Nonlinear Functional Analysis and Applications Vol. 11, No. 5 (2006), pp. 851–858

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \odot 2006 Kyungnam University Press

NOTE ON THE HYERS-ULAM-RASSIAS STABILITY OF THE FIRST ORDER LINEAR DIFFERENTIAL EQUATION

Takeshi Miura 1 , Go Hirasawa 2 , and Sin-Ei Takahasi 3

¹ Department of Basic Technology, Applied Mathematics and Physics Yamagata University, Yonezawa 992-8510, Japan e-mail: miura@yz.yamagata-u.ac.jp

² Department of Mathematics, Nippon Institute of Technology Miyashiro, 345-8501, Japan e-mail: hirasawa1@muh.biglobe.ne.jp

³ Department of Basic Technology, Applied Mathematics and Physics Yamagata University, Yonezawa 992-8510, Japan e-mail: sin-ei@emperor.yz.yamagata-u.ac.jp

Dedicated to the Memory of Professor Donald H. Hyers

Abstract. Let X be a complex Banach space and I an open interval. We prove the stability result in the sense of Hyers-Ulam-Rassias of the X-valued differential equation

$$
y'(t) + p(t)y(t) + q(t) = 0.
$$

If $f: I \to X$ is an approximate solution of $y'+py+q = 0$, then to each $s \in I$ there corresponds an exact solution $q_s: I \to X$ of the differential equation above such that q_s is near to f.

1. INTRODUCTION

It seems that the stability problem of functional equations was first studied by Hyers, which was raised by Ulam (cf. [18, Chapter VI]) in 1940: "For what metric groups G is it true that an ε -automorphism of G is necessarily near to a strict automorphism?" In 1941, Hyers [4] gave an answer to this problem as follows: Let E_1, E_2 be two real Banach spaces and $f: E_1 \rightarrow E_2$ be a mapping.

 0 Received March 15, 2006. Revised August 23, 2006.

⁰2000 Mathematics Subject Classification: Primary 34K20; Secondary 26D10.

 0 Keywords: Exponential functions, Hyers-Ulam stability

If there exists an $\varepsilon \geq 0$ such that

$$
||f(x + y) - f(x) - f(y)|| \le \varepsilon
$$

for all $x, y \in E_1$, then there exists a unique additive mapping $T: E_1 \to E_2$ such that $||f(x) - T(x)|| \leq \varepsilon$ for every $x \in E_1$. This result is called the *Hyers-Ulam* stability of the additive Cauchy equation $g(x + y) = g(x) + g(y)$.

In 1978, Rassias [11] introduced a new functional inequality that we call Cauchy-Rassias inequality and succeeded to extend the result of Hyers' by weakening the condition for the Cauchy difference to be unbounded: If there exist an $\varepsilon \geq 0$ and $0 \leq p < 1$ such that

$$
||f(x + y) - f(x) - f(y)|| \le \varepsilon (||x||^p + ||y||^p)
$$

for all $x, y \in E_1$, then there exists a unique additive mapping $T: E_1 \to E_2$ such that

$$
||f(x) - T(x)|| \le \frac{2\varepsilon}{|2 - 2^p|} ||x||^p
$$

for every $x \in E_1$. The stability phenomenon of this kind is called the *Hyers*-Ulam-Rassias stability. In 1991, Gajda [2] solved the problem for $1 < p$, which was raised by Rassias. In fact, the result of Rassias is valid for $1 < p$; Moreover, Gajda gave an example that a similar stability result does not hold for $p = 1$. Another example was given by Rassias and Semrl [15, Theorem 2].

