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PROPERTIES OF CERTAIN NEW
CLASSES OF ANALYTIC FUNCTIONS

KHALIDA INAYAT NOOR

ABSTRACT. Let fn(2) = =27, 1 € No and let #5Y be defined such that

fn * ,(L_l) = 1%, where x denotes convolution (Hadamard product). Using

the operator I, f = fn * f,(fl), introduced by Noor, we define some classes of
analytic functions in unit disk £ and study their properties. Some inclusions
relationships, sharp coefficient bounds and radius problems are investigated.

1. INTRODUCTION

Let A denote the class of functions
fz)=z+ Zamzm (1.1)
m=2

which are analytic in the unit disk £ = {z : |z| < 1}. Let Py be the class of
functions p defined in E and with representation

OREY =) (1.2)

el —ze
where () is a function with bounded variation on [—m, 7] and it satisfies the
conditions

[asw =2 [l < (13)

We note that £ > 2 and P, = P is the class of analytic functions with positive
real part in £ with p(0) = 1. From the integral representation (1.2), it is
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immediately clear that p € Py if, and only if, there are analytic functions
p1,p2 € P such that

k1 k1

(Z + 5)?1(2) - (Z - 5)1?2(2)- (1.4)

We define the Hadamard product or convolution of two analytic functions

oo
:g amz"tt and g(z g by 2™t
m=0
as

(fx9)(z Zam m2"

Denote D™ : A — A be the operator defined by

n z
szm*f, n:0,1,2,...
= (m+n-1!
:z+27anz .
= (nh)(m))

We note that DOf(z) = f(2), D' f(z) = zf'(z) and D" f(z) = w
The symbol D" f is called the nth order Ruscheweyh derivative of f Anal-
ogous to D™ f, Noor [4] and Noor and Noor [5] defined an integral operator
I, : A— A as follows
Let fn(z) = W and let fffl) be defined such that

z

fa(2) % £V (2) =

1—2z

We note that -
_ z

Lf=f7"xf= [(1—2)“] *f (1.6)

Note that Ipf(z) = zf'(z) and I, f(2) = f(2).
Also, for I,, f, we have the identity [4],

(n+DInf —nlpgi f = 2(Tng1 f)

The integral operator I,, has also been studied in [1], [2], and [3].
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A function f € A belongs to B, of prestarlike functions of order o if and
only if, for z € F,
e ) 1

—, f =1
ezf’(0)>2’ or o ,

and
z

T_opaa * () €57(0), 0<o<l,

where S*(o) is the classes of starlike functions g with Rezgégj) > o and
S*(0) = S*.
We now have the following.

Definition 1.1. Let f € A. Then, for a > 0,z € E, f € T,(k) if, and only

if,
f(z)

{(1-a) +af'(2)} € Py.
Definition 1.2. Let f € A. Then f € T,(k,n) if, and only if, I,,f € T, (k)
fora>0,z€FE.

2. PRELIMINARY RESULTS

We give here two basic results which we shall need later on. For the proofs
of both, we refer to [6].

Lemma 2.1. If p is analytic in E and p(0) = 1 and Rep(z) > %, z € E,

then for any function F, analytic in E, the function p x F' takes values in the
convex hull of the image of E under F.

Lemma 2.2. Letf be a prestarlike function of order (o < 1), and let g be a
starlike function of order o. Then the generalized convolution operator

_ fxgF

AF
[xg

1S a converity preserving operator.
3. MAIN RESULTS

Theorem 3.1. The class T, (k,n) is a convex set.

Proof. Let f,g € To(k,n) and let, for 0 < A < 1,

F(z) = M (2) + (1 = Mg (2).
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Then

(1-0) " a(LFY =MoL +(1-a) (I £+ (1- Va2 + (1-a)(Tg)’

= Mg+ (1= Nhy = h,

hi,hs € P and since Py is a convex set, h € P, and hence this proves the
result. O

Theorem 3.2. Let f € T,(k,n). Then F defined by

_1+4ec
==

F(z) /OZ t" f(t)dt, Rec>0

also belongs to Ty (k,n).

