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Abstract. Let X be a complex Banach space and I an open interval. We prove the stability
result in the sense of Hyers-Ulam-Rassias of the X-valued differential equation

y′(t) + p(t)y(t) + q(t) = 0.

If f : I → X is an approximate solution of y′+py+q = 0, then to each s ∈ I there corresponds

an exact solution gs : I → X of the differential equation above such that gs is near to f .

1. Introduction

It seems that the stability problem of functional equations was first studied
by Hyers, which was raised by Ulam (cf. [18, Chapter VI]) in 1940: “For what
metric groups G is it true that an ε-automorphism of G is necessarily near to
a strict automorphism?” In 1941, Hyers [4] gave an answer to this problem as
follows: Let E1, E2 be two real Banach spaces and f : E1 → E2 be a mapping.
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If there exists an ε ≥ 0 such that

‖f(x + y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E1, then there exists a unique additive mapping T : E1 → E2 such
that ‖f(x)− T (x)‖ ≤ ε for every x ∈ E1. This result is called the Hyers-Ulam
stability of the additive Cauchy equation g(x + y) = g(x) + g(y).

In 1978, Rassias [11] introduced a new functional inequality that we call
Cauchy-Rassias inequality and succeeded to extend the result of Hyers’ by
weakening the condition for the Cauchy difference to be unbounded: If there
exist an ε ≥ 0 and 0 ≤ p < 1 such that

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ E1, then there exists a unique additive mapping T : E1 → E2

such that
‖f(x)− T (x)‖ ≤ 2ε

|2− 2p| ‖x‖
p

for every x ∈ E1. The stability phenomenon of this kind is called the Hyers-
Ulam-Rassias stability. In 1991, Gajda [2] solved the problem for 1 < p, which
was raised by Rassias. In fact, the result of Rassias is valid for 1 < p; Moreover,
Gajda gave an example that a similar stability result does not hold for p = 1.
Another example was given by Rassias and Šemrl [15, Theorem 2].

It seems that Alsina and Ger [1] are the first who consider the Hyers-Ulam
stability of differential equations. They remarked that the Hyers-Ulam stabil-
ity of the differential equation y′ = y holds: If ε ≥ 0, f is a differentiable func-
tion on an open interval I into R, the real number field, with |f ′(t)−f(t)| ≤ ε
for all t ∈ I, then there exists a differentiable function g : I → R such that
g′(t) = g(t) and |f(t) − g(t)| ≤ 3ε for all t ∈ I. Many authors generalize the
result of Alsina and Ger (cf. [3, 8, 9, 10, 16, 17]). Miura, Jung and Taka-
hasi [8] proved the (generalized) Hyers-Ulam-Rassias stability of the Banach
space valued differential equation y′(t) = λy(t) under an additional condi-
tion, where λ is a complex number. In this paper, we prove the (generalized)
Hyers-Ulam-Rassias stability of the Banach space valued differential equation
y′(t) + p(t)y(t) + q(t) = 0, where p : I → C, the complex number field, and
q : I → X are both continuous mappings. To be more explicit, if ε : I → [0,∞)
is a continuous mapping and if f : I → X is strongly differentiable with con-
tinuous derivative f ′ such that ‖f ′(t) + p(t)f(t) + q(t)‖ ≤ ε(t) for all t ∈ I,
then to each s ∈ I there corresponds a unique mapping gs : I → X such that
gs
′(t) + p(t)gs(t) + q(t) = 0 and that

‖f(t)− gs(t)‖ ≤ 1
|p̃s(t)|

∣∣∣∣
∫ t

s
|p̃s(τ)|ε(τ) dτ

∣∣∣∣

for all t ∈ I, where p̃s(t) = exp
∫ t
s p(τ) dτ .
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2. Main results

From now on, X denotes a non-zero complex Banach space with the norm
‖·‖. We write C(I, X) for the complex linear space of all X-valued continuous
mappings on an interval I ⊂ R. Recall that a mapping f ∈ C(I,X) is called
strongly differentiable if to each t ∈ I there corresponds an element f ′(t) ∈ X
such that

lim
s→0

∥∥∥∥
f(t + s)− f(t)

s
− f ′(t)

∥∥∥∥ = 0.

