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Abstract. Let n ≥ 3 be an integer. In this paper, we investigate the generalized Hyers-
Ulam-Rassias stability of a mixed (n, n− 1)-dimensional quadratic functional equation,

(n− 2)f(

n∑
j=1

xj) +

n∑
i=1

f(xi) =
∑

1≤i1<···<in−1≤n

f(xi1 + · · ·+ xin−1) .

The mixed stability problem was posed in the paper; see [11].

1. Introduction

In 1940, the problem of stability of functional equations was originated
by Ulam [16] as follows: Under what condition does there exist an additive
mapping near an approximately additive mapping ?

The first partial solution to Ulam’s question was provided by D. H. Hyers
[5]. Let X and Y are Banach spaces with norms ‖ · ‖ and ‖ · ‖ , respectively.
Hyers showed that if a function f : X → Y satisfies the following inequality

‖ f(x + y)− f(x)− f(y) ‖≤ ε

for all ε ≥ 0 and for all x, y ∈ X , then the limit

a(x) = lim
n→∞ 2−nf(2nx)
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exists for each x ∈ X and a : X → Y is the unique additive function such that

‖ f(x)− a(x) ‖≤ ε

for any x ∈ X . Moreover, if f(tx) is continuous in t for each fixed x ∈ X ,
then a is linear.

Hyers’s theorem was generalized in various directions. In particular, Th.
M. Rassias [7] considered a generalized version of the theorem of Hyers which
permitted the Cauchy difference to become unbounded. He proved the follow-
ing theorem by using a direct method: if a function f : X → Y satisfies the
following inequality

‖ f(x + y)− f(x)− f(y) ‖≤ θ(‖ x ‖p + ‖ x ‖p)

for some θ ≥ 0 , 0 ≤ p < 1 , and for all x, y ∈ X , then there exists a unique
additive function such that

‖ f(x)− a(x) ‖≤ 2θ

2− 2p
‖ x ‖p

for all x ∈ X . Moreover, if f(tx) is continuous in t for each fixed x ∈ X , then
a is linear. Th.M. Rassias result provided a remarkable generalization of Hyers
Theorem, a fact which rekindled interest in the study of stability of functional
equations. Taking this fact into consideration the Hyers-Ulam stability is
called Hyers-Ulam-Rassias stability.During the last twodecades several results
for the Hyers-Ulam-Rassias stability of functional equations have been proved
by several mathematicians worlwide. Gǎvruta [4] provided a generalization of
the Theorem of Th.M.Rassias.

The quadratic function f(x) = cx2 (c ∈ R) satisfies the functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y) . (1)

Hence this question is called the quadratic functional equation, and every
solution of the quadratic equation (1) is called a quadratic function.

A Hyers-Ulam stability theorem for the quadratic functional equation (1)
was proved by Skof for functions f : X → Y , where X is a normed space and
Y is a Banach space. Cholewa [2] noticed that the theorem of Skof is still
true if the relevant domain X is replaced by an abelian group. In [3], Czerwik
proved the Hyers-Ulam-Rassias stability of the quadratic functional equation.
Several functional equations have been investigated; see [8], [9], and [10].

In this paper, we will investigate the generalized Hyers-Ulam-Rassias stabil-
ity of a mixed (n, n− 1)-dimensional quadratic functional equation as follows:

(n− 2)f(
n∑

j=1

xj) +
n∑

i=1

f(xi) =
∑

1≤i1<···<in−1≤n

f(xi1 + · · ·+ xin−1) , (2)

where n ≥ 3 is a integer.
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Before proceeding the proof, we may remarks as follows: First of all, the
equation (2) can be viewed as the generalization of [[6] Equation (1.2)]. Sec-
ondly, there is a mixed (n, 2)−dimensional quadratic functional equation: see
[1].

2. A Mixed (n, n− 1)-dimensional quadratic mapping

Lemma 2.1. Let n ≥ 3 be an integer, and let X,Y be vector spaces. The even
mapping f : X → Y defined by

(n− 2)f(
n∑

j=1

xj) +
n∑

i=1

f(xi) =
∑

1≤i1<···<in−1≤n

f(xi1 + · · ·+ xin−1) , (3)

for all x1, · · · , xn ∈ X . Then f is quadratic.

Proof. By letting x1 = · · · = xn = 0 in (3), we have (n − 2)f(0) = 0 . Since
n ≥ 3 , f(0) = 0 . Also, letting x1 = x, x2 = y, x3 = −y , and xk = 0 (4 ≤ k ≤
n) in(3), we get

(n− 2)f(x) + f(x) + 2f(y) = f(x + y) + f(x− y) + (n− 3)f(x) .

Hence we may conclude that

f(x + y) + f(x− y) = 2f(x) + 2f(y) .

