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Abstract. Let n > 3 be an integer. In this paper, we investigate the generalized Hyers-
Ulam-Rassias stability of a mixed (n,n — 1)-dimensional quadratic functional equation,

n n

=2 z) + D flm) = > f@ig +- +mi,_y).

j=1 i=1 1<i1 < <ip—1<n

The mixed stability problem was posed in the paper; see [11].

1. INTRODUCTION

In 1940, the problem of stability of functional equations was originated
by Ulam [16] as follows: Under what condition does there exist an additive
mapping near an approximately additive mapping ?

The first partial solution to Ulam’s question was provided by D. H. Hyers
[5]. Let X and Y are Banach spaces with norms || - || and || - ||, respectively.
Hyers showed that if a function f : X — Y satisfies the following inequality

[ flz+y) = flz)—fly)l<e
for all € > 0 and for all x,y € X, then the limit
a(z) = lim 27" f(2"x)
n—oo
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exists for each x € X and a : X — Y is the unique additive function such that

| f(z) —alz) [[< e
for any x € X . Moreover, if f(tx) is continuous in ¢ for each fixed z € X,
then a is linear.

Hyers’s theorem was generalized in various directions. In particular, Th.
M. Rassias [7] considered a generalized version of the theorem of Hyers which
permitted the Cauchy difference to become unbounded. He proved the follow-
ing theorem by using a direct method: if a function f : X — Y satisfies the
following inequality

I f(@+y) = flz) = f@) <o = [P+ [ = [7)

for some 8 > 0,0 < p < 1, and for all z,y € X, then there exists a unique
additive function such that
20

| £@) = a@) < 5=

for all x € X . Moreover, if f(tx) is continuous in ¢ for each fixed z € X, then
a is linear. Th.M. Rassias result provided a remarkable generalization of Hyers
Theorem, a fact which rekindled interest in the study of stability of functional
equations. Taking this fact into consideration the Hyers-Ulam stability is
called Hyers-Ulam-Rassias stability.During the last twodecades several results
for the Hyers-Ulam-Rassias stability of functional equations have been proved
by several mathematicians worlwide. Gavruta [4] provided a generalization of
the Theorem of Th.M.Rassias.

The quadratic function f(z) = cx? (c € R) satisfies the functional equation
fle+y) + fle—y) =2f(2) +2f(y). (1)

Hence this question is called the quadratic functional equation, and every
solution of the quadratic equation (1) is called a quadratic function.

[

A Hyers-Ulam stability theorem for the quadratic functional equation (1)
was proved by Skof for functions f : X — Y, where X is a normed space and
Y is a Banach space. Cholewa [2] noticed that the theorem of Skof is still
true if the relevant domain X is replaced by an abelian group. In [3], Czerwik
proved the Hyers-Ulam-Rassias stability of the quadratic functional equation.
Several functional equations have been investigated; see [8], [9], and [10].

In this paper, we will investigate the generalized Hyers-Ulam-Rassias stabil-
ity of a mixed (n,n — 1)-dimensional quadratic functional equation as follows:

(n=2)f(Q_wj) + ) flai) = Yo Sl teta,), (2
j=1 i=1

1<y < <ip_1<n

where n > 3 is a integer.
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Before proceeding the proof, we may remarks as follows: First of all, the
equation (2) can be viewed as the generalization of [[6] Equation (1.2)]. Sec-
ondly, there is a mixed (n,2)—dimensional quadratic functional equation: see

1].

2. A MIXED (n,n — 1)-DIMENSIONAL QUADRATIC MAPPING

Lemma 2.1. Letn > 3 be an integer, and let X,Y be vector spaces. The even
mapping f: X — Y defined by

(n=2)fQ_x)+ Y flzi) = Yo S, (3)
j=1 i=1

1<i1 < <ip—1<n
forall xy,--- ,xn, € X . Then f is quadratic.
Proof. By letting 1 = --- = x, = 0 in (3), we have (n — 2)f(0) = 0. Since
n >3, f(0)=0. Also, letting ©1 =z, zo =y, z3 = —y,and 2, =04 < k <
n) in(3), we get
(n=2)f(z) + f(z) +2f(y) = flz+y) + flz —y) + (n=3) f(x).

