
Nonlinear Funct. Anal. & Appl., Vol. 10, No. 1 (2005), pp. 79–87

PROPERTIES OF CERTAIN NEW

CLASSES OF ANALYTIC FUNCTIONS

Khalida Inayat Noor

Abstract. Let fn(z) = z
(1−z)n+1 , n ∈ N0 and let f

(−1)
n be defined such that

fn ? f
(−1)
n = z

1−z
, where ? denotes convolution (Hadamard product). Using

the operator Inf = fn ? f
(−1)
n , introduced by Noor, we define some classes of

analytic functions in unit disk E and study their properties. Some inclusions
relationships, sharp coefficient bounds and radius problems are investigated.

1. Introduction

Let A denote the class of functions

f(z) = z +
∞∑

m=2

amzm (1.1)

which are analytic in the unit disk E = {z : |z| < 1}. Let Pk be the class of
functions p defined in E and with representation

p(z) =
1
2

∫ π

−π

1 + ze−it

1− ze−it
dµ(t), (1.2)

where µ(t) is a function with bounded variation on [−π, π] and it satisfies the
conditions ∫ π

−π

dµ(t) = 2,

∫ π

−π

|dµ(t)| ≤ k. (1.3)

We note that k ≥ 2 and P2 = P is the class of analytic functions with positive
real part in E with p(0) = 1. From the integral representation (1.2), it is
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immediately clear that p ∈ Pk if, and only if, there are analytic functions
p1, p2 ∈ P such that

p(z) = (
k

4
+

1
2
)p1(z)− (

k

4
− 1

2
)p2(z). (1.4)

We define the Hadamard product or convolution of two analytic functions

f(z) =
∞∑

m=0

amzm+1 and g(z) =
∞∑

m=0

bmzm+1

as

(f ? g)(z) =
∞∑

m=0

ambmzm+1.

Denote Dn : A −→ A be the operator defined by

Dnf =
z

(1− z)n+1
? f, n = 0, 1, 2, . . .

= z +
∞∑

m=2

(m + n− 1)!
(n!)(m!)

anzm.

We note that D0f(z) = f(z), D1f(z) = zf ′(z) and Dnf(z) = z(zn−1f(z))(n)

n! .
The symbol Dnf is called the nth order Ruscheweyh derivative of f. Anal-

ogous to Dnf, Noor [4] and Noor and Noor [5] defined an integral operator
In : A −→ A as follows

Let fn(z) = z
(1−z)n+1 and let f

(−1)
n be defined such that

fn(z) ? f (−1)
n (z) =

z

1− z
. (1.5)

We note that

Inf = f (−1)
n ? f =

[
z

(1− z)n+1

](−1)

? f. (1.6)

Note that I0f(z) = zf ′(z) and I1f(z) = f(z).
Also, for Inf, we have the identity [4],

(n + 1)Inf − nIn+1f = z(In+1f)′.

The integral operator In has also been studied in [1], [2], and [3].
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A function f ∈ A belongs to Bσ of prestarlike functions of order σ if and
only if, for z ∈ E,

Re
f(z)

zf ′(0)
>

1
2
, for σ = 1,

and
z

(1− z)2(1−σ)
? f(z) ∈ S?(σ), 0 ≤ σ < 1,

where S?(σ) is the classes of starlike functions g with Re zg′(z)
g(z) > σ and

S?(0) = S?.
We now have the following.

Definition 1.1. Let f ∈ A. Then, for α ≥ 0, z ∈ E, f ∈ Tα(k) if, and only
if,

{(1− α)
f(z)

z
+ αf ′(z)} ∈ Pk.

Definition 1.2. Let f ∈ A. Then f ∈ Tα(k, n) if, and only if, Inf ∈ Tα(k)
for α ≥ 0, z ∈ E.

2. Preliminary Results

We give here two basic results which we shall need later on. For the proofs
of both, we refer to [6].

Lemma 2.1. If p is analytic in E and p(0) = 1 and Rep(z) > 1
2 , z ∈ E,

then for any function F, analytic in E, the function p ? F takes values in the
convex hull of the image of E under F.

Lemma 2.2. Letf be a prestarlike function of order σ(σ ≤ 1), and let g be a
starlike function of order σ. Then the generalized convolution operator

∧F =
f ? gF

f ? g

is a convexity preserving operator.

3. Main Results

Theorem 3.1. The class Tα(k, n) is a convex set.

Proof. Let f, g ∈ Tα(k, n) and let, for 0 ≤ λ < 1,

F (z) = λf(z) + (1− λ)g(z).
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Then

(1−α)
InF

z
+α(InF )′=λ[α

Inf

z
+(1−α)(Inf)′]+(1−λ)[α

Ing

z
+ (1−α)(Ing)′]

= λh1 + (1− λ)h2 = h,

h1, h2 ∈ Pk and since Pk is a convex set, h ∈ Pk and hence this proves the
result. ¤
Theorem 3.2. Let f ∈ Tα(k, n). Then F defined by

F (z) =
1 + c

zc

∫ z

0

tc−1f(t)dt, Rec > 0

also belongs to Tα(k, n).

