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Abstract. Let X be a complex Banach space and I an open interval. We prove the stability
result in the sense of Hyers-Ulam-Rassias of the X-valued differential equation

' (t) + p(t)y(t) + q(t) = 0.

If f: I — X is an approximate solution of ¢y’ +py-+q = 0, then to each s € I there corresponds
an exact solution gs: I — X of the differential equation above such that g is near to f.

1. INTRODUCTION

It seems that the stability problem of functional equations was first studied
by Hyers, which was raised by Ulam (cf. [18, Chapter VI]) in 1940: “For what
metric groups G is it true that an e-automorphism of G is necessarily near to
a strict automorphism?” In 1941, Hyers [4] gave an answer to this problem as
follows: Let E1, Es be two real Banach spaces and f: E; — E5 be a mapping.
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If there exists an € > 0 such that

1f(x+y) - flz) - fly)ll <e

for all x,y € F1, then there exists a unique additive mapping T": E1 — Fs such
that || f(z) — T'(z)|| < ¢ for every € E. This result is called the Hyers-Ulam
stability of the additive Cauchy equation g(z + y) = g(z) + g(y).

In 1978, Rassias [11] introduced a new functional inequality that we call
Cauchy-Rassias inequality and succeeded to extend the result of Hyers’ by
weakening the condition for the Cauchy difference to be unbounded: If there
exist an € > 0 and 0 < p < 1 such that

1f (= +y) = flz) = FW) < e(ll=]” + llyll)

for all z,y € FEi, then there exists a unique additive mapping T': Fy — FEs

such that
2e

I£@) - T@ < g
for every x € E;. The stability phenomenon of this kind is called the Hyers-
Ulam-Rassias stability. In 1991, Gajda [2] solved the problem for 1 < p, which
was raised by Rassias. In fact, the result of Rassias is valid for 1 < p; Moreover,
Gajda gave an example that a similar stability result does not hold for p = 1.
Another example was given by Rassias and Semrl [15, Theorem 2].

It seems that Alsina and Ger [1] are the first who consider the Hyers-Ulam
stability of differential equations. They remarked that the Hyers-Ulam stabil-
ity of the differential equation 3’ = y holds: If € > 0, f is a differentiable func-
tion on an open interval I into R, the real number field, with |f/(t) — f(¢)| < e
for all t € I, then there exists a differentiable function g: I — R such that
g (t) = g(t) and |f(t) — g(t)| < 3¢ for all t € I. Many authors generalize the
result of Alsina and Ger (cf. [3, 8, 9, 10, 16, 17]). Miura, Jung and Taka-
hasi [8] proved the (generalized) Hyers-Ulam-Rassias stability of the Banach
space valued differential equation 3'(t) = Ay(¢) under an additional condi-
tion, where \ is a complex number. In this paper, we prove the (generalized)
Hyers-Ulam-Rassias stability of the Banach space valued differential equation
y'(t) + p(t)y(t) + q(t) = 0, where p: I — C, the complex number field, and
q: I — X are both continuous mappings. To be more explicit, if e: I — [0, c0)
is a continuous mapping and if f: I — X is strongly differentiable with con-
tinuous derivative f’ such that || f/(¢) + p(¢)f(t) + q(t)|| < e(t) for all ¢t € I,
then to each s € I there corresponds a unique mapping gs: I — X such that
gs'(t) + p(t)gs(t) + q(t) = 0 and that

[l

[ mienar

1
1f(£) = gs(B)]] < B

for all t € I, where ps(t) = exp fstp(T) dr.
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2. MAIN RESULTS

From now on, X denotes a non-zero complex Banach space with the norm
||-]|. We write C(I, X) for the complex linear space of all X-valued continuous
mappings on an interval I C R. Recall that a mapping f € C(I, X) is called
strongly differentiable if to each t € I there corresponds an element f’(t) € X
such that
f(t+5) = £(1)

S

lim
s—0

We may regard f’ as an X-valued mapping ¢t — f'(¢) on I. We denote by
C1(I, X) the linear subspace of all f € C(I, X) such that f is strongly differ-
entiable and f’ is continuous.

For each s € I and continuous function p: I — C, we define

() < exp / p(r)dr  (vte ). (1)

Proposition 1. Let p: I — C be a continuous function, s € I, ¢ € C(I,X)
and f € CY(I,X). Each of the following conditions imply the other:

(@) f'(t)+p(t)f(t) +q(t) =0 for every t € I.
1 b
(b) f(t) = ﬁs(t) { (s) —/S q(1)ps(7) dT} for every t € 1.
Proof. (a) = (kz) Suppose that f'(t) + p(t)f(t) + q(t) = 0 for every ¢t € I.
= p(t

Since ps'(t) )Ds(t) by (1), if we differentiate the mapping f(¢)ps(t), then
we get

{f@®)ps(0)} = {f'(t) + () f ()}Ds(t) = —aq(t)ps(t)

for every t € I. This implies that

FOps(t) - / (F()pa(r)Y dr = — / o()p(r) dr

for every ¢t € I. Since ps(s) =1 by (1), we thus obtain

0= 4= { 50~ [ atwpryar )
for every t € I.

