PROPERTIES OF CERTAIN NEW CLASSES OF ANALYTIC FUNCTIONS

Khalida Inayat Noor

Abstract. Let $f_{n}(z)=\frac{z}{(1-z)^{n+1}}, n \in N_{0}$ and let $f_{n}^{(-1)}$ be defined such that $f_{n} \star f_{n}^{(-1)}=\frac{z}{1-z}$, where \star denotes convolution (Hadamard product). Using the operator $I_{n} f=f_{n} \star f_{n}^{(-1)}$, introduced by Noor, we define some classes of analytic functions in unit disk E and study their properties. Some inclusions relationships, sharp coefficient bounds and radius problems are investigated.

1. Introduction

Let \mathcal{A} denote the class of functions

$$
\begin{equation*}
f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disk $E=\{z:|z|<1\}$. Let P_{k} be the class of functions p defined in E and with representation

$$
\begin{equation*}
p(z)=\frac{1}{2} \int_{-\pi}^{\pi} \frac{1+z e^{-i t}}{1-z e^{-i t}} d \mu(t) \tag{1.2}
\end{equation*}
$$

where $\mu(t)$ is a function with bounded variation on $[-\pi, \pi]$ and it satisfies the conditions

$$
\begin{equation*}
\int_{-\pi}^{\pi} d \mu(t)=2, \quad \int_{-\pi}^{\pi}|d \mu(t)| \leq k \tag{1.3}
\end{equation*}
$$

We note that $k \geq 2$ and $P_{2}=P$ is the class of analytic functions with positive real part in E with $p(0)=1$. From the integral representation (1.2), it is

2000 Mathematics Subject Classification: 30C45, 30C50.
Key words and phrases: Convolution, integral operator, radius problems.
immediately clear that $p \in P_{k}$ if, and only if, there are analytic functions $p_{1}, p_{2} \in P$ such that

$$
\begin{equation*}
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z) \tag{1.4}
\end{equation*}
$$

We define the Hadamard product or convolution of two analytic functions

$$
f(z)=\sum_{m=0}^{\infty} a_{m} z^{m+1} \quad \text { and } \quad g(z)=\sum_{m=0}^{\infty} b_{m} z^{m+1}
$$

as

$$
(f \star g)(z)=\sum_{m=0}^{\infty} a_{m} b_{m} z^{m+1}
$$

Denote $D^{n}: \mathcal{A} \longrightarrow \mathcal{A}$ be the operator defined by

$$
\begin{aligned}
D^{n} f & =\frac{z}{(1-z)^{n+1}} \star f, \quad n=0,1,2, \ldots \\
& =z+\sum_{m=2}^{\infty} \frac{(m+n-1)!}{(n!)(m!)} a_{n} z^{m}
\end{aligned}
$$

We note that $D^{0} f(z)=f(z), D^{1} f(z)=z f^{\prime}(z)$ and $D^{n} f(z)=\frac{z\left(z^{n-1} f(z)\right)^{(n)}}{n!}$.
The symbol $D^{n} f$ is called the $n t h$ order Ruscheweyh derivative of f. Analogous to $D^{n} f$, Noor [4] and Noor and Noor [5] defined an integral operator $I_{n}: \mathcal{A} \longrightarrow \mathcal{A}$ as follows

Let $f_{n}(z)=\frac{z}{(1-z)^{n+1}}$ and let $f_{n}^{(-1)}$ be defined such that

$$
\begin{equation*}
f_{n}(z) \star f_{n}^{(-1)}(z)=\frac{z}{1-z} \tag{1.5}
\end{equation*}
$$

We note that

$$
\begin{equation*}
I_{n} f=f_{n}^{(-1)} \star f=\left[\frac{z}{(1-z)^{n+1}}\right]^{(-1)} \star f \tag{1.6}
\end{equation*}
$$

Note that $I_{0} f(z)=z f^{\prime}(z)$ and $I_{1} f(z)=f(z)$.
Also, for $I_{n} f$, we have the identity [4],

$$
(n+1) I_{n} f-n I_{n+1} f=z\left(I_{n+1} f\right)^{\prime}
$$

The integral operator I_{n} has also been studied in [1], [2], and [3].