It seems that Alsina and Ger [1] are the first who consider the Hyers-Ulam stability of differential equations. They remarked that the Hyers-Ulam stability of the differential equation $y' = y$ holds: If $\varepsilon \geq 0$, f is a differentiable function on an open interval I into R, the real number field, with $|f'(t) - f(t)| \leq \varepsilon$ for all $t \in I$, then there exists a differentiable function $q: I \to \mathbb{R}$ such that $g'(t) = g(t)$ and $|f(t) - g(t)| \leq 3\varepsilon$ for all $t \in I$. Many authors generalize the result of Alsina and Ger (cf. [3, 8, 9, 10, 16, 17]). Miura, Jung and Takahasi [8] proved the (generalized) Hyers-Ulam-Rassias stability of the Banach space valued differential equation $y'(t) = \lambda y(t)$ under an additional condition, where λ is a complex number. In this paper, we prove the (generalized) Hyers-Ulam-Rassias stability of the Banach space valued differential equation $y'(t) + p(t)y(t) + q(t) = 0$, where $p: I \to \mathbb{C}$, the complex number field, and $q: I \to X$ are both continuous mappings. To be more explicit, if $\epsilon: I \to [0, \infty)$ is a continuous mapping and if $f: I \to X$ is strongly differentiable with continuous derivative f' such that $||f'(t) + p(t)f(t) + q(t)|| \leq \epsilon(t)$ for all $t \in I$, then to each $s \in I$ there corresponds a unique mapping $g_s: I \to X$ such that $g_s'(t) + p(t)g_s(t) + q(t) = 0$ and that \overline{a}

$$
||f(t) - g_s(t)|| \le \frac{1}{|\tilde{p}_s(t)|} \left| \int_s^t |\tilde{p}_s(\tau)| \epsilon(\tau) d\tau \right|
$$

for all $t \in I$, where $\tilde{p}_s(t) = \exp \int_s^t p(\tau) d\tau$.

2. Main results

From now on, X denotes a non-zero complex Banach space with the norm $\|\cdot\|$. We write $C(I, X)$ for the complex linear space of all X-valued continuous mappings on an interval $I \subset \mathbb{R}$. Recall that a mapping $f \in C(I, X)$ is called strongly differentiable if to each $t \in I$ there corresponds an element $f'(t) \in X$ such that ° °

$$
\lim_{s \to 0} \left\| \frac{f(t+s) - f(t)}{s} - f'(t) \right\| = 0.
$$

We may regard f' as an X-valued mapping $t \mapsto f'(t)$ on I. We denote by $C^1(I, X)$ the linear subspace of all $f \in C(I, X)$ such that f is strongly differentiable and f' is continuous.

For each $s \in I$ and continuous function $p: I \to \mathbb{C}$, we define

$$
\tilde{p}_s(t) \stackrel{\text{def}}{=} \exp \int_s^t p(\tau) \, d\tau \qquad (\forall t \in I). \tag{1}
$$

Proposition 1. Let $p: I \to \mathbb{C}$ be a continuous function, $s \in I$, $q \in C(I, X)$ and $f \in C^1(I, X)$. Each of the following conditions imply the other:

(a) $f'(t) + p(t)f(t) + q(t) = 0$ for every $t \in I$. (b) $f(t) = \frac{1}{\tau}$ $\tilde{p}_s(t)$ ½ $f(s)$ – rt s $q(\tau)\tilde{p}_s(\tau) d\tau$ for every $t \in I$.

Proof. (a) \Rightarrow (b). Suppose that $f'(t) + p(t)f(t) + q(t) = 0$ for every $t \in I$. Since $\tilde{p}_s'(t) = p(t)\tilde{p}_s(t)$ by (1), if we differentiate the mapping $f(t)\tilde{p}_s(t)$, then we get

$$
\{f(t)\tilde{p}_s(t)\}' = \{f'(t) + p(t)f(t)\}\tilde{p}_s(t) = -q(t)\tilde{p}_s(t)
$$

for every $t \in I$. This implies that

$$
f(t)\tilde{p}_s(t) - f(s)\tilde{p}_s(s) = \int_s^t \{f(\tau)\tilde{p}_s(\tau)\}' d\tau = -\int_s^t q(\tau)\tilde{p}_s(\tau) d\tau
$$

for every $t \in I$. Since $\tilde{p}_s(s) = 1$ by (1), we thus obtain

$$
f(t) = \frac{1}{\tilde{p}_s(t)} \left\{ f(s) - \int_s^t q(\tau) \tilde{p}_s(\tau) d\tau \right\}
$$

for every $t \in I$.

