Nonlinear Funct. Anal. & Appl., Vol. 10, No. 1 (2005), pp. 79-87

PROPERTIES OF CERTAIN NEW CLASSES OF ANALYTIC FUNCTIONS

Khalida Inayat Noor

ABSTRACT. Let $f_n(z) = \frac{z}{(1-z)^{n+1}}$, $n \in N_0$ and let $f_n^{(-1)}$ be defined such that $f_n \star f_n^{(-1)} = \frac{z}{1-z}$, where \star denotes convolution (Hadamard product). Using the operator $I_n f = f_n \star f_n^{(-1)}$, introduced by Noor, we define some classes of analytic functions in unit disk E and study their properties. Some inclusions relationships, sharp coefficient bounds and radius problems are investigated.

1. INTRODUCTION

Let \mathcal{A} denote the class of functions

$$f(z) = z + \sum_{m=2}^{\infty} a_m z^m \tag{1.1}$$

which are analytic in the unit disk $E = \{z : |z| < 1\}$. Let P_k be the class of functions p defined in E and with representation

$$p(z) = \frac{1}{2} \int_{-\pi}^{\pi} \frac{1 + ze^{-it}}{1 - ze^{-it}} d\mu(t), \qquad (1.2)$$

where $\mu(t)$ is a function with bounded variation on $[-\pi, \pi]$ and it satisfies the conditions

$$\int_{-\pi}^{\pi} d\mu(t) = 2, \qquad \int_{-\pi}^{\pi} |d\mu(t)| \le k.$$
(1.3)

We note that $k \ge 2$ and $P_2 = P$ is the class of analytic functions with positive real part in E with p(0) = 1. From the integral representation (1.2), it is

Received October 12, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 30C45, 30C50.

Key words and phrases: Convolution, integral operator, radius problems.

immediately clear that $p \in P_k$ if, and only if, there are analytic functions $p_1, p_2 \in P$ such that

$$p(z) = \left(\frac{k}{4} + \frac{1}{2}\right)p_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right)p_2(z).$$
(1.4)

We define the Hadamard product or convolution of two analytic functions

$$f(z) = \sum_{m=0}^{\infty} a_m z^{m+1}$$
 and $g(z) = \sum_{m=0}^{\infty} b_m z^{m+1}$

as

$$(f \star g)(z) = \sum_{m=0}^{\infty} a_m b_m z^{m+1}.$$

Denote $D^n: \mathcal{A} \longrightarrow \mathcal{A}$ be the operator defined by

$$D^{n}f = \frac{z}{(1-z)^{n+1}} \star f, \quad n = 0, 1, 2, \dots$$
$$= z + \sum_{m=2}^{\infty} \frac{(m+n-1)!}{(n!)(m!)} a_{n} z^{m}.$$

We note that $D^0 f(z) = f(z)$, $D^1 f(z) = zf'(z)$ and $D^n f(z) = \frac{z(z^{n-1}f(z))^{(n)}}{n!}$. The symbol $D^n f$ is called the *nth* order Ruscheweyh derivative of f. Anal-

The symbol $D^n f$ is called the *nth* order Ruscheweyh derivative of f. Analogous to $D^n f$, Noor [4] and Noor and Noor [5] defined an integral operator $I_n : \mathcal{A} \longrightarrow \mathcal{A}$ as follows

Let $f_n(z) = \frac{z}{(1-z)^{n+1}}$ and let $f_n^{(-1)}$ be defined such that

$$f_n(z) \star f_n^{(-1)}(z) = \frac{z}{1-z}.$$
 (1.5)

We note that

$$I_n f = f_n^{(-1)} \star f = \left[\frac{z}{(1-z)^{n+1}}\right]^{(-1)} \star f.$$
(1.6)

Note that $I_0 f(z) = z f'(z)$ and $I_1 f(z) = f(z)$. Also, for $I_n f$, we have the identity [4],

$$(n+1)I_nf - nI_{n+1}f = z(I_{n+1}f)'.$$

The integral operator I_n has also been studied in [1], [2], and [3].