A function $f \in \mathcal{A}$ belongs to B_{σ} of prestarlike functions of order σ if and only if, for $z \in E$,

$$
\operatorname{Re} \frac{f(z)}{z f^{\prime}(0)}>\frac{1}{2}, \quad \text { for } \quad \sigma=1
$$

and

$$
\frac{z}{(1-z)^{2(1-\sigma)}} \star f(z) \in S^{\star}(\sigma), \quad 0 \leq \sigma<1
$$

where $S^{\star}(\sigma)$ is the classes of starlike functions g with $R e \frac{z g^{\prime}(z)}{g(z)}>\sigma$ and $S^{\star}(0)=S^{\star}$.

We now have the following.
Definition 1.1. Let $f \in \mathcal{A}$. Then, for $\alpha \geq 0, z \in E, f \in T_{\alpha}(k)$ if, and only if,

$$
\left\{(1-\alpha) \frac{f(z)}{z}+\alpha f^{\prime}(z)\right\} \in P_{k}
$$

Definition 1.2. Let $f \in \mathcal{A}$. Then $f \in T_{\alpha}(k, n)$ if, and only if, $I_{n} f \in T_{\alpha}(k)$ for $\alpha \geq 0, z \in E$.

2. Preliminary Results

We give here two basic results which we shall need later on. For the proofs of both, we refer to [6].
Lemma 2.1. If p is analytic in E and $p(0)=1$ and $\operatorname{Rep}(z)>\frac{1}{2}, z \in E$, then for any function F, analytic in E, the function $p \star F$ takes values in the convex hull of the image of E under F.
Lemma 2.2. Letf be a prestarlike function of order $\sigma(\sigma \leq 1)$, and let g be a starlike function of order σ. Then the generalized convolution operator

$$
\wedge F=\frac{f \star g F}{f \star g}
$$

is a convexity preserving operator.

3. Main Results

Theorem 3.1. The class $T_{\alpha}(k, n)$ is a convex set.
Proof. Let $f, g \in T_{\alpha}(k, n)$ and let, for $0 \leq \lambda<1$,

$$
F(z)=\lambda f(z)+(1-\lambda) g(z)
$$

Then

$$
\begin{aligned}
(1-\alpha) \frac{I_{n} F}{z}+\alpha\left(I_{n} F\right)^{\prime} & =\lambda\left[\alpha \frac{I_{n} f}{z}+(1-\alpha)\left(I_{n} f\right)^{\prime}\right]+(1-\lambda)\left[\alpha \frac{I_{n} g}{z}+(1-\alpha)\left(I_{n} g\right)^{\prime}\right] \\
& =\lambda h_{1}+(1-\lambda) h_{2}=h
\end{aligned}
$$

$h_{1}, h_{2} \in P_{k}$ and since P_{k} is a convex set, $h \in P_{k}$ and hence this proves the result.
Theorem 3.2. Let $f \in T_{\alpha}(k, n)$. Then F defined by

$$
F(z)=\frac{1+c}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t, \quad \operatorname{Rec}>0
$$

also belongs to $T_{\alpha}(k, n)$.
Proof. Let $G=\phi \star f, \phi \in C$, where C is the class of convex univalent functions. Now