(b) \Rightarrow (a). If f is of the form

$$
f(t) = \frac{1}{\tilde{p}_s(t)} \left\{ f(s) - \int_s^t q(\tau) \tilde{p}_s(\tau) d\tau \right\}
$$

for every $t \in I$, then we obtain

$$
f'(t) = \frac{1}{\tilde{p}_s^2(t)} \left[\left\{ f(s) - \int_s^t q(\tau) \tilde{p}_s(\tau) d\tau \right\}' \tilde{p}_s(t) - \left\{ f(s) - \int_s^t q(\tau) \tilde{p}_s(\tau) d\tau \right\} \tilde{p}_s'(t) \right]
$$

$$
= \frac{1}{\tilde{p}_s^2(t)} \left[-q(t) \tilde{p}_s^2(t) - \left\{ f(s) - \int_s^t q(\tau) \tilde{p}_s(\tau) d\tau \right\} p(t) \tilde{p}_s(t) \right]
$$

$$
= -q(t) - \frac{1}{\tilde{p}_s(t)} \left\{ f(s) - \int_s^t q(\tau) \tilde{p}_s(\tau) d\tau \right\} p(t)
$$

$$
= -q(t) - p(t) f(t),
$$

and so we get $f'(t) + p(t)f(t) + q(t) = 0$ for every $t \in I$.

Theorem 2. Let $p: I \to \mathbb{C}$ and $\epsilon: I \to [0, \infty)$ be two continuous functions, and let $q \in C(I, X)$. If $f \in C^1(I, X)$ satisfies

$$
||f'(t) + p(t)f(t) + q(t)|| \le \epsilon(t)
$$
\n(2)

for all $t \in I$, then to each $s \in I$ there corresponds a unique $g_s \in C^1(I, X)$ such that $g_s'(t) + p(t)g_s(t) + q(t) = 0$ and that

$$
||f(t) - g_s(t)|| \le \frac{1}{|\tilde{p}_s(t)|} \left| \int_s^t |\tilde{p}_s(\tau)| \epsilon(\tau) d\tau \right| \tag{3}
$$

for all $t \in I$.

Proof. Pick $s \in I$ arbitrarily, and put $w \stackrel{\text{def}}{=} f' + pf + q$. Note that $||w(t)|| \leq \epsilon(t)$ for every $t \in I$. An application of Proposition 1 to the equation $f' + pf + q - w =$ 0 shows that

$$
f(t) = \frac{1}{\tilde{p}_s(t)} \left\{ f(s) - \int_s^t (q(\tau) - w(\tau)) \tilde{p}_s(\tau) d\tau \right\}
$$
 (4)

for all $t \in I$. We define $g_s: I \to X$ by

$$
g_s(t) = \frac{1}{\tilde{p}_s(t)} \left\{ f(s) - \int_s^t q(\tau) \tilde{p}_s(\tau) d\tau \right\} \qquad (\forall t \in I).
$$
 (5)

Note that $g_s(s) = f(s)$ by (5). Another application of Proposition 1 yields that $g_s'(t) + p(t)g_s(t) + q(t) = 0$ for every $t \in I$. Moreover, it follows from (4) and (5) that

$$
f(t) = g_s(t) + \frac{1}{\tilde{p}_s(t)} \int_s^t w(\tau) \tilde{p}_s(\tau) d\tau \qquad (\forall t \in I).
$$

Hyers-Ulam-Rassias stability of $y'(t) + p(t)y(t) + q(t) = 0$ 855

Since $||w(t)|| \leq \epsilon(t)$ for every $t \in I$, it follows that

$$
||f(t) - g_s(t)|| = \left\| \frac{1}{\tilde{p}_s(t)} \int_s^t w(\tau) \tilde{p}_s(\tau) d\tau \right\|
$$

\n
$$
\leq \frac{1}{|\tilde{p}_s(t)|} \left| \int_s^t ||w(\tau)|| |\tilde{p}_s(\tau)| d\tau \right|
$$

\n
$$
\leq \frac{1}{|\tilde{p}_s(t)|} \left| \int_s^t \epsilon(\tau) |\tilde{p}_s(\tau)| d\tau \right|
$$

for all $t \in I$, which proves the inequality (3).