Proof. Let G = φ?f, φ ∈ C, where C is the class of convex univalent functions.
Now

InG = φ ? Inf,

and

(1− α)
InG

z
+ α(InG)′ = (1− α)

(φ ? Inf)
z

+ α(φ ? Inf)′

=
φ

z
? [(1− α)

Inf

z
+ α(Inf)′]

=
φ

z
? p, p ∈ Pk

=
φ

z
? [(

k

4
+

1
2
)p1 − (

k

4
− 1

2
)p2], p1, p2 ∈ P

= (
k

4
+

1
2
)(

φ

z
? p1)− (

k

4
− 1

2
)(

φ

z
? p2)

Since φ is convex, Reφ(z)
z > 1

2 for z ∈ E. Thus, using Lemma 2.1, we note
that G ∈ Tα(k, n).

Now we can write
F (z) = φc ? f,

where φc is given by

φc(z) =
∞∑

m=1

1 + c

m + c
zm, Rec > 0

and φc is convex in E. Hence F ∈ Tα(k, n). ¤
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Theorem 3.3. Let f ∈ Tα(k, n), 0 < α < 1. Then f ∈ T1(k, n) for |z| <
R, where R is the radius of the largest disk centered at the origin for which
Req′(z) > 1

2 , q(z) is defined by

q(z) =
1
α

z1− 1
α

∫ z

0

t
1
α−1

1− t
dt, (α > 0) (3.1)

andR is given by the smallest root of the equation

( 2
α − 1− r)

1 + r
− 2

α
(
1
α
− 1)

∫ 1

0

t
1
α−1

1− tr
dt = 0. (3.2)

This result is sharp.

Proof. Since f ∈ Tα(k, n), we can write

Inf = q ? zp, p ∈ Pk.

This implies

(Inf)′ =
zp ? zq′

z
=

zp ? zq′

z ? zq′
.

Let zq′ = h and so h′ = q′+zq′′. It is easy to check that q′(0) = 1. Therefore,
for Req′(z) > 1

2 , we see that

Re
h(z)

zh′(0)
>

1
2
, for |z| < R.

Thus h is a prestralike function of order σ = 1.
Now

(Inf)′(z) =
zp(z) ? zq′(z)

z ? zq′(z)

= (
k

4
+

1
2
)
zp1(z) ? zq′(z)

z ? zq′(z)
− (

k

4
− 1

2
)
zp2(z) ? zq′(z)

z ? zq′(z)
, p1, p2 ∈ P.

Using Lemma 2.2 on zpi(z)?zq′(z)
z?zq′(z) , i = 1, 2, we see that (Inf)′ ∈ Pk for

|z| < R and sof ∈ T1(k, n) for|z| < R. To find radius R, we proceed as
follows.
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For α > 0, q(z) is given by (3.1), where the powers are meant as principal
values. We have

q′(z) =
1

α(1− z)
− 1

α
(
1
α
− 1)z1− 1

α

∫ z

0

t
1
α−1

1− t
dt.

The function q′ is analytic in E, q′(0) = 1 and

2q′(z)− 1 =
2− α + αz

α(1− z)
− 2

α
(
1
α
− 1)

∫ 1

0

t
1
α−1

1− tz
dt.

Therefore Req′(z) > 1
2 for |z| < R, where R is the smallest positive root of

(3.2). The sharpness of the result follows from the function f0 ∈ Tα(k, n)
defined by

Inf0 = q(z) ? zp(z) (3.3)

with
p(z) = (

k

4
+

1
2
)
1 + z

1− z
− (

k

4
− 1

2
)
1− z

1 + z
.

¤
Theorem 3.4. Let f ∈ Tα(k, n), α > 0 and be given by (1.1). Then

|am| ≤ k

1− α + αm

(m + n−)!
n!m!

.

This result is sharp.

Proof. Since f ∈ Tα(k, n), we have

(1− α)
Inf(z)

z
+ α(Inf)′(z) = p(z), p ∈ Pk. (3.4)

Let p be given by p(z) = 1 +
∑∞

m=1 cmzm, then it is known that

|cm| ≤ k. (3.5)

Equating the coefficient of zm−1 in (3.4) and using (3.5), we have

(1− α + αm)
(n!)(m!)