We may regard f ′ as an X-valued mapping t 7→ f ′(t) on I. We denote by
C1(I,X) the linear subspace of all f ∈ C(I, X) such that f is strongly differ-
entiable and f ′ is continuous.

For each s ∈ I and continuous function p : I → C, we define

p̃s(t)
def= exp

∫ t

s
p(τ) dτ (∀t ∈ I). (1)

Proposition 1. Let p : I → C be a continuous function, s ∈ I, q ∈ C(I, X)
and f ∈ C1(I, X). Each of the following conditions imply the other:

(a) f ′(t) + p(t)f(t) + q(t) = 0 for every t ∈ I.

(b) f(t) =
1

p̃s(t)

{
f(s)−

∫ t

s
q(τ)p̃s(τ) dτ

}
for every t ∈ I.

Proof. (a) ⇒ (b). Suppose that f ′(t) + p(t)f(t) + q(t) = 0 for every t ∈ I.
Since p̃s

′(t) = p(t)p̃s(t) by (1), if we differentiate the mapping f(t)p̃s(t), then
we get

{f(t)p̃s(t)}′ = {f ′(t) + p(t)f(t)}p̃s(t) = −q(t)p̃s(t)

for every t ∈ I. This implies that

f(t)p̃s(t)− f(s)p̃s(s) =
∫ t

s
{f(τ)p̃s(τ)}′ dτ = −

∫ t

s
q(τ)p̃s(τ) dτ

for every t ∈ I. Since p̃s(s) = 1 by (1), we thus obtain

f(t) =
1

p̃s(t)

{
f(s)−

∫ t

s
q(τ)p̃s(τ) dτ

}

for every t ∈ I.
(b) ⇒ (a). If f is of the form

f(t) =
1

p̃s(t)

{
f(s)−

∫ t

s
q(τ)p̃s(τ) dτ

}
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for every t ∈ I, then we obtain

f ′(t) =
1

p̃s
2(t)

[{
f(s)−

∫ t

s
q(τ)p̃s(τ) dτ

}′
p̃s(t)

−
{

f(s)−
∫ t

s
q(τ)p̃s(τ) dτ

}
p̃s
′(t)

]

=
1

p̃s
2(t)

[
−q(t)p̃s

2(t)−
{

f(s)−
∫ t

s
q(τ)p̃s(τ) dτ

}
p(t)p̃s(t)

]

= −q(t)− 1
p̃s(t)

{
f(s)−

∫ t

s
q(τ)p̃s(τ) dτ

}
p(t)

= −q(t)− p(t)f(t),

and so we get f ′(t) + p(t)f(t) + q(t) = 0 for every t ∈ I. ¤

Theorem 2. Let p : I → C and ε : I → [0,∞) be two continuous functions,
and let q ∈ C(I,X). If f ∈ C1(I, X) satisfies

∥∥f ′(t) + p(t)f(t) + q(t)
∥∥ ≤ ε(t) (2)

for all t ∈ I, then to each s ∈ I there corresponds a unique gs ∈ C1(I,X) such
that gs

′(t) + p(t)gs(t) + q(t) = 0 and that

‖f(t)− gs(t)‖ ≤ 1
|p̃s(t)|

∣∣∣∣
∫ t

s
|p̃s(τ)|ε(τ) dτ

∣∣∣∣ (3)

for all t ∈ I.

Proof. Pick s ∈ I arbitrarily, and put w
def= f ′+pf +q. Note that ‖w(t)‖ ≤ ε(t)

for every t ∈ I. An application of Proposition 1 to the equation f ′+pf+q−w =
0 shows that

f(t) =
1

p̃s(t)

{
f(s)−

∫ t

s
(q(τ)− w(τ))p̃s(τ) dτ

}
(4)

for all t ∈ I. We define gs : I → X by

gs(t) =
1

p̃s(t)

{
f(s)−

∫ t

s
q(τ)p̃s(τ) dτ

}
(∀t ∈ I). (5)

Note that gs(s) = f(s) by (5). Another application of Proposition 1 yields
that gs

′(t) + p(t)gs(t) + q(t) = 0 for every t ∈ I. Moreover, it follows from (4)
and (5) that

f(t) = gs(t) +
1

p̃s(t)

∫ t

s
w(τ)p̃s(τ) dτ (∀t ∈ I).