Thus f is quadratic. ¤

3. Stability of a mixed (n, n− 1)-dimensional quadratic mapping

Throughout in this section, let X be a normed vector space with norm ‖ · ‖
and Y be a Banach space with norm ‖ · ‖ . Let n ≥ 2 be even.

For the given mapping f : X → Y , we define

Df(x1, · · · , xn) :=

(n− 2)f(
n∑

j=1

xj) +
n∑

i=1

f(xi) −
∑

1≤i1<···<in−1≤n

f(xi1 + · · ·+ xin−1) ,

for all x1, · · · , xn ∈ X .
We will consider two cases where n is odd and n ≥ 4 is any integer.

Theorem 3.1. Let n ≥ 3 be odd and let f : X → Y be an even mapping
satisfying f(0) = 0 for which there exists a function φ : Xn → [0,∞) such
that

φ̃(x1, · · · , xn) :=
∞∑

j=0

4−jφ(2jx1, · · · , 2jxn) < ∞ , (4)
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‖ Df(x1, · · · , xn) ‖≤ φ(x1, · · · , xn) , (5)

for all x1, · · · , xn ∈ X . Then there exists a unique n-dimensional quadratic
mapping Q : X → Y such that

‖ f(x)−Q(x) ‖≤ 1
2(n− 1)

φ̃(x,−x, x,−x, · · · ,−x, x) , (6)

for all x ∈ X .

Proof. For each k = 1, · · · , n , xk = (−1)k−1x in (5), we have

‖ 2(n− 1)f(x)− n− 1
2

f(2x) ‖≤ φ(x,−x, x,−x, · · · ,−x, x) ,

for all x ∈ X . Then we write

‖ f(x)− 1
4
f(2x) ‖≤ 1

2(n− 1)
φ(x,−x, x,−x, · · · ,−x, x) , (7)

for all x ∈ X .
For a given positive integer r , assume

‖ f(x) − (
1
4
)rf(2rx) ‖

≤ 1
2(n− 1)

r−1∑

k=0

(
1
4
)kφ(2kx,−2kx, · · · ,−2kx, 2kx) ,

for all x ∈ X . Then if x is replaced by 2x in above equation, we have

‖ f(2x) − (
1
4
)rf(2r+1x) ‖

≤ 1
2(n− 1)

r∑

k=1

(
1
4
)kφ(2kx,−2kx, · · · ,−2kx, 2kx) ,

for all x ∈ X . Now, combine (7) and the previous equation, we may conclude
that

‖ f(x) − (
1
4
)tf(2tx) ‖

≤ 1
2(n− 1)

t−1∑

k=0

(
1
4
)kφ(2kx,−2kx, · · · ,−2kx, 2kx) ,

for all x ∈ X and all positive integer t . Also, letting x = 2rx in (7), we get

‖ f(2rx)− 1
4
f(2r+1x) ‖≤ 1

2(n− 1)
φ(2rx,−2rx, · · · ,−2rx, 2rx) ,
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or, by multiplying (1
4)r ,

‖ (
1
4
)rf(2rx) − (

1
4
)r+1f(2r+1x) ‖

≤ 1
2(n− 1)

(
1
4
)rφ(2rx,−2rx, · · · ,−2rx, 2rx) ,

for all x ∈ X and all positive integer r . This implies that for all integers
r > t > 0 ,

(∗) ‖ (
1
4
)rf(2rx) − (

1
4
)tf(2tx) ‖

≤ 1
2(n− 1)

r−1∑

k=t

(
1
4
)kφ(2kx,−2kx, · · · ,−2kx, 2kx) ,

for all x ∈ X . Hence the sequence {(1
2)2sf(2sx)} is a Cauchy sequence in a

Banach space Y. Hence we may define a mapping Q : X → Y by

Q(x) = lim
r→∞ 2−2rf(2rx) ,

for all x ∈ X . By the definition of DQ(x1, · · · , xn) and (5),

‖ DQ(x1, · · · , xn) ‖= lim
r→∞(

1
2
)2r ‖ Df(2rx1, · · · , 2rxn) ‖

≤ lim
r→∞(

1
2
)2rφ(2rx1, · · · , 2rxn) = 0 ,

for all x1, · · · , xn ∈ X . That is, DQ(x1, · · · , xn) = 0 . By Lemma 2.1, the
mapping Q : X → Y is quadratic. Also, letting t = 0 and passing the limit
r →∞ in (*), we get the equation (6).

Note that

Q(2jx) = lim
r→∞ 2−2rf(2r(2jx))

= 22j lim
r→∞ 2−2(r+j)f(2r+jx)

= 22jQ(x) .