If $g \in C^1(I, X)$ is another function such that $g' + pg + q = 0$ and that

$$
||f(t) - g(t)|| \le \frac{1}{|\tilde{p}_s(t)|} \left| \int_s^t \epsilon(\tau) |\tilde{p}_s(\tau)| d\tau \right| \qquad (\forall t \in I),
$$

then we obtain

$$
||g_s(t) - g(t)|| \le \frac{2}{|\tilde{p}_s(t)|} \left| \int_s^t \epsilon(\tau) |\tilde{p}_s(\tau)| d\tau \right|
$$

for all $t \in I$, and hence $g_s(s) = g(s)$. Note that, by Proposition 1, g is of the form ½

$$
g(t) = \frac{1}{\tilde{p}_s(t)} \left\{ g(s) + \int_s^t q(\tau) \tilde{p}_s(\tau) d\tau \right\} \qquad (\forall t \in I)
$$

since $g' + pg + q = 0$. It follows from (5) with $f(s) = g_s(s) = g(s)$ that $g_s = g$, and the uniqueness is proved. \Box

Remark 1. The "error function"

$$
\tilde{\epsilon}_s(t) \stackrel{\text{def}}{=} \frac{1}{|\tilde{p}_s(t)|} \left| \int_s^t \epsilon(\tau) |\tilde{p}_s(\tau)| d\tau \right|
$$

in the right side of (3) can not be improved in general. In fact, let $p: I \to \mathbb{C}$ and $\epsilon: I \to [0,\infty)$ be continuous functions. Fix $s \in I$ and pick $x \in X$ with $||x|| = 1.$ Put

$$
f_s(t) = \frac{1}{\tilde{p}_s(t)} \left\{ \int_s^t \epsilon(\tau) |\tilde{p}_s(\tau)| d\tau \right\} x
$$

for every $t \in I$. We see that

$$
f_s'(t) = \frac{1}{\tilde{p}_s^2(t)} \left[\epsilon(t) |\tilde{p}_s(t)| \tilde{p}_s(t) - \left\{ \int_s^t \epsilon(\tau) |\tilde{p}_s(\tau)| d\tau \right\} p(t) \tilde{p}_s(t) \right] x
$$

=
$$
\frac{|\tilde{p}_s(t)|}{\tilde{p}_s(t)} \epsilon(t) x - p(t) f_s(t),
$$

and hence

$$
\left\|f_s'(t) + p(t)f_s(t)\right\| = \left\|\frac{|\tilde{p}_s(t)|}{\tilde{p}_s(t)}\,\epsilon(t)x\right\| = \epsilon(t)
$$

for all $t \in I$ since $||x|| = 1$. By Theorem 2, there exists a unique $g_s \in C^1(I, X)$ such that $g_s'(t) + p(t)g_s(t) = 0$ and that $||f_s(t) - g_s(t)|| \leq \tilde{\epsilon}_s(t)$ holds for all $t \in I$. Let $\theta: I \to [0, \infty)$ be an arbitrary function satisfying $||f_s(t) - g_s(t)|| \le$ $\theta(t)$ for all $t \in I$. Since $||x|| = 1$, we get

$$
||f_s(t)|| = \frac{1}{|\tilde{p}_s(t)|} \left| \int_s^t \epsilon(\tau) |\tilde{p}_s(\tau)| d\tau \right| = \tilde{\epsilon}_s(t)
$$

for all $t \in I$. It follows from the uniqueness that $g_s = 0$, which implies

$$
\tilde{\epsilon}_s(t) = \|f_s(t)\| = \|f_s(t) - g_s(t)\| \le \theta(t)
$$

for every $t \in I$. Therefore, the "error function" satisfying the inequality (3) can not be improved in general.