Hyers-Ulam-Rassias stability of y′(t) + p(t)y(t) + q(t) = 0 855

Since ‖w(t)‖ ≤ ε(t) for every t ∈ I, it follows that

‖f(t)− gs(t)‖ =
∥∥∥∥

1
p̃s(t)

∫ t

s
w(τ)p̃s(τ) dτ

∥∥∥∥

≤ 1
|p̃s(t)|

∣∣∣∣
∫ t

s
‖w(τ)‖ |p̃s(τ)| dτ

∣∣∣∣

≤ 1
|p̃s(t)|

∣∣∣∣
∫ t

s
ε(τ)|p̃s(τ)| dτ

∣∣∣∣
for all t ∈ I, which proves the inequality (3).

If g ∈ C1(I, X) is another function such that g′ + pg + q = 0 and that

‖f(t)− g(t)‖ ≤ 1
|p̃s(t)|

∣∣∣∣
∫ t

s
ε(τ)|p̃s(τ)| dτ

∣∣∣∣ (∀t ∈ I),

then we obtain

‖gs(t)− g(t)‖ ≤ 2
|p̃s(t)|

∣∣∣∣
∫ t

s
ε(τ)|p̃s(τ)| dτ

∣∣∣∣
for all t ∈ I, and hence gs(s) = g(s). Note that, by Proposition 1, g is of the
form

g(t) =
1

p̃s(t)

{
g(s) +

∫ t

s
q(τ)p̃s(τ) dτ

}
(∀t ∈ I)

since g′+ pg + q = 0. It follows from (5) with f(s) = gs(s) = g(s) that gs = g,
and the uniqueness is proved. ¤
Remark 1. The “error function”

ε̃s(t)
def=

1
|p̃s(t)|

∣∣∣∣
∫ t

s
ε(τ)|p̃s(τ)| dτ

∣∣∣∣
in the right side of (3) can not be improved in general. In fact, let p : I → C
and ε : I → [0,∞) be continuous functions. Fix s ∈ I and pick x ∈ X with
‖x‖ = 1. Put

fs(t) =
1

p̃s(t)

{∫ t

s
ε(τ)|p̃s(τ)| dτ

}
x

for every t ∈ I. We see that

fs
′(t) =

1
p̃s

2(t)

[
ε(t)|p̃s(t)|p̃s(t)−

{∫ t

s
ε(τ)|p̃s(τ)| dτ

}
p(t)p̃s(t)

]
x

=
|p̃s(t)|
p̃s(t)

ε(t)x− p(t)fs(t),

and hence ∥∥fs
′(t) + p(t)fs(t)

∥∥ =
∥∥∥∥
|p̃s(t)|
p̃s(t)

ε(t)x
∥∥∥∥ = ε(t)
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for all t ∈ I since ‖x‖ = 1. By Theorem 2, there exists a unique gs ∈ C1(I, X)
such that gs

′(t) + p(t)gs(t) = 0 and that ‖fs(t)− gs(t)‖ ≤ ε̃s(t) holds for all
t ∈ I. Let θ : I → [0,∞) be an arbitrary function satisfying ‖fs(t)− gs(t)‖ ≤
θ(t) for all t ∈ I. Since ‖x‖ = 1, we get

‖fs(t)‖ =
1

|p̃s(t)|

∣∣∣∣
∫ t

s
ε(τ)|p̃s(τ)| dτ

∣∣∣∣ = ε̃s(t)

for all t ∈ I. It follows from the uniqueness that gs = 0, which implies

ε̃s(t) = ‖fs(t)‖ = ‖fs(t)− gs(t)‖ ≤ θ(t)

for every t ∈ I. Therefore, the “error function” satisfying the inequality (3)
can not be improved in general.