Now, let Q′ : X → Y be another n-dimensional quadratic mapping satisfy-
ing (6). Then by previous note, we have

‖ Q(x)−Q′(x) ‖ = 2−2r ‖ Q(2rx)−Q′(2rx) ‖

≤ 2−2r

m− 1
φ(2rx, · · · , 2rx) ,

for all x ∈ X . As r →∞ , we may conclude that Q(x) = Q′(x) , for all x ∈ X .
Thus such a n-dimensional quadratic mapping Q : X → Y is unique. ¤
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Theorem 3.2. Let n ≥ 3 be odd and let f : X → Y be an even mapping
satisfying f(0) = 0 for which there exists a function φ : Xn → [0,∞) such
that

φ̃(x1, · · · , xn) :=
∞∑

j=0

4jφ(2−jx1, · · · , 2−jxn) < ∞ , (8)

‖ Df(x1, · · · , xn) ‖≤ φ(x1, · · · , xn) , (9)
for all x1, · · · , xn ∈ X . Then there exists a unique n-dimensional quadratic
mapping Q : X → Y such that

‖ f(x)−Q(x) ‖≤ 1
2(n− 1)

φ̃(x,−x, x,−x, · · · ,−x, x) , (10)

for all x ∈ X .

Proof. If x is replaced by 1
2x (not 2x), then it follows from the proof of Theorem

3.1. ¤
Corollary 3.3. Let p 6= 2 and θ be positive real numbers, let n ≥ 3 be odd,
and let f : X → Y be an even mapping satisfying f(0) = 0 and

‖ Df(x1, · · · , xn) ‖≤ θ
n∑

i=1

||xi||p ,

for all x1, · · · , xn ∈ X . Then there exists a unique n-dimensional quadratic
mapping Q : X → Y such that

‖ f(x)−Q(x) ‖≤ 2n

n− 1
· θ

|4− 2p| ||x||
p ,

for all x ∈ X .

Proof. Let

φ(x1, · · · , xn) = θ

n∑

i=1

||xi||p ,

and then apply to Theroem 3.1 when p < 2 , or apply to Theroem 3.2 when
p > 2 . ¤

Now, we may assume n ≥ 4 is an integer.

Theorem 3.4. Let n ≥ 4 , and let f : X → Y be an even mapping satisfying
f(0) = 0 for which there exists a function φ : Xn → [0,∞) such that

φ̃(x1, · · · , xn) :=
∞∑

j=0

4−jφ(2jx1, · · · , 2jxn) < ∞ , (11)

‖ Df(x1, · · · , xn) ‖≤ φ(x1, · · · , xn) , (12)
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for all x1, · · · , xn ∈ X . Then there exists a unique n-dimensional quadratic
mapping Q : X → Y such that

‖ f(x)−Q(x) ‖≤ 1
4(m− 1)

φ̃(2x,−x, x, · · · , x,−x︸ ︷︷ ︸
2m−terms

, 0, · · · , 0) , (13)

for all x ∈ X , where 4 ≤ 2m ≤ n .

Proof. By letting x1 = 2x, xk = (−1)k+1x, (k = 2, · · · , 2m), and xk = 0,
(2m + 1 ≤ k ≤ n) in (12), we have

‖ (n− 2)f(x) + f(2x) + (2m− 1)f(x)
− (mf(2x) + f(x) + (n− 2m)f(x) ‖

≤ φ(2x,−x, x, · · · , x,−x︸ ︷︷ ︸
2m−terms

, 0, · · · , 0) ,

for all x ∈ X . Then we have

‖ f(x)− 1
4
f(2x) ‖≤ 1

4(m− 1)
φ(2x,−x, x, · · · , x,−x︸ ︷︷ ︸

2m−terms

, 0, · · · , 0) , (14)

for all x ∈ X .
For a given positive integer r , assume

‖ f(x)− (
1
4
)rf(2rx) ‖

≤ 1
4(m− 1)

r−1∑

k=0

(
1
4
)kφ(2k+1x,−2kx, 2kx, · · · , 2kx,−2kx︸ ︷︷ ︸

2m−terms

, 0, · · · , 0) ,

for all x ∈ X . Then if x is replaced by 2x in above equation, we have

‖ f(2x)− (
1
4
)rf(2r+1x) ‖

≤ 1
4(m− 1)

r∑

k=1

(
1
4
)k−1φ(2k+1x,−2kx, 2kx, · · · , 2kx,−2kx︸ ︷︷ ︸

2m−terms

, 0, · · · , 0) ,

for all x ∈ X . Now, combine (14) and the previous equation, we may conclude
that