Proof. Let G = ¢xf, ¢ € C, where C is the class of convex univalent functions.
Now

I,G = ¢*1Iyf,
and
(1™ +amey =0 -0 P oy
I, ,
= 2xi0 -0y a(r,fy)
= %*p, p € Dy
k k

%* [(Z + %)Pl - (1 - %)PzL p1,p2 € P
ko1 k1

=4 )~ E- 2 xm)

Since ¢ is convex, Re@

that G € T, (k,n).

Now we can write

> % for z € E. Thus, using Lemma 2.1, we note

F(Z):(;ﬁc*f,

where ¢, is given by

14+c ,,
(2) = z™, Rec>0
de(2) mz::lmﬂ

and ¢. is convex in F. Hence F € T, (k,n). O
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Theorem 3.3. Let f € T,(k,n), 0 < a < 1. Then f € Ti(k,n) for |z| <
R, where R is the radius of the largest disk centered at the origin for which
Req'(z) > 5, q(z) is defined by

1,1 (7 ta—l
= = o Nl
q(2) az /0 1 tdt’ (a > 0) (3.1)

andR is given by the smallest root of the equation

(2-1-7r) 2.1 Dgat
m‘a(a‘”/o it =0 (32)

This result is sharp.

Proof. Since f € T,(k,n), we can write

I.f = qx*zp, p € P.

This implies
2pxzq zp*zq

(Inf)/ = =

2z z2xzq

Let z¢ = handso h' = ¢ +2zq". It is easy to check that ¢’(0) = 1. Therefore,

for Req'(z) > %, we see that

, for |z|] <R.

Thus A is a prestralike function of order o = 1.
Now

(L) () = P2 *2d )

z*2q'(z)
LB L@ rade) kL opa(d)x2d(2)
_(1 5) zx2q'(2) _(1_5) 2xz2q'(2) Prop2 € B

Using Lemma 2.2 on w, i = 1,2, we see that (I,f) € Py for

zxzq’ (2)
|z| < R and sof € Ti(k,n) for|z| < R. To find radius R, we proceed as
follows.
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For o > 0, ¢(2) is given by (3.1), where the powers are meant as principal
values. We have

1 1,1 # ga—l
() =———— - Z(=—1)'"= / dt.

Therefore Req'(z) > 4 for |z| < R, where R is the smallest positive root of
(3.2). The sharpness of the result follows from the function fy € T, (k,n)
defined by

I, fo = q(2) *x zp(2) (3.3)

with
E 1.1+=2 E 11—z

e =Gt~ Gy
(]
Theorem 3.4. Let f € T,(k,n), « > 0 and be given by (1.1). Then
!
| < k (m+n )
l—a+am nlm!
This result is sharp.
Proof. Since f € T, (k,n), we have
I.f(z
-0 oy =), pen (3.4
Let p be given by p(z) =1+ > "_, ¢,,2™, then it is known that
lem| < k. (3.5)

Equating the coefficient of 2™~ in (3.4) and using (3.5), we have

(n!)(m!)

(1 _a—i_am)i(m—i—n—.l)!

’am| S ka
and the required result follows.

The function fy defined by (3.3) shows that these coefficient bounds are
best possible. O
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Theorem 3.5. Let f € To(k,n). Then f € T,(k,n) for |z| < ro, where

_ ! O<a<l, asz (3.6)
T et ViaE —2a+ 1l ashoary '

Proof. Let

ba(z)=(1— a)f(;) +af'(2).
Then

Fnda(2) = (12 (L)
where

\I/a(z):(1—04)1j2+a(1_zz)2022+ 31+ (m - Da)z

m=1

Now V¥, is convex for |z| < rq, rq is given by (3.6) and this value is exact.
Consequently, for |z| < r,, Re‘ll“T(Z) > % Hence, since f € Ty(k,n), % € Py
and applying the technique used in the proof of Theorem 3.2, we conclude

that f € To(k,n) for |z| < rq. O
Theorem 3.6. For 0 < as < aq, Ty, (k,n) C Ty, (k,n).