$$
I_{n} G=\phi \star I_{n} f
$$

and

$$
\begin{aligned}
(1-\alpha) \frac{I_{n} G}{z}+\alpha\left(I_{n} G\right)^{\prime} & =(1-\alpha) \frac{\left(\phi \star I_{n} f\right)}{z}+\alpha\left(\phi \star I_{n} f\right)^{\prime} \\
& =\frac{\phi}{z} \star\left[(1-\alpha) \frac{I_{n} f}{z}+\alpha\left(I_{n} f\right)^{\prime}\right] \\
& =\frac{\phi}{z} \star p, \quad p \in P_{k} \\
& =\frac{\phi}{z} \star\left[\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}\right], \quad p_{1}, p_{2} \in P \\
& =\left(\frac{k}{4}+\frac{1}{2}\right)\left(\frac{\phi}{z} \star p_{1}\right)-\left(\frac{k}{4}-\frac{1}{2}\right)\left(\frac{\phi}{z} \star p_{2}\right)
\end{aligned}
$$

Since ϕ is convex, $R e \frac{\phi(z)}{z}>\frac{1}{2}$ for $z \in E$. Thus, using Lemma 2.1, we note that $G \in T_{\alpha}(k, n)$.

Now we can write

$$
F(z)=\phi_{c} \star f
$$

where ϕ_{c} is given by

$$
\phi_{c}(z)=\sum_{m=1}^{\infty} \frac{1+c}{m+c} z^{m}, \quad \operatorname{Rec}>0
$$

and ϕ_{c} is convex in E. Hence $F \in T_{\alpha}(k, n)$.

Theorem 3.3. Let $f \in T_{\alpha}(k, n), 0<\alpha<1$. Then $f \in T_{1}(k, n)$ for $|z|<$ R, where R is the radius of the largest disk centered at the origin for which $R e q^{\prime}(z)>\frac{1}{2}, q(z)$ is defined by

$$
\begin{equation*}
q(z)=\frac{1}{\alpha} z^{1-\frac{1}{\alpha}} \int_{0}^{z} \frac{t^{\frac{1}{\alpha}-1}}{1-t} d t, \quad(\alpha>0) \tag{3.1}
\end{equation*}
$$

andR is given by the smallest root of the equation

$$
\begin{equation*}
\frac{\left(\frac{2}{\alpha}-1-r\right)}{1+r}-\frac{2}{\alpha}\left(\frac{1}{\alpha}-1\right) \int_{0}^{1} \frac{t^{\frac{1}{\alpha}-1}}{1-t r} d t=0 \tag{3.2}
\end{equation*}
$$

This result is sharp.
Proof. Since $f \in T_{\alpha}(k, n)$, we can write

$$
I_{n} f=q \star z p, \quad p \in P_{k}
$$

This implies

$$
\left(I_{n} f\right)^{\prime}=\frac{z p \star z q^{\prime}}{z}=\frac{z p \star z q^{\prime}}{z \star z q^{\prime}}
$$

Let $z q^{\prime}=h$ and so $\quad h^{\prime}=q^{\prime}+z q^{\prime \prime}$. It is easy to check that $q^{\prime}(0)=1$. Therefore, for $R e q^{\prime}(z)>\frac{1}{2}$, we see that

$$
R e \frac{h(z)}{z h^{\prime}(0)}>\frac{1}{2}, \quad \text { for } \quad|z|<R
$$

Thus h is a prestralike function of order $\sigma=1$.
Now

$$
\begin{aligned}
\left(I_{n} f\right)^{\prime}(z) & =\frac{z p(z) \star z q^{\prime}(z)}{z \star z q^{\prime}(z)} \\
& =\left(\frac{k}{4}+\frac{1}{2}\right) \frac{z p_{1}(z) \star z q^{\prime}(z)}{z \star z q^{\prime}(z)}-\left(\frac{k}{4}-\frac{1}{2}\right) \frac{z p_{2}(z) \star z q^{\prime}(z)}{z \star z q^{\prime}(z)}, \quad p_{1}, p_{2} \in P
\end{aligned}
$$

Using Lemma 2.2 on $\frac{z p_{i}(z) \star z q^{\prime}(z)}{z \star z q^{\prime}(z)}, i=1,2$, we see that $\left(I_{n} f\right)^{\prime} \in P_{k}$ for $|z|<R$ and sof $\in T_{1}(k, n)$ for $|z|<R$. To find radius R, we proceed as follows.