Remark 2. Miura, Jung and Takahasi [8] proved a similar result to Theorem 2 under an additional condition. Here, we give a generalized version of their result by a simple calculation: In fact, it can be proved by an application of Proposition 1.

Put $I = (a, b)$, where $-\infty \le a < b \le \infty$; For simplicity, we assume $0 \in I$. Let $p: I \to \mathbb{C}$ and $\epsilon: I \to [0, \infty)$ be two continuous functions, and let $q \in$ $C(I, X)$. Suppose that $f \in C^1(I, X)$ satisfies the inequality (2) for all $t \in I$. If $\epsilon(t)|\tilde{p}_0(t)|$ and $q(t)\tilde{p}_0(t)$ are integrable on [0, b), then we show that there exists a unique $g_b \in C^1(I, X)$ such that $g_b'(t) + p(t)g_b(t) + q(t) = 0$ and

$$
||f(t) - g_b(t)|| = \frac{1}{|\tilde{p}_0(t)|} \int_t^b \epsilon(\tau) |\tilde{p}_0(\tau)| d\tau
$$

for every $t \in I$: The case where p is constant and $q = 0$ was proved by Miura, Jung and Takahasi [8, Theorem 1].

To prove this, put $w \stackrel{\text{def}}{=} f' + pf + q$. Note that $w(t)\tilde{p}_0(t)$ is integrable on $[0, b)$ since $||w(t)|| \leq \epsilon(t)$ and since $\epsilon(t)|\tilde{p}_0(t)|$ is assumed to be integrable on $[0, b)$. By Proposition 1, with the integrability assumptions, we get

$$
f(t) = \frac{1}{\tilde{p}_0(t)} \left\{ f(0) - \int_0^t (q(\tau) - w(\tau)) \tilde{p}_0(\tau) d\tau \right\}
$$

=
$$
\frac{1}{\tilde{p}_0(t)} \left\{ f(0) - \int_0^b (q(\tau) - w(\tau)) \tilde{p}_0(\tau) d\tau + \int_t^b (q(\tau) - w(\tau)) \tilde{p}_0(\tau) d\tau \right\}
$$

for every $t \in I$. Put

$$
x_0 \stackrel{\text{def}}{=} f(0) - \int_0^b (q(\tau) - w(\tau)) \tilde{p}_0(\tau) d\tau.
$$

Hyers-Ulam-Rassias stability of $y'(t) + p(t)y(t) + q(t) = 0$ 857

We define

$$
g_b(t) \stackrel{\text{def}}{=} \frac{1}{\tilde{p}_0(t)} \left\{ x_0 + \int_t^b q(\tau) \tilde{p}_0(\tau) d\tau \right\}
$$

for $t \in I$. By a simple calculation, we see that $g_b \in C^1(I,X)$ satisfying $g_b'(t) + p(t)g_b(t) + q(t) = 0$ for all $t \in I$. We now obtain ° °

$$
\begin{array}{rcl}\n\left\|f(t) - g_b(t)\right\| & = & \left\| -\frac{1}{\tilde{p}_0(t)} \int_t^b w(\tau) \tilde{p}_0(\tau) \, d\tau \right\| \\
& \leq & \frac{1}{|\tilde{p}_0(t)|} \int_t^b \left\|w(\tau)\right\| \left\|\tilde{p}_0(\tau)\right\| \, d\tau \\
& \leq & \frac{1}{|\tilde{p}_0(t)|} \int_t^b \epsilon(\tau) \left\|\tilde{p}_0(\tau)\right\| \, d\tau\n\end{array}
$$

for every $t \in I$. Finally, we show the uniqueness: Suppose that $g \in C^1(I, X)$ satisfies $g'(t) + p(t)g(t) + q(t) = 0$ and

$$
||f(t) - g(t)|| \le \frac{1}{|\tilde{p}_0(t)|} \int_t^b \epsilon(\tau) |\tilde{p}_0(\tau)| d\tau \qquad (\forall t \in I).
$$