A function $f \in \mathcal{A}$ belongs to B_{σ} of prestarlike functions of order σ if and only if, for $z \in E$,

$$Re\frac{f(z)}{zf'(0)} > \frac{1}{2}$$
, for $\sigma = 1$,

and

$$\frac{z}{(1-z)^{2(1-\sigma)}} \star f(z) \in S^{\star}(\sigma), \quad 0 \le \sigma < 1,$$

where $S^{\star}(\sigma)$ is the classes of starlike functions g with $Re\frac{zg'(z)}{g(z)} > \sigma$ and $S^{\star}(0) = S^{\star}$.

We now have the following.

Definition 1.1. Let $f \in \mathcal{A}$. Then, for $\alpha \ge 0, z \in E, f \in T_{\alpha}(k)$ if, and only if,

$$\{(1-\alpha)\frac{f(z)}{z} + \alpha f'(z)\} \in P_k.$$

Definition 1.2. Let $f \in \mathcal{A}$. Then $f \in T_{\alpha}(k, n)$ if, and only if, $I_n f \in T_{\alpha}(k)$ for $\alpha \geq 0, z \in E$.

2. Preliminary Results

We give here two basic results which we shall need later on. For the proofs of both, we refer to [6].

Lemma 2.1. If p is analytic in E and p(0) = 1 and $Rep(z) > \frac{1}{2}$, $z \in E$, then for any function F, analytic in E, the function $p \star F$ takes values in the convex hull of the image of E under F.

Lemma 2.2. Let f be a prestarlike function of order $\sigma(\sigma \leq 1)$, and let g be a starlike function of order σ . Then the generalized convolution operator

$$\wedge F = \frac{f \star gF}{f \star g}$$

is a convexity preserving operator.

3. Main Results

Theorem 3.1. The class $T_{\alpha}(k, n)$ is a convex set. Proof. Let $f, g \in T_{\alpha}(k, n)$ and let, for $0 \leq \lambda < 1$,

$$F(z) = \lambda f(z) + (1 - \lambda)g(z).$$

Khalida Inayat Noor

Then

$$(1-\alpha)\frac{I_nF}{z} + \alpha(I_nF)' = \lambda[\alpha\frac{I_nf}{z} + (1-\alpha)(I_nf)'] + (1-\lambda)[\alpha\frac{I_ng}{z} + (1-\alpha)(I_ng)'] = \lambda h_1 + (1-\lambda)h_2 = h,$$

 $h_1, h_2 \in P_k$ and since P_k is a convex set, $h \in P_k$ and hence this proves the result.

Theorem 3.2. Let $f \in T_{\alpha}(k, n)$. Then F defined by

$$F(z) = \frac{1+c}{z^c} \int_0^z t^{c-1} f(t) dt, \quad Rec > 0$$

also belongs to $T_{\alpha}(k,n)$.

Proof. Let $G = \phi \star f, \phi \in C$, where C is the class of convex univalent functions. Now

$$I_n G = \phi \star I_n f,$$

and

$$(1 - \alpha)\frac{I_n G}{z} + \alpha (I_n G)' = (1 - \alpha)\frac{(\phi \star I_n f)}{z} + \alpha (\phi \star I_n f)'$$

= $\frac{\phi}{z} \star [(1 - \alpha)\frac{I_n f}{z} + \alpha (I_n f)']$
= $\frac{\phi}{z} \star p$, $p \in P_k$
= $\frac{\phi}{z} \star [(\frac{k}{4} + \frac{1}{2})p_1 - (\frac{k}{4} - \frac{1}{2})p_2]$, $p_1, p_2 \in P$
= $(\frac{k}{4} + \frac{1}{2})(\frac{\phi}{z} \star p_1) - (\frac{k}{4} - \frac{1}{2})(\frac{\phi}{z} \star p_2)$

Since ϕ is convex, $Re\frac{\phi(z)}{z} > \frac{1}{2}$ for $z \in E$. Thus, using Lemma 2.1, we note that $G \in T_{\alpha}(k, n)$.

Now we can write

$$F(z) = \phi_c \star f,$$

where ϕ_c is given by

$$\phi_c(z) = \sum_{m=1}^{\infty} \frac{1+c}{m+c} z^m, \quad Rec > 0$$

and ϕ_c is convex in E. Hence $F \in T_{\alpha}(k, n)$.