For $\alpha>0, q(z)$ is given by (3.1), where the powers are meant as principal values. We have

$$
q^{\prime}(z)=\frac{1}{\alpha(1-z)}-\frac{1}{\alpha}\left(\frac{1}{\alpha}-1\right) z^{1-\frac{1}{\alpha}} \int_{0}^{z} \frac{t^{\frac{1}{\alpha}-1}}{1-t} d t .
$$

The function q^{\prime} is analytic in $E, q^{\prime}(0)=1$ and

$$
2 q^{\prime}(z)-1=\frac{2-\alpha+\alpha z}{\alpha(1-z)}-\frac{2}{\alpha}\left(\frac{1}{\alpha}-1\right) \int_{0}^{1} \frac{t^{\frac{1}{\alpha}-1}}{1-t z} d t .
$$

Therefore $\operatorname{Req}^{\prime}(z)>\frac{1}{2}$ for $|z|<R$, where R is the smallest positive root of (3.2). The sharpness of the result follows from the function $f_{0} \in T_{\alpha}(k, n)$ defined by

$$
\begin{equation*}
I_{n} f_{0}=q(z) \star z p(z) \tag{3.3}
\end{equation*}
$$

with

$$
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) \frac{1+z}{1-z}-\left(\frac{k}{4}-\frac{1}{2}\right) \frac{1-z}{1+z} .
$$

Theorem 3.4. Let $f \in T_{\alpha}(k, n), \alpha>0$ and be given by (1.1). Then

$$
\left|a_{m}\right| \leq \frac{k}{1-\alpha+\alpha m} \frac{(m+n-)!}{n!m!} .
$$

This result is sharp.
Proof. Since $f \in T_{\alpha}(k, n)$, we have

$$
\begin{equation*}
(1-\alpha) \frac{I_{n} f(z)}{z}+\alpha\left(I_{n} f\right)^{\prime}(z)=p(z), \quad p \in P_{k} \tag{3.4}
\end{equation*}
$$

Let p be given by $p(z)=1+\sum_{m=1}^{\infty} c_{m} z^{m}$, then it is known that

$$
\begin{equation*}
\left|c_{m}\right| \leq k \tag{3.5}
\end{equation*}
$$

Equating the coefficient of z^{m-1} in (3.4) and using (3.5), we have

$$
(1-\alpha+\alpha m) \frac{(n!)(m!)}{(m+n-1)!}\left|a_{m}\right| \leq k,
$$

and the required result follows.
The function f_{0} defined by (3.3) shows that these coefficient bounds are best possible.

Theorem 3.5. Let $f \in T_{0}(k, n)$. Then $f \in T_{\alpha}(k, n)$ for $|z|<r_{\alpha}$, where

$$
\begin{equation*}
r_{\alpha}=\frac{1}{2 \alpha+\sqrt{4 \alpha^{2}-2 \alpha+1}}, \quad 0<\alpha<1, \quad \alpha \neq \frac{1}{2} \tag{3.6}
\end{equation*}
$$

Proof. Let

$$
\phi_{\alpha}(z)=(1-\alpha) \frac{f(z)}{z}+\alpha f^{\prime}(z)
$$

Then

$$
I_{n} \phi_{\alpha}(z)=\left(\frac{\Psi_{\alpha}(z)}{z}\right) \star\left(\frac{I_{n} f(z)}{z}\right)
$$

where

$$
\Psi_{\alpha}(z)=(1-\alpha) \frac{z}{1-z}+\alpha \frac{z}{(1-z)^{2}} 0=z+\sum_{m=1}^{\infty}(1+(m-1) \alpha) z^{m}
$$

