly it follows from either of the above
results (Theorem 3.1 or Theorem 3.3) that λξ satisfies the following functional
equation,

λξ
t (φ) = φ(ξ) +

∫ t

0

λξ
s(A(s)φ)ds, t ∈ I, (3.29)

for every φ ∈ D(A) with Dφ having bounded supports. Since t −→ λξ
t is

weak star continuous, it is clear that for any φ ∈ D(A) with bounded support,
t −→ λξ

t (φ) is continuous and bounded. Also for fixed t ∈ I, and φ ∈ D(A),
ξ −→ λξ

t (φ) is a bounded Σ measurable function on E. This follows from the
fact that the function ξ −→ λξ

t (φ) is the point wise limit of a sequence of
continuous and hence Σ measurable functions ξ −→ λn,ξ

t (φ), here λn,ξ is the
measure solution of equation (2.1)n (see Theorem 3.1) corresponding to the
initial data x0 = ξ. Integrating both sides of the identity (3.29) with respect
to the measure π0 and using Fubini’s theorem we obtain

λt(φ) = π0(φ) +
∫ t

0

λs(A(s)φ)ds, t ∈ I, (3.30)

where

λt(φ) ≡
∫

E

(∫

E

φ(η)λξ
t (dη)

)
π0(dξ), t ∈ I,

=
∫

E

λξ
t (φ)π0(dξ), t ∈ I.

(3.31)

Since this last integral is finite for any bounded Σ measurable function φ,
taking φ = χΓ, the characteristic function of any Σ measurable set Γ ⊂ E, we
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have
λt(Γ) =

∫

E

λξ
t (Γ)π0(dξ). (3.32)

For Γ = E, λt(E) = 1, t ∈ I. Hence λ given by (3.31) satisfies the functional
equation (3.30) and is an element of the set Lw

∞(I, Πba(E)), and therefore a
measure solution of the evolution equation (2.1) corresponding to the initial
data given by the distribution π0. This completes the proof. ¤

4. Differential equations on the space of measures

Note that in view of our notion of measure solution (see Definition 2.2)
and the preceding results, we can reformulate our original Cauchy problem
defined on the Banach space E, as a Cauchy problem on the Banach space of
finitely additive measures Mba(E) as follows:

(d/dt)µt = A∗(t)µt, t ≥ 0,

µ0 = π0.
(4.1)

This of course covers the original Cauchy problem as a special case. Ac-
cording to our existence results, we have seen that this equation has so-
lution in the weak sense as implied by our Definition 2.2. Hence it fol-
lows from these results, (Theorem 3.1, Theorem 3.3), that for each initial
data π0 ∈ Πba(E) ⊂ Mba(E), evolution equation (4.1) has at least one
solution µ ∈ Lw

∞(I,Πba(E)) ⊂ Lw
∞(I,Mba(E)) which is weak star continu-

ous. Consequently there exists a weak star continuous transition operator
U∗(t, s), 0 ≤ s ≤ t < ∞, which is a family of bounded linear operators on the
Banach space Mba(E) defining the evolution of the measure solution

µt = U∗(t, 0)π0. (4.2)

Since for any pair (s, t) ∈ I satisfying 0 ≤ s ≤ t, U∗(t, s) is a bounded
linear operator on the Banach space Mba(E), it is necessarily continuous. In
particular, for s = 0, let π0 ∈ Πba(E) and let µ denote the corresponding
solution of equation (4.1). Then for any t ∈ I, there exists a positive constant
Ct, independent of π0, such that

‖ µt ‖Mba(E)=‖ U∗(t, 0)π0 ‖Mba(E)≤ Ct ‖ π0 ‖Mba(E) .

So far we have not discussed the question of uniqueness of solutions. This is
of course equivalent to the question of uniqueness of the transition operator
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U∗(t, s). In the absence of uniqueness, the transition operator may not satisfy
the expected evolution property

U∗(t, r)U∗(r, s) = U∗(t, s), 0 ≤ s ≤ r ≤ t < ∞. (4.3)

In regards to this question of uniqueness we have only partial result. For
simplicity let us consider the time invariant case. Suppose A is a discrete
spectral operator with domain and range in the Banach space B(E). This
implies that it has a countably infinite set of eigen values each with finite
multiplicity which may be ordered as follows:

{· · · γn+2 ≤ γn+1 ≤ 0 ≤ γn ≤ γn−1 ≤ · · · γ1}.