Since g_b and g are solutions of the differential equation $y'(t) + p(t)y(t) + q(t) = 0$ 0, it follows from Proposition 1 that

$$
g_b(t) - g(t) = \frac{1}{\tilde{p}_0(t)} (g_b(0) - g(0))
$$
\n(6)

for every $t \in I$. By the triangle inequality, we get

$$
\|g_b(0) - g(0)\| = \|\tilde{p}_0(t)\| \|g_b(t) - g(t)\|
$$

\n
$$
\leq \|\tilde{p}_0(t)\| (\|g_b(t) - f(t)\| + \|f(t) - g(t)\|)
$$

\n
$$
\leq 2 \int_t^b \epsilon(\tau) |\tilde{p}_0(\tau)| d\tau
$$

\n
$$
\to 0 \quad \text{as} \quad t \nearrow b,
$$

which implies $g_b(0) = g(0)$. By (6), we obtain $g_b(t) = g(t)$ for all $t \in I$, and so the uniqueness is proved.

By an argument similar to the above, we can also prove that if $\epsilon(t)|\tilde{p}_0(t)|$ and $q(t)\tilde{p}_0(t)$ are integrable on $(a, 0]$, then there exists a unique $g_a \in C^1(I, X)$ such $g(t)p_0(t)$ are integrable on $(a, 0)$, then there exists a unique $g_a \in C$ (t, X) such that $g_a'(t) + p(t)g_a(t) + q(t) = 0$ and $||f(t) - g_a(t)|| \le \int_a^t \epsilon(\tau) |\tilde{p}_0(\tau)| d\tau / |\tilde{p}_0(t)|$ for every $t \in I$.

REFERENCES

- [1] C. Alsina and R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl., 2 (1998), 373–380.
- [2] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci., 14 (1991), 431-434.

- [3] O. Hatori, K. Kobayashi, T. Miura, H. Takagi and S.-E. Takahasi, On the best constant of Hyers-Ulam stability, J. Nonlinear Convex Anal., 5 (2004), 387–393.
- [4] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222–224.
- [5] D. H. Hyers, G. Isac and Th. M. Rassias, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc., 126 (1998), $425-430$.
- [6] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math., 44 (1992), 125–153.
- [7] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Inc., Florida, 2001.
- [8] T. Miura, S.-M. Jung and S.-E. Takahasi, *Hyers-Ulam-Rassias stability of the Banach* space valued linear differential equations $y' = \lambda y$, J. Korean Math. Soc., 41 (2004), 995–1005.
- [9] T. Miura, S. Miyajima and S.-E. Takahasi, Hyers-Ulam stability of linear differential operator with constant coefficients, Math. Nachr., 258 (2003), 90–96.
- [10] T. Miura, S. Miyajima and S.-E. Takahasi, A characterization of Hyers-Ulam stability of first order linear differential operators, J. Math. Anal. Appl., 286 (2003), 136–146.
- [11] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., **72** (1978), 297-300.
- [12] Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251 (2000), 264–284.
- [13] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62 (2000), 23–130.
- [14] Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., 246 (2000), 352–378.
- [15] Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc., 114 (1992), 989-993.
- [16] H. Takagi, T. Miura and S.-E. Takahasi, Essential norms and stability constants of weighted composition operators on $C(X)$, Bull. Korean Math. Soc., 40 (2003), 583-591.
- [17] S.-E. Takahasi, H. Takagi, T. Miura and S. Miyajima, The Hyers-Ulam stability constants of first order linear differential operators, J. Math. Anal. Appl., 296 (2004), 403–409.
- [18] S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience, New York-London, 1960.