Proof. For ay = 0, the proof is immediate. Let ap > 0 and let f € T,, (k,n).
Then

(=00l ooty = 2 (2 -y g ap L |

I
:(1_%)Lf+%
(0751 z (651

1o gy

:(1—%)H1+%H2, (% <1>
aq aq aq

Hi, Hy € Py and this implies [(1 — 52)H; + ¢2 H>] also belongs to Py. Thus
f €Ty, (k,n). O

Theorem 3.7. T,(k,n) C To(k,n+1).
Proof. Letf € T,(k,n). Then

Inf =qxzp, peP
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and ¢ is convex and is given by (3.1). Using Lemma 2.1, we note that (£xp) €

Py,. From identity (1.7), we can write

n 1

In = n
f L f + —— Y

] 2(Iny1f).

From (3.1) and (3.7) with a = n%rl, we can write

Inf = (gn * In+1f.

Since f € T, (k,n), it implies that f € Ty(k,n) and therefore
%(qn *In+1f) € Py. Set

E o1 ko1
Liif=q*zH = (Z + 5)(Q*Zh1) - (Z - 5)(Q*2h2)-

We want to show that h; € P, i =1,2. Now

ko1

+ Daxanr o) = (5 = Dgnguxzho).

(3.7)

Inf ¢ P;.. Thus

Since (qn*Ian) € Py, it implies that 1(q*qn*zh )e P i=1,2.q,q, are

both are convex, so ¢x¢q, = ¢ is also convex, see [6]. Therefore -

L(p*zh;) € P

and this implies h; € P, i« = 1,2. This proves that H € P4 and hence f €

Tw(k,n + 1). Hence the proof.
Let f € A and let

Then

F(z)= z-i-zn_t:;il * f(2)

=z (1,n+1;n+22)]* f(2),

where o F} is the hypergeometric function.
This implies
L F(2) = I,L(f(2)) = Iny1f(2)

and we have the following result.



Some New Classes of Analytic Functions 87

Theorem 3.8. Let f € T,(k,n+ 1). Then F, defined by (3.8), belongs to
T,(k,n), for z € E.

We now prove a radius problem
Theorem 3.9. Let F, defined by (3.8), belong to Ty, (k,n). Then f € T, (k,n)

for |z| < 7y, where the exact value of r, is given by

(I1+mn)

S orvBent (3.9)

T'n

Proof. We can write

Z?
n+1

F(z) =VUn(2) * f(2), Wn(z) = Z

and U, is convex for |z| <, = Hi/% Thus

Lf=f Y%, « f =0, xI,f.

Since F' € T, (k,n), it implies that ¥,,xI,, f € T, (k,n) and, since ¥, is convex
in |z| < rp,so f € Ty(k,n) for |z| < ry, where r, is given by (3.9). O

REFERENCES

1. N. E. Cho, The Noor integral operators and strongly close-to-convex functions, J. Math.
Anal. Appl. 283 (2003), 202-212.

2. J. Liu, The Noor integral operator and strongly starlike functions, J. Math. Anal. Appl.
261 (2001), 441-447.

3. J. Liu and K. Inayat Noor, Some properties of Noor integral operator, J. Nat. Geometry
21 (2002), 81-90.

4. K. Inayat Noor, On new classes of integral operators, J. Nat. Geometry 16 (1999),
71-80.

5. K. Inayat Noor and M. Aslam Noor, On integral operators, J. Math. Anal. Appl. 238
(1999), 341-352.

6. St. Ruscheweyh, Convolution in Geometric Function Theory 83 (1982), Sem. Math.
Sup., Montreal, Canada.

KHALIDA INAYAT NOOR

MATHEMATICS DEPARTMENT,

LAHORE UNIVERSITY OF MANAGEMENT SCIENCES,
LAHORE, PAKISTAN

E-mail address: khalidanoor@hotmail.com