Hence we may conclude that

fla+y)+ flz—y)=2f(z) +2f(y).
Thus f is quadratic. O

3. STABILITY OF A MIXED (n,n — 1)-DIMENSIONAL QUADRATIC MAPPING

Throughout in this section, let X be a normed vector space with norm || - ||
and Y be a Banach space with norm || - || . Let n > 2 be even.
For the given mapping f : X — Y, we define

Df(:pla"' 7‘TTL) =
(n=2)fOO x;) + > fla) - > f@iy + -+, ),
j=1 =1 1<i1 < <ip—1<n
for all 1, -, 2, € X .

We will consider two cases where n is odd and n > 4 is any integer.

Theorem 3.1. Let n > 3 be odd and let f : X — Y be an even mapping
satisfying f(0) = 0 for which there exists a function ¢ : X" — [0,00) such
that

d(x1,- ,xp) :224_j¢(2jx1,~- ,ijn)<oo, (4)
§=0
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H Df('rl?"'vxn) ”S (b(xl""vxn)? (5)
for all x1,--- ,x, € X . Then there exists a unique n-dimensional quadratic
mapping Q : X — Y such that

1 -
|| f(fﬂ)—Q(ZE) ||S mqb(‘r? —Z, T, =T, ,—l’,l’), (6)
forallx € X.
Proof. For each k =1,--- ,n, 2, = (—1)*"'z in (5), we have
n—1
|| 2(” - 1)f(llf) - f(QQT) ||§ @(ZE? X, T, =T, —x,x) )
for all x € X . Then we write
1
—Zf(9 < - _ . —
| £(w) = 1@ I€ gyl v —a ), ()
forallz € X.
For a given positive integer r, assume
1 T T
| f@) — G|
1 =
-t Ve y 9k .. ok ok

k=0

for all x € X . Then if x is replaced by 2z in above equation, we have

| f@z) — (Gyr@tia) |

4
1 ~ Lo k k.. ok
< N (C)krp(2kz, —2ka, .. —2kz 2
—_ 2(”* 1) k71(4) ¢( x’ "r7 b x? :L‘),
for all z € X . Now, combine (7) and the previous equation, we may conclude
that
1
| f) — ()|
1 &
< - “\k 2k _2k . _2k 2k

for all x € X and all positive integer ¢. Also, letting x = 2"z in (7), we get

| F(2'0) — (F@ ) < 5

ﬁ¢(27‘$, —2rl’, tecy —2T.T, 2Tx) s
n p—
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or, by multiplying (%)T ,
1 1

() f@e) = (et |
11

< Y S YA 2"’ _27" _27’ 27‘
—_ 2(”—1)(4) QS( :,E7 ‘/L‘? ) x7 I)?

for all x € X and all positive integer r. This implies that for all integers
r>t>0,

B G - (e
r—1
= 2(nl—1) Z(i)kﬂQkﬂ?, —oFg . 7_2/%,21%) 7
k=t

for all z € X . Hence the sequence {(3)* f(2°z)} is a Cauchy sequence in a
Banach space Y. Hence we may define a mapping Q) : X — Y by

Q) = lim 2% f(2'2),
r—00
for all z € X . By the definition of DQ(z1,--- ,x,) and (5),
3 1 T ‘s ‘s
| DQGer, -+ ) 1= Tim ()7 || DF@ a1, 2'2) |

1
< lim (f)qub(QTxl, e 2"2,) =0,

r—oo 2
for all #1, -+ ,z, € X. That is, DQ(x1,--- ,z,) = 0. By Lemma 2.1, the
mapping @ : X — Y is quadratic. Also, letting ¢t = 0 and passing the limit
r — oo in (*), we get the equation (6).
Note that

Q@r) = lim 27 f(2'(2I1))

= 2% lim 2720+ f(2rHig)

= 2%Q(x).