(m + n− 1)!
|am| ≤ k,

and the required result follows.
The function f0 defined by (3.3) shows that these coefficient bounds are

best possible. ¤
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Theorem 3.5. Let f ∈ T0(k, n). Then f ∈ Tα(k, n) for |z| < rα, where

rα =
1

2α +
√

4α2 − 2α + 1
, 0 < α < 1, α 6= 1

2
. (3.6)

Proof. Let

φα(z) = (1− α)
f(z)

z
+ αf ′(z).

Then

Inφα(z) = (
Ψα(z)

z
) ? (

Inf(z)
z

),

where

Ψα(z) = (1− α)
z

1− z
+ α

z

(1− z)2
0 = z +

∞∑
m=1

(1 + (m− 1)α)zm.

Now Ψα is convex for |z| < rα, rα is given by (3.6) and this value is exact.
Consequently, for |z| < rα, ReΨα(z)

z > 1
2 . Hence, since f ∈ T0(k, n), Inf

z ∈ Pk

and applying the technique used in the proof of Theorem 3.2, we conclude
that f ∈ Tα(k, n) for |z| < rα. ¤
Theorem 3.6. For 0 ≤ α2 < α1, Tα1(k, n) ⊂ Tα2(k, n).

Proof. For α2 = 0, the proof is immediate. Let α2 > 0 and let f ∈ Tα1(k, n).
Then

(1− α2)
Inf

z
+ α2(Inf)′ =

α2

α1

[
(
α1

α2
− 1)

Inf

z
+ (1− α1)

Inf

z
+ α1(Inf)′

]

= (1− α2

α1
)
Inf

z
+

α2

α1

[
(1− α1)

Inf

z
+ α1(Inf)′

]

= (1− α2

α1
)H1 +

α2

α1
H2, (

α2

α1
< 1)

H1,H2 ∈ Pk and this implies [(1 − α2
α1

)H1 + α2
α1

H2] also belongs to Pk. Thus
f ∈ Tα2(k, n). ¤
Theorem 3.7. Tα(k, n) ⊂ Tα(k, n + 1).

Proof. Letf ∈ Tα(k, n). Then

Inf = q ? zp, p ∈ Pk
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and q is convex and is given by (3.1). Using Lemma 2.1, we note that ( q
z ?p) ∈

Pk. From identity (1.7), we can write

Inf =
n

n + 1
In+1f +

1
n + 1

z(In+1f)′. (3.7)

From (3.1) and (3.7) with α = 1
n+1 , we can write

Inf = qn ? In+1f.

Since f ∈ Tα(k, n), it implies that f ∈ T0(k, n) and therefore Inf
z ∈ Pk. Thus

1
z (qn ? In+1f) ∈ Pk. Set

In+1f = q ? zH = (
k

4
+

1
2
)(q ? zh1)− (

k

4
− 1

2
)(q ? zh2).

We want to show that hi ∈ P, i = 1, 2. Now

qn ? In+1f = (
k

4
+

1
2
)(q ? qn ? zh1)− (

k

4
− 1

2
)(q ? qn ? zh2).

Since 1
z (qn ? In+1f) ∈ Pk, it implies that 1

z (q ? qn ? zhi) ∈ P, i = 1, 2. q, qn are
both are convex, so q ? qn = φ is also convex, see [6]. Therefore 1

z (φ?zhi) ∈ P
and this implies hi ∈ P, i = 1, 2. This proves that H ∈ Pk and hence f ∈
Tα(k, n + 1). Hence the proof. ¤

Let f ∈ A and let

F (z) = L(f) =
n + 1
zn

∫ z

0

tn−1f(t)dt. (3.8)

Then

F (z) = Lf(z) = (z +
∞∑

m=0

n + 1
n + m + 1

) ? f(z)

= [z2F1(1, n + 1; n + 2, z)] ? f(z),

where 2F1 is the hypergeometric function.
This implies

InF (z) = InL(f(z)) = In+1f(z)

and we have the following result.
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Theorem 3.8. Let f ∈ Tα(k, n + 1). Then F, defined by (3.8), belongs to
Tα(k, n), for z ∈ E.

We now prove a radius problem

Theorem 3.9. Let F, defined by (3.8), belong to Tα(k, n). Then f ∈ Tα(k, n)
for |z| < rn, where the exact value of rn is given by

rn =
(1 + n)

2 +
√

3 + n2
. (3.9)

Proof. We can write

F (z) = Ψn(z) ? f(z), Ψn(z) =
∞∑

j=1

n + j

n + 1
zj ,

and Ψn is convex for |z| < rn = 1+n
2+
√

3+n2 . Thus

Inf = f (−1)
n ? Ψn ? f = Ψn ? Inf.

Since F ∈ Tα(k, n), it implies that Ψn?Inf ∈ Tα(k, n) and, since Ψn is convex
in |z| < rn, so f ∈ Tα(k, n) for |z| < rn, where rn is given by (3.9). ¤
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