		1

Theorem 3.3. Let $f \in T_{\alpha}(k, n)$, $0 < \alpha < 1$. Then $f \in T_1(k, n)$ for |z| < R, where R is the radius of the largest disk centered at the origin for which $Req'(z) > \frac{1}{2}$, q(z) is defined by

$$q(z) = \frac{1}{\alpha} z^{1-\frac{1}{\alpha}} \int_0^z \frac{t^{\frac{1}{\alpha}-1}}{1-t} dt, \quad (\alpha > 0)$$
(3.1)

and R is given by the smallest root of the equation

$$\frac{\left(\frac{2}{\alpha}-1-r\right)}{1+r} - \frac{2}{\alpha}\left(\frac{1}{\alpha}-1\right)\int_0^1 \frac{t^{\frac{1}{\alpha}-1}}{1-tr}dt = 0.$$
(3.2)

This result is sharp.

Proof. Since $f \in T_{\alpha}(k, n)$, we can write

$$I_n f = q \star zp, \qquad p \in P_k.$$

This implies

$$(I_n f)' = \frac{zp \star zq'}{z} = \frac{zp \star zq'}{z \star zq'}.$$

Let zq' = h and so h' = q' + zq''. It is easy to check that q'(0) = 1. Therefore, for $Req'(z) > \frac{1}{2}$, we see that

$$Re\frac{h(z)}{zh'(0)} > \frac{1}{2}, \quad \text{for} \quad |z| < R.$$

Thus h is a prestralike function of order $\sigma = 1$. Now

$$(I_n f)'(z) = \frac{zp(z) \star zq'(z)}{z \star zq'(z)}$$

= $(\frac{k}{4} + \frac{1}{2})\frac{zp_1(z) \star zq'(z)}{z \star zq'(z)} - (\frac{k}{4} - \frac{1}{2})\frac{zp_2(z) \star zq'(z)}{z \star zq'(z)}, \quad p_1, p_2 \in P.$

Using Lemma 2.2 on $\frac{zp_i(z)\star zq'(z)}{z\star zq'(z)}$, i = 1, 2, we see that $(I_n f)' \in P_k$ for |z| < R and so $f \in T_1(k, n)$ for |z| < R. To find radius R, we proceed as follows.

Khalida Inayat Noor

For $\alpha > 0$, q(z) is given by (3.1), where the powers are meant as principal values. We have

$$q'(z) = \frac{1}{\alpha(1-z)} - \frac{1}{\alpha}(\frac{1}{\alpha} - 1)z^{1-\frac{1}{\alpha}} \int_0^z \frac{t^{\frac{1}{\alpha}-1}}{1-t} dt.$$

The function q' is analytic in E, q'(0) = 1 and

$$2q'(z) - 1 = \frac{2 - \alpha + \alpha z}{\alpha(1 - z)} - \frac{2}{\alpha} (\frac{1}{\alpha} - 1) \int_0^1 \frac{t^{\frac{1}{\alpha} - 1}}{1 - tz} dt.$$

Therefore $Req'(z) > \frac{1}{2}$ for |z| < R, where R is the smallest positive root of (3.2). The sharpness of the result follows from the function $f_0 \in T_{\alpha}(k, n)$ defined by

$$I_n f_0 = q(z) \star z p(z) \tag{3.3}$$

with

$$p(z) = \left(\frac{k}{4} + \frac{1}{2}\right)\frac{1+z}{1-z} - \left(\frac{k}{4} - \frac{1}{2}\right)\frac{1-z}{1+z}.$$

Theorem 3.4. Let $f \in T_{\alpha}(k, n)$, $\alpha > 0$ and be given by (1.1). Then

$$|a_m| \le \frac{k}{1 - \alpha + \alpha m} \frac{(m+n-)!}{n!m!}$$

This result is sharp.