Now, let Q' : X — Y be another n-dimensional quadratic mapping satisfy-
ing (6). Then by previous note, we have

Q@) - Q') || = 27| Q2"2) — Q'(2") ||
2721“
-1

for all z € X . As r — oo, we may conclude that Q(z) = Q'(z), forall z € X .
Thus such a n-dimensional quadratic mapping @ : X — Y is unique. O

<

o2z, - ,2"x),
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Theorem 3.2. Let n > 3 be odd and let f : X — Y be an even mapping
satisfying f(0) = 0 for which there exists a function ¢ : X™ — [0,00) such
that

o0

G(x1,- - ) ::Z4j¢(2*jx1,~- ,2792,) < oo, (8)
§=0
I Df (@1, ) [ dlar, -+ 2n), (9)
for all x1,--- ,x, € X . Then there exists a unique n-dimensional quadratic
mapping Q : X — 'Y such that
1 .
|| f(flf)—Q((L’) ||§ mcﬁ(x, L, Ly =Xyt ,—l',iﬁ), (10)

forallz e X.

Proof. If z is replaced by %x (not 2z), then it follows from the proof of Theorem
3.1. O

Corollary 3.3. Let p # 2 and 0 be positive real numbers, let n > 3 be odd,
and let f: X —Y be an even mapping satisfying f(0) =0 and

=1

for all x1,--- ,x, € X . Then there exists a unique n-dimensional quadratic
mapping Q : X — Y such that
2n 0
_ < N — p
I £) = Q) I 5 - el
forallx € X.
Proof. Let

n
(b(xlv"' ,iL‘n) = QZ szHp,
i=1
and then apply to Theroem 3.1 when p < 2, or apply to Theroem 3.2 when
p>2. O
Now, we may assume n > 4 is an integer.

Theorem 3.4. Letn >4, and let f : X — Y be an even mapping satisfying
f(0) =0 for which there exists a function ¢ : X™ — [0,00) such that

O(x1,- - xy) = 24_j¢(2j;1:1,~- ,ijn) < 0, (11)
j=0

” Df(l‘l,"',.%'n) ||S (l)(xla"'awn)? (12)



An (n,n — 1)-dimensional quadratic functional equation 829

for all x1,--- ,x, € X . Then there exists a unique n-dimensional quadratic
mapping Q : X — Y such that
1 -
|| f(x) - Q(.T) HS m¢(2x7 —X, T, ,T, T, 07 e 70) ) (13)

2m—terms
forallx € X, where 4 <2m <mn.
Proof. By letting 2y = 2z, 2, = (—=1)*l2, (k = 2,---,2m), and z;, = 0,
(2m+1<k <mn) in (12), we have
[ (n=2)f(x)+ f2z) + (2m-—1)f(z)
= (mf(2x) + f(z) + (n —2m) f(z) ||
§¢(2x,—x,m,-~-,x,—m,0, 70)7

Vv
2m—terms

for all x € X . Then we have

I @) - o) 1< 5

1
m¢(2$a L, T, 5T, _x>07"' 70)7 (14)

2m—terms

forall x € X .
For a given positive integer r, assume

| f(e) — (G @) |

< 75 , e _9kp ok .. 9k, ok, g ...
( 1)k0( V(28 x, —2%x, 2%, , 2%, —2%x, 0, ,0),

2m—terms
for all x € X . Then if z is replaced by 2x in above equation, we have

| f(2r) — (7 |

< mZ(Z) ¢ e, kg 2F g . 2Fp 2R 0,--.,0),

k=1 2m—terms

for all x € X . Now, combine (14) and the previous equation, we may conclude
that