‖ f(x)− (
1
4
)tf(2tx) ‖

≤ 1
4(m− 1)

t−1∑

k=0

(
1
4
)kφ(2k+1x,−2kx, 2kx, · · · , 2kx,−2kx︸ ︷︷ ︸

2m−terms

, 0, · · · , 0) ,
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for all x ∈ X and all positive integer t . Also, letting x = 2rx in (14), we get

‖ f(2rx)− 1
4
f(2r+1x) ‖

≤ 1
4(m− 1)

φ(2r+1x,−2rx, 2rx, · · · , 2rx,−2rx︸ ︷︷ ︸
2m−terms

, 0, · · · , 0) ,

or, by multiplying (1
4)r

‖ (
1
4
)r+1f(2r+1x)− (

1
4
)rf(2rx) ‖

≤ (
1
4
)r 1

4(m− 1)
φ(2r+1x,−2rx, 2rx, · · · , 2rx,−2rx︸ ︷︷ ︸

2m−terms

, 0, · · · , 0) ,

for all x ∈ X and all positive integer r . This implies that for all integers
r > t > 0 ,

(∗) ‖ (
1
4
)rf(2rx)− (

1
4
)tf(2tx) ‖

≤ 1
4(m− 1)

r−1∑

k=t

(
1
4
)kφ(2k+1x,−2kx, 2kx, · · · , 2kx,−2kx︸ ︷︷ ︸

2m−terms

, 0, · · · , 0) ,

for all x ∈ X . Hence the sequence {(1
2)2sf(2sx)} is a Cauchy sequence in a

Banach space Y. Hence we may define a mapping Q : X → Y by

Q(x) = lim
r→∞ 2−2rf(2rx) ,

for all x ∈ X . By the definition of DQ(x1, · · · , xn) and (12),

‖ DQ(x1, · · · , xn) ‖= lim
r→∞(

1
2
)2r ‖ Df(2rx1, · · · , 2rxn) ‖

≤ lim
r→∞(

1
2
)2rφ(2rx1, · · · , 2rxn) = 0 ,

for all x1, · · · , xn ∈ X . That is, DQ(x1, · · · , xn) = 0 . By Lemma 2.1, the
mapping Q : X → Y is quadratic. Also, letting t = 0 and passing the limit
r →∞ in (*), we get the equation (13).

Note that

Q(2jx) = lim
r→∞ 2−2rf(2r(2jx))

= 22j lim
r→∞ 2−2(r+j)f(2r+jx)

= 22jQ(x) .
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Now, let Q′ : X → Y be another n-dimensional quadratic mapping satisfy-
ing (13). Then by previous note, we have

‖ Q(x)−Q′(x) ‖ = 2−2r ‖ Q(2rx)−Q′(2rx) ‖

≤ 2 · 2−2r

4(m− 1)
φ(2rx, · · · , 2rx) ,

for all x ∈ X . As r →∞ , we may conclude that Q(x) = Q′(x) , for all x ∈ X .
Thus such a n-dimensional quadratic mapping Q : X → Y is unique. ¤
Theorem 3.5. Let n ≥ 4 , and let f : X → Y be an even mapping satisfying
f(0) = 0 for which there exists a function φ : Xn → [0,∞) such that

φ̃(x1, · · · , xn) :=
∞∑

j=0

4jφ(2−jx1, · · · , 2−jxn) < ∞ , (15)

‖ Df(x1, · · · , xn) ‖≤ φ(x1, · · · , xn) , (16)
for all x1, · · · , xn ∈ X . Then there exists a unique n-dimensional quadratic
mapping Q : X → Y such that

‖ f(x)−Q(x) ‖≤ 1
4(m− 1)

φ̃(2x,−x, x, · · · , x,−x︸ ︷︷ ︸
2m−terms

, 0, · · · , 0) , (17)

for all x ∈ X , where 4 ≤ 2m ≤ n .

Proof. If x is replaced by 1
2x (not 2x), then it follows from the proof of Theorem

3.4. ¤
Corollary 3.6. Let p 6= 2 and θ be positive real numbers, let n ≥ 4 , and let
f : X → Y be an even mapping satisfying f(0) = 0 and

‖ Df(x1, · · · , xn) ‖≤ θ
n∑

i=1

||xi||p ,

for all x1, · · · , xn ∈ X . Then there exists a unique n-dimensional quadratic
mapping Q : X → Y such that

‖ f(x)−Q(x) ‖≤ n

m− 1
· θ

|4− 2p| ||x||
p ,

for all x ∈ X , where 4 ≤ 2m ≤ n .

Proof. Let

φ(x1, · · · , xn) = θ
n∑

i=1

||xi||p ,

and then apply to Theroem 3.4 when p < 2 , or apply to Theroem 3.5 when
p > 2 . ¤
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Note that Theorem 3.4, Theorem 3.5 and Corollary 3.6 remain valid if n ≥ 4
is either odd or even.
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