Proof. Since $f \in T_{\alpha}(k, n)$, we have

$$(1-\alpha)\frac{I_n f(z)}{z} + \alpha (I_n f)'(z) = p(z), \quad p \in P_k.$$
(3.4)

Let p be given by $p(z) = 1 + \sum_{m=1}^{\infty} c_m z^m$, then it is known that

$$|c_m| \le k. \tag{3.5}$$

Equating the coefficient of z^{m-1} in (3.4) and using (3.5), we have

$$(1 - \alpha + \alpha m) \frac{(n!)(m!)}{(m+n-1)!} |a_m| \le k,$$

and the required result follows.

The function f_0 defined by (3.3) shows that these coefficient bounds are best possible.

Theorem 3.5. Let $f \in T_0(k, n)$. Then $f \in T_\alpha(k, n)$ for $|z| < r_\alpha$, where

$$r_{\alpha} = \frac{1}{2\alpha + \sqrt{4\alpha^2 - 2\alpha + 1}}, \quad 0 < \alpha < 1, \quad \alpha \neq \frac{1}{2}.$$
 (3.6)

Proof. Let

$$\phi_{\alpha}(z) = (1 - \alpha)\frac{f(z)}{z} + \alpha f'(z).$$

Then

$$I_n\phi_\alpha(z) = (\frac{\Psi_\alpha(z)}{z}) \star (\frac{I_n f(z)}{z}),$$

where

$$\Psi_{\alpha}(z) = (1-\alpha)\frac{z}{1-z} + \alpha \frac{z}{(1-z)^2} = z + \sum_{m=1}^{\infty} (1+(m-1)\alpha)z^m.$$

Now Ψ_{α} is convex for $|z| < r_{\alpha}$, r_{α} is given by (3.6) and this value is exact. Consequently, for $|z| < r_{\alpha}$, $Re\frac{\Psi_{\alpha}(z)}{z} > \frac{1}{2}$. Hence, since $f \in T_0(k, n)$, $\frac{I_n f}{z} \in P_k$ and applying the technique used in the proof of Theorem 3.2, we conclude that $f \in T_{\alpha}(k, n)$ for $|z| < r_{\alpha}$.

Theorem 3.6. For $0 \le \alpha_2 < \alpha_1$, $T_{\alpha_1}(k, n) \subset T_{\alpha_2}(k, n)$.

Proof. For $\alpha_2 = 0$, the proof is immediate. Let $\alpha_2 > 0$ and let $f \in T_{\alpha_1}(k, n)$. Then

$$(1 - \alpha_2)\frac{I_n f}{z} + \alpha_2 (I_n f)' = \frac{\alpha_2}{\alpha_1} \left[(\frac{\alpha_1}{\alpha_2} - 1)\frac{I_n f}{z} + (1 - \alpha_1)\frac{I_n f}{z} + \alpha_1 (I_n f)' \right]$$
$$= (1 - \frac{\alpha_2}{\alpha_1})\frac{I_n f}{z} + \frac{\alpha_2}{\alpha_1} \left[(1 - \alpha_1)\frac{I_n f}{z} + \alpha_1 (I_n f)' \right]$$
$$= (1 - \frac{\alpha_2}{\alpha_1})H_1 + \frac{\alpha_2}{\alpha_1}H_2, \quad (\frac{\alpha_2}{\alpha_1} < 1)$$

 $H_1, H_2 \in P_k$ and this implies $[(1 - \frac{\alpha_2}{\alpha_1})H_1 + \frac{\alpha_2}{\alpha_1}H_2]$ also belongs to P_k . Thus $f \in T_{\alpha_2}(k, n)$.

Theorem 3.7. $T_{\alpha}(k,n) \subset T_{\alpha}(k,n+1).$

Proof. Let $f \in T_{\alpha}(k, n)$. Then

$$I_n f = q \star zp, \quad p \in P_k$$

and q is convex and is given by (3.1). Using Lemma 2.1, we note that $(\frac{q}{z} \star p) \in P_k$. From identity (1.7), we can write

$$I_n f = \frac{n}{n+1} I_{n+1} f + \frac{1}{n+1} z (I_{n+1} f)'.$$
(3.7)