Remark 2. Miura, Jung and Takahasi [8] proved a similar result to Theorem
2 under an additional condition. Here, we give a generalized version of their
result by a simple calculation: In fact, it can be proved by an application of
Proposition 1.

Put I = (a, b), where −∞ ≤ a < b ≤ ∞; For simplicity, we assume 0 ∈ I.
Let p : I → C and ε : I → [0,∞) be two continuous functions, and let q ∈
C(I,X). Suppose that f ∈ C1(I, X) satisfies the inequality (2) for all t ∈ I.
If ε(t)|p̃0(t)| and q(t)p̃0(t) are integrable on [0, b), then we show that there
exists a unique gb ∈ C1(I,X) such that gb

′(t) + p(t)gb(t) + q(t) = 0 and

‖f(t)− gb(t)‖ =
1

|p̃0(t)|
∫ b

t
ε(τ)|p̃0(τ)| dτ

for every t ∈ I: The case where p is constant and q = 0 was proved by Miura,
Jung and Takahasi [8, Theorem 1].

To prove this, put w
def= f ′ + pf + q. Note that w(t)p̃0(t) is integrable on

[0, b) since ‖w(t)‖ ≤ ε(t) and since ε(t)|p̃0(t)| is assumed to be integrable on
[0, b). By Proposition 1, with the integrability assumptions, we get

f(t) =
1

p̃0(t)

{
f(0)−

∫ t

0
(q(τ)− w(τ))p̃0(τ) dτ

}

=
1

p̃0(t)

{
f(0)−

∫ b

0
(q(τ)− w(τ))p̃0(τ) dτ

+
∫ b

t
(q(τ)− w(τ))p̃0(τ) dτ

}

for every t ∈ I. Put

x0
def= f(0)−

∫ b

0
(q(τ)− w(τ))p̃0(τ) dτ.
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We define

gb(t)
def=

1
p̃0(t)

{
x0 +

∫ b

t
q(τ)p̃0(τ) dτ

}

for t ∈ I. By a simple calculation, we see that gb ∈ C1(I, X) satisfying
gb
′(t) + p(t)gb(t) + q(t) = 0 for all t ∈ I. We now obtain

‖f(t)− gb(t)‖ =
∥∥∥∥−

1
p̃0(t)

∫ b

t
w(τ)p̃0(τ) dτ

∥∥∥∥

≤ 1
|p̃0(t)|

∫ b

t
‖w(τ)‖ |p̃0(τ)| dτ

≤ 1
|p̃0(t)|

∫ b

t
ε(τ)|p̃0(τ)| dτ

for every t ∈ I. Finally, we show the uniqueness: Suppose that g ∈ C1(I, X)
satisfies g′(t) + p(t)g(t) + q(t) = 0 and

‖f(t)− g(t)‖ ≤ 1
|p̃0(t)|

∫ b

t
ε(τ)|p̃0(τ)| dτ (∀t ∈ I).

Since gb and g are solutions of the differential equation y′(t)+p(t)y(t)+q(t) =
0, it follows from Proposition 1 that

gb(t)− g(t) =
1

p̃0(t)
(gb(0)− g(0)) (6)

for every t ∈ I. By the triangle inequality, we get

‖gb(0)− g(0)‖ = |p̃0(t)| ‖gb(t)− g(t)‖
≤ |p̃0(t)|(‖gb(t)− f(t)‖+ ‖f(t)− g(t)‖)

≤ 2
∫ b

t
ε(τ)|p̃0(τ)| dτ

→ 0 as t ↗ b,

which implies gb(0) = g(0). By (6), we obtain gb(t) = g(t) for all t ∈ I, and so
the uniqueness is proved.

By an argument similar to the above, we can also prove that if ε(t)|p̃0(t)| and
q(t)p̃0(t) are integrable on (a, 0], then there exists a unique ga ∈ C1(I, X) such
that ga

′(t) + p(t)ga(t) + q(t) = 0 and ‖f(t)− ga(t)‖ ≤
∫ t
a ε(τ)|p̃0(τ)| dτ/|p̃0(t)|

for every t ∈ I.
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