1
| f(z) - (Z)tf(%) |
1 — 1 k k k k k k
> (S)Fe@ e, —2ky, 2k, - 2Pz, —2Fa,0,---,0),

S -
4(m —1) =4

2m—terms
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for all x € X and all positive integer t. Also, letting x = 2"z in (14), we get

| f(2') — 3 F@ ) |

1
4( 1)¢(2r+1x7 _27‘1,’ 2r$, e ’27“32’ _27“.%,,0’ e >O> )
m_ Ve

2m—terms

or, by multiplying (i)r

| F@ )~ () F(@a) |
1 1

< (B —m—p(27 e, =22, 2", -, 27, —2" 2,0, -+, 0
_— (4) 4(m _ 1)¢( x’ x? x? ) gj? l’, ) ) ) b

2m—terms

for all x € X and all positive integer r. This implies that for all integers
r>t>0,

() QI — () |

<
[y

1
(Z)k¢(2k+1x’ _2k$a 2kx7 o 72kma _Qkx> O’ e 70) ;

2m—terms

<
~ 4(m-—1)

k=t
for all z € X . Hence the sequence {(5)%*f(2°z)} is a Cauchy sequence in a
Banach space Y. Hence we may define a mapping @) : X — Y by

Qz) = lim 2% f(2')
for all z € X . By the definition of DQ(z1,- - ,xy,) and (12),
3 1 T T T
| DQar, - za) = lim (3 || DF @1, 27, |

< lim (1)%(2’“:51,.-- 2"2,) =0,
r—o00 2
for all 1, -+ ,x, € X . That is, DQ(z1, -+ ,z,) = 0. By Lemma 2.1, the
mapping @ : X — Y is quadratic. Also, letting t = 0 and passing the limit
r — oo in (*), we get the equation (13).

Note that

Q2z) = lim 27 f(2"(2/2))
= 2% lim 2720+ f(2rHi )

T—00

= 2%9Q(z).
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Now, let Q' : X — Y be another n-dimensional quadratic mapping satisfy-
ing (13). Then by previous note, we have

Q@) - Q@) | = 27| Q(2"2) - Q'(2"x) ||

2. 2—2r
Sl Ve L I L
4(m _ 1) (ZS( fE, ] x) 9
for all z € X . As r — 0o, we may conclude that Q(z) = Q'(z), forallz € X .
Thus such a n-dimensional quadratic mapping ) : X — Y is unique. O

Theorem 3.5. Letn >4, and let f : X — Y be an even mapping satisfying
f(0) =0 for which there exists a function ¢ : X™ — [0,00) such that

o
b(x1, - xpn) = Z4jq§(2_jx1,~-- ,2792,) < oo, (15)
§=0
H Df(.l‘l, 7xn) ”S (b(xla"' 7$n)7 (16)
for all x1,--- ,x, € X . Then there exists a unique n-dimensional quadratic

mapping Q : X — Y such that

I f(z) = Q) lI< ;

mé(zma L, Ty 5T, —x,0,~-- 70)’ (17)

2m—terms

forallx € X, where 4 <2m <mn.

Proof. If x is replaced by %x (not 2x), then it follows from the proof of Theorem
3.4. [l

Corollary 3.6. Let p # 2 and 0 be positive real numbers, let n > 4, and let
f: X =Y be an even mapping satisfying f(0) =0 and

I Df (1, an) 10 [l
=1

for all x1,--- ,x, € X . Then there exists a unique n-dimensional quadratic
mapping Q : X — Y such that

| f2) - Q@) l|< —=

forall x € X, where 4 <2m <n.
Proof. Let

0
. p

¢($1,'~- ,l‘n) = QZH{L‘ZHP,
=1

and then apply to Theroem 3.4 when p < 2, or apply to Theroem 3.5 when
p>2. O
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Note that Theorem 3.4, Theorem 3.5 and Corollary 3.6 remain valid if n > 4
is either odd or even.
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