In this ordering each eigen value is repeated as many times as required by its
multiplicity. Let {ϕi, i ∈ N} denote the corresponding eigen functions and
suppose this set is complete in B(E). Consider the bounded case (Theorem
3.1). Here we saw that the measure solution has bounded support B̄r(E),
for some finite positive number r which depends on the initial state. Choose
any two initial states x0 = {ξ, η} and let B̄α(E) denote the closed ball of
radius α containing the supports of both the solutions {λξ

t , λ
η
t }. Define the

measure νξ,η
t ≡ λξ

t − λη
t . Note that νξ,η ∈ L∞(I,Mba(E)) and not in the set

L∞(I, Πba(E)). Using the eigen function ϕi in equation (3.14) corresponding
to two distinct initial states {ξ, η} and taking the difference, we obtain

νξ,η
t (ϕi) = ϕi(ξ)− ϕi(η) +

∫ t

0

νξ,η
s (Aϕi)ds

= ϕi(ξ)− ϕi(η) +
∫ t

0

γiν
ξ,η
s (ϕi)ds, t ∈ I.

(4.4)

By virtue of Gronwall’s inequality, it follows from this that

|νξ,η
t (ϕi)| ≤ |ϕi(ξ)− ϕi(η)|exp{|γi|T}, t ∈ I. (4.5)

Hence as ξ −→ η, νξ,η
t (ϕi) −→ 0 for all t ∈ I. This is true for every eigen

function ϕi. Since this set is complete in B(E), we conclude that νξ,η
t (ϕ) −→ 0

as ξ −→ η for all t ∈ I and every ϕ ∈ B(E). This proves uniqueness of
solutions. Similarly, let π1, π2 ∈ Πba(E) be two initial conditions for the
system (4.1) with A assumed time invariant. Suppose both have bounded
supports. Let µ1, µ2 ∈ Lw

∞(I,Πba(E)) be the corresponding solutions. Clearly
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for bounded f the solutions also have bounded supports see Theorem 3.1 and
the remark following it. Thus, again using the eigen functions, one can verify
that

|µ1
t (ϕi)− µ2

t (ϕi)| ≤ |π1(ϕi)− π2(ϕi)|exp{|γi|T}, t ∈ I. (4.6)

Again by virtue of completeness of the eigen functions, it follows from this
inequality that if π1 −→ π2 in the weak star sense in Πba(E), then µ1 −→ µ2 in
the weak star topology of Lw

∞(I,Mba(E)). This implies uniqueness of solutions
as well as continuous dependence on the initial data.

In the unbounded case, the same argument can be used to prove uniqueness
of solution for each of the truncated problems

(d/dt)µt = A∗γ(t)µt, t ≥ 0,

µ0 = π0,
(4.7)

associated with the truncated operator Aγ , 0 < γ < ∞, (see Theorem 3.3)
provided π0 has bounded support. Since uniqueness holds for each finite γ
and the solution for the unbounded case is given by the w∗-limit of the net
{µγ} (if required a subnet) , uniqueness for the unbounded case follows. In
view of this uniqueness result, we are now assured that the transition operator
U∗(t, s) is unique and that it satisfies the evolution property (4.3). Thus for
the evolution equation

(d/dt)µt = A∗µt, t ≥ s > 0,

µs = ν,
(4.8)

starting at time s, the solution is given by µt = U∗(t, s)ν, t ≥ s.

Remark. We have seen that our solutions are only finitely additive bounded
measures. By use of the method of compactification [6], one can extend the
solution measures to E+ ≡ βE, the Stone-Cech compactification of E. With
this extension the solutions are countably additive measure valued functions
on the sigma algebra σ(Σ) induced by the algebra Σ.

Some Comments and Open Questions: (1): The uniqueness of mea-
sure solutions is based on our assumption that the unbounded operator A is
spectral. At this time we do not have a proof of this. (2): It would be inter-
esting to find an alternate method of proof for uniqueness without imposing
spectral assumption. (3): We believe that our results can be easily extended
to some quasilinear problems as found in [5]. (4): In fact these results can be
extended in several fronts like impulsive and stochastic systems of the form

dx = Axdt + f(t, x)dt + C(t, x)ν(dt) + G(t, x)dW, t ≥ 0,
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where ν is a vector measure, W is a cylindrical Brownian motion, and {C, G}
are suitable B × Σ measurable operator valued functions. (5): The results
given in this paper can be used in control problems involving discontinuous
vector fields.
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