From (3.1) and (3.7) with $\alpha = \frac{1}{n+1}$, we can write

$$I_n f = q_n \star I_{n+1} f.$$

Since $f \in T_{\alpha}(k, n)$, it implies that $f \in T_0(k, n)$ and therefore $\frac{I_n f}{z} \in P_k$. Thus $\frac{1}{z}(q_n \star I_{n+1}f) \in P_k$. Set

$$I_{n+1}f = q \star zH = (\frac{k}{4} + \frac{1}{2})(q \star zh_1) - (\frac{k}{4} - \frac{1}{2})(q \star zh_2).$$

We want to show that $h_i \in P$, i = 1, 2. Now

$$q_n \star I_{n+1}f = (\frac{k}{4} + \frac{1}{2})(q \star q_n \star zh_1) - (\frac{k}{4} - \frac{1}{2})(q \star q_n \star zh_2).$$

Since $\frac{1}{z}(q_n \star I_{n+1}f) \in P_k$, it implies that $\frac{1}{z}(q \star q_n \star zh_i) \in P$, $i = 1, 2, q, q_n$ are both are convex, so $q \star q_n = \phi$ is also convex, see [6]. Therefore $\frac{1}{z}(\phi \star zh_i) \in P$ and this implies $h_i \in P$, i = 1, 2. This proves that $H \in P_k$ and hence $f \in T_{\alpha}(k, n+1)$. Hence the proof. \Box

Let $f \in \mathcal{A}$ and let

$$F(z) = L(f) = \frac{n+1}{z^n} \int_0^z t^{n-1} f(t) dt.$$
 (3.8)

Then

$$F(z) = Lf(z) = (z + \sum_{m=0}^{\infty} \frac{n+1}{n+m+1}) \star f(z)$$
$$= [z_2 F_1(1, n+1; n+2, z)] \star f(z),$$

where $_2F_1$ is the hypergeometric function.

This implies

$$I_n F(z) = I_n L(f(z)) = I_{n+1} f(z)$$

and we have the following result.

Theorem 3.8. Let $f \in T_{\alpha}(k, n + 1)$. Then F, defined by (3.8), belongs to $T_{\alpha}(k, n)$, for $z \in E$.

We now prove a radius problem

Theorem 3.9. Let F, defined by (3.8), belong to $T_{\alpha}(k,n)$. Then $f \in T_{\alpha}(k,n)$ for $|z| < r_n$, where the exact value of r_n is given by

$$r_n = \frac{(1+n)}{2+\sqrt{3+n^2}}.$$
(3.9)

Proof. We can write

$$F(z) = \Psi_n(z) \star f(z), \quad \Psi_n(z) = \sum_{j=1}^{\infty} \frac{n+j}{n+1} z^j,$$

and Ψ_n is convex for $|z| < r_n = \frac{1+n}{2+\sqrt{3+n^2}}$. Thus

$$I_n f = f_n^{(-1)} \star \Psi_n \star f = \Psi_n \star I_n f.$$

Since $F \in T_{\alpha}(k, n)$, it implies that $\Psi_n \star I_n f \in T_{\alpha}(k, n)$ and, since Ψ_n is convex in $|z| < r_n$, so $f \in T_{\alpha}(k, n)$ for $|z| < r_n$, where r_n is given by (3.9). \Box

References

- N. E. Cho, The Noor integral operators and strongly close-to-convex functions, J. Math. Anal. Appl. 283 (2003), 202-212.
- J. Liu, The Noor integral operator and strongly starlike functions, J. Math. Anal. Appl. 261 (2001), 441-447.
- J. Liu and K. Inayat Noor, Some properties of Noor integral operator, J. Nat. Geometry 21 (2002), 81-90.
- K. Inayat Noor, On new classes of integral operators, J. Nat. Geometry 16 (1999), 71-80.
- K. Inayat Noor and M. Aslam Noor, On integral operators, J. Math. Anal. Appl. 238 (1999), 341-352.
- St. Ruscheweyh, Convolution in Geometric Function Theory 83 (1982), Sem. Math. Sup., Montreal, Canada.

KHALIDA INAYAT NOOR MATHEMATICS DEPARTMENT, LAHORE UNIVERSITY OF MANAGEMENT SCIENCES, LAHORE, PAKISTAN *E-mail address*: khalidanoor@hotmail.com