Now Ψ_{α} is convex for $|z|<r_{\alpha}, r_{\alpha}$ is given by (3.6) and this value is exact. Consequently, for $|z|<r_{\alpha}, R e \frac{\Psi_{\alpha}(z)}{z}>\frac{1}{2}$. Hence, since $f \in T_{0}(k, n), \frac{I_{n} f}{z} \in P_{k}$ and applying the technique used in the proof of Theorem 3.2, we conclude that $f \in T_{\alpha}(k, n)$ for $|z|<r_{\alpha}$.
Theorem 3.6. For $0 \leq \alpha_{2}<\alpha_{1}, T_{\alpha_{1}}(k, n) \subset T_{\alpha_{2}}(k, n)$.
Proof. For $\alpha_{2}=0$, the proof is immediate. Let $\alpha_{2}>0$ and let $f \in T_{\alpha_{1}}(k, n)$. Then

$$
\begin{aligned}
\left(1-\alpha_{2}\right) \frac{I_{n} f}{z}+\alpha_{2}\left(I_{n} f\right)^{\prime} & =\frac{\alpha_{2}}{\alpha_{1}}\left[\left(\frac{\alpha_{1}}{\alpha_{2}}-1\right) \frac{I_{n} f}{z}+\left(1-\alpha_{1}\right) \frac{I_{n} f}{z}+\alpha_{1}\left(I_{n} f\right)^{\prime}\right] \\
& =\left(1-\frac{\alpha_{2}}{\alpha_{1}}\right) \frac{I_{n} f}{z}+\frac{\alpha_{2}}{\alpha_{1}}\left[\left(1-\alpha_{1}\right) \frac{I_{n} f}{z}+\alpha_{1}\left(I_{n} f\right)^{\prime}\right] \\
& =\left(1-\frac{\alpha_{2}}{\alpha_{1}}\right) H_{1}+\frac{\alpha_{2}}{\alpha_{1}} H_{2}, \quad\left(\frac{\alpha_{2}}{\alpha_{1}}<1\right)
\end{aligned}
$$

$H_{1}, H_{2} \in P_{k}$ and this implies $\left[\left(1-\frac{\alpha_{2}}{\alpha_{1}}\right) H_{1}+\frac{\alpha_{2}}{\alpha_{1}} H_{2}\right]$ also belongs to P_{k}. Thus $f \in T_{\alpha_{2}}(k, n)$.
Theorem 3.7. $T_{\alpha}(k, n) \subset T_{\alpha}(k, n+1)$.
Proof. Let $f \in T_{\alpha}(k, n)$. Then

$$
I_{n} f=q \star z p, \quad p \in P_{k}
$$

and q is convex and is given by (3.1). Using Lemma 2.1, we note that $\left(\frac{q}{z} \star p\right) \in$ P_{k}. From identity (1.7), we can write

$$
\begin{equation*}
I_{n} f=\frac{n}{n+1} I_{n+1} f+\frac{1}{n+1} z\left(I_{n+1} f\right)^{\prime} \tag{3.7}
\end{equation*}
$$

From (3.1) and (3.7) with $\alpha=\frac{1}{n+1}$, we can write

$$
I_{n} f=q_{n} \star I_{n+1} f .
$$

Since $f \in T_{\alpha}(k, n)$, it implies that $f \in T_{0}(k, n)$ and therefore $\frac{I_{n} f}{z} \in P_{k}$. Thus $\frac{1}{z}\left(q_{n} \star I_{n+1} f\right) \in P_{k}$. Set

$$
I_{n+1} f=q \star z H=\left(\frac{k}{4}+\frac{1}{2}\right)\left(q \star z h_{1}\right)-\left(\frac{k}{4}-\frac{1}{2}\right)\left(q \star z h_{2}\right) .
$$

We want to show that $h_{i} \in P, i=1,2$. Now

$$
q_{n} \star I_{n+1} f=\left(\frac{k}{4}+\frac{1}{2}\right)\left(q \star q_{n} \star z h_{1}\right)-\left(\frac{k}{4}-\frac{1}{2}\right)\left(q \star q_{n} \star z h_{2}\right) .
$$

Since $\frac{1}{z}\left(q_{n} \star I_{n+1} f\right) \in P_{k}$, it implies that $\frac{1}{z}\left(q \star q_{n} \star z h_{i}\right) \in P, i=1,2 . q, q_{n}$ are both are convex, so $q \star q_{n}=\phi$ is also convex, see [6]. Therefore $\frac{1}{z}\left(\phi \star z h_{i}\right) \in P$ and this implies $h_{i} \in P, i=1,2$. This proves that $H \in P_{k}$ and hence $f \in$ $T_{\alpha}(k, n+1)$. Hence the proof.

Let $f \in \mathcal{A}$ and let

$$
\begin{equation*}
F(z)=L(f)=\frac{n+1}{z^{n}} \int_{0}^{z} t^{n-1} f(t) d t \tag{3.8}
\end{equation*}
$$

Then

$$
\begin{aligned}
F(z)=L f(z) & =\left(z+\sum_{m=0}^{\infty} \frac{n+1}{n+m+1}\right) \star f(z) \\
& =\left[z_{2} F_{1}(1, n+1 ; n+2, z)\right] \star f(z)
\end{aligned}
$$

where ${ }_{2} F_{1}$ is the hypergeometric function.
This implies

$$
I_{n} F(z)=I_{n} L(f(z))=I_{n+1} f(z)
$$

and we have the following result.

Theorem 3.8. Let $f \in T_{\alpha}(k, n+1)$. Then F, defined by (3.8), belongs to $T_{\alpha}(k, n)$, for $z \in E$.

We now prove a radius problem
Theorem 3.9. Let F, defined by (3.8), belong to $T_{\alpha}(k, n)$. Then $f \in T_{\alpha}(k, n)$ for $|z|<r_{n}$, where the exact value of r_{n} is given by

$$
\begin{equation*}
r_{n}=\frac{(1+n)}{2+\sqrt{3+n^{2}}} \tag{3.9}
\end{equation*}
$$

Proof. We can write

$$
F(z)=\Psi_{n}(z) \star f(z), \quad \Psi_{n}(z)=\sum_{j=1}^{\infty} \frac{n+j}{n+1} z^{j}
$$

and Ψ_{n} is convex for $|z|<r_{n}=\frac{1+n}{2+\sqrt{3+n^{2}}}$. Thus

$$
I_{n} f=f_{n}^{(-1)} \star \Psi_{n} \star f=\Psi_{n} \star I_{n} f
$$

Since $F \in T_{\alpha}(k, n)$, it implies that $\Psi_{n} \star I_{n} f \in T_{\alpha}(k, n)$ and, since Ψ_{n} is convex in $|z|<r_{n}$, so $f \in T_{\alpha}(k, n)$ for $|z|<r_{n}$, where r_{n} is given by (3.9).

References

1. N. E. Cho, The Noor integral operators and strongly close-to-convex functions, J. Math. Anal. Appl. 283 (2003), 202-212.
2. J. Liu, The Noor integral operator and strongly starlike functions, J. Math. Anal. Appl. 261 (2001), 441-447.
3. J. Liu and K. Inayat Noor, Some properties of Noor integral operator, J. Nat. Geometry 21 (2002), 81-90.
4. K. Inayat Noor, On new classes of integral operators, J. Nat. Geometry 16 (1999), 71-80.
5. K. Inayat Noor and M. Aslam Noor, On integral operators, J. Math. Anal. Appl. 238 (1999), 341-352.
6. St. Ruscheweyh, Convolution in Geometric Function Theory 83 (1982), Sem. Math. Sup., Montreal, Canada.

Khalida Inayat Noor
Mathematics Department,
Lahore University of Management Sciences,
Lahore, Pakistan
E-mail address: khalidanoor@hotmail.com