(b) = (a). If f is of the form
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for every t € I, then we obtain

o sl oo
(s /tq (u(r) dr 5 0)
— | an - {() / (D) dr b (0.1

1
= o)~ = {56~ [Lawnrar b
= —q(t) —p®) (D),
and so we get f'(t) + p(t)f(t) + q(t) = 0 for every t € I. O

Theorem 2. Let p: I — C and e: I — [0,00) be two continuous functions,
and let g € C(I, X). If f € CY(I, X) satisfies

1F/(®) +p@&) () +a(t)]| < e(t) (2)

for allt € I, then to each s € I there corresponds a unique gs € C*(I,X) such
that gs'(t) + p(t)gs(t) + q(t) = 0 and that

5| et o

Proof. Pick s € I arbitrarily, and put w o f'+pf+q. Note that [|w(t)]| < e(t)
for every t € I. An application of Proposition 1 to the equation f'+pf+q—w =
0 shows that

1£(t) — gs(D)] < 131( (3)

|Ds

forallt e 1.

1 ! .
0= =5 {16~ [ (et = wlopryar | (@)
for all t € I. We define g5: I — X by
{f Ds(T )dT} (VteI). (5)
Note that gs(s) = f y (5). Another application of Proposition 1 yields

that gs'(t) + p(t)gs(t ) (t) = 0 for every t € I. Moreover, it follows from (4)
and (5) that

£(t) = gslt) + / wr)ps(r)dr (Ve ).
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Since ||w(t)|| < e(t) for every t € I, it follows that
1 t

116 -0l = | =0 [

[ erolar

s

(7)ps(7) dr

IN

w(r)| [pa(7)] dr

1
D5 ()]
1
D5 ()]

for all ¢ € I, which proves the inequality (3).
If g € C'(I, X) is another function such that ¢’ + pg + ¢ = 0 and that

1F(8) - 9] < / (r)|a(7)| d

then we obtain

w
t
I
t

500 Vie D),

2

Jov(t) = 9(0)] < o / e(r)|pa(r)| dr

for all t € I, and hence gs(s) = g(s). Note that, by Proposition 1, g is of the
form

o+ [ampmar} e

9t = 51

since ¢’ +pg+ ¢ = 0. It follows from (5) with f(s) = gs(s) = g(s) that g; = g,
and the uniqueness is proved. O

Remark 1. The “error function”

N def 1

@) | [ (o)l ar

in the right side of (3) can not be improved in general. In fact, let p: I — C
and €: I — [0,00) be continuous functions. Fix s € I and pick x € X with

|z = 1. Put t
70 =~ [ cpnlar |

for every t € I. We see that

5 = ]5;@ [e@)ms(t) () — { / e(Pl5s(r) dT}pu)ﬁs(tﬂ .
= B e - s 100,
and hence )
1£/0) + p(t) (1)) = ] 'gzgg‘ e@)zH —
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for all ¢ € I since ||x|| = 1. By Theorem 2, there exists a unique g5 € C(I, X)
such that gs'(t) + p(t)gs(t) = 0 and that || fs(t) — gs(¢)|| < €(t) holds for all
tel. Let §: I — [0,00) be an arbitrary function satisfying || fs(t) — gs(t)]] <
0(t) for all t € I. Since ||z| =1, we get

1 /t N
== e(7)[ps(7)| dr
|p5(t)’ S ’
for all t € I. It follows from the uniqueness that gs = 0, which implies
Es(t) = @I = [1fs(t) — gs(t)]| < 6(¢)

for every t € I. Therefore, the “error function” satisfying the inequality (3)
can not be improved in general.

1@ = &(t)

Remark 2. Miura, Jung and Takahasi [8] proved a similar result to Theorem
2 under an additional condition. Here, we give a generalized version of their
result by a simple calculation: In fact, it can be proved by an application of
Proposition 1.

Put I = (a,b), where —oo < a < b < oo; For simplicity, we assume 0 € 1.
Let p: I — C and e€: I — [0,00) be two continuous functions, and let g €
C(I, X). Suppose that f € C1(I, X) satisfies the inequality (2) for all ¢ € I.
If €(t)|po(t)| and q(t)po(t) are integrable on [0,b), then we show that there
exists a unique g, € C'(I, X) such that g,'(t) + p(t)gs(t) + q(t) = 0 and

1 b
150 = (Ol = =t [ el dr
Bo(t)] J¢
for every t € I: The case where p is constant and ¢ = 0 was proved by Miura,

Jung and Takahasi [8, Theorem 1].

To prove this, put w def '+ pf + q. Note that w(t)po(t) is integrable on
[0,b) since ||w(t)]] < e(t) and since €(t)|po(t)| is assumed to be integrable on
[0,b). By Proposition 1, with the integrability assumptions, we get

10 = {50~ [ - wtrpminar|
{

for every t € I. Put

def

b
0% £(0) - /0 (a(7) — w(r)fol7) dr.
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) oo | " y() i

for t € I. By a simple calculation, we see that g, € C'(I, X) satisfying
' (t) + p(t)gp(t) + q(t) =0 for all t € I. We now obtain

We define

b
1O = (@] = H—pol(t) [ wtrm(rar
b
< ‘ﬁ / lew(r)| [Fo(r)] dr
‘ ‘pO |dT
po(t)| J;

for every t € I. Finally, we show the uniqueness: Suppose that g € C1(I, X)
satisfies ¢'(t) + p(t)g(t) + q(t) = 0 and

1F(#) =9Il < |p0 i/

Since g, and g are solutions of the differential equation y/(¢) 4+ p(t)y(t) +q(t) =
0, it follows from Proposition 1 that
1

t)—g(t) = ——(g(0) — g(0 6
go(t) — g(t) NG (96(0) — 9(0)) (6)
for every t € I. By the triangle inequality, we get

195(0) = g(0)] Po(®)] llgn(t) — g(®)]l
< [po®)I(lgs(t) — FOI + LF () — g(®)]])

b
) )
/t (7 lfo(r) dr
0 as t /b,

which implies g;(0) = g(0). By (6), we obtain g,(t) = g(t) for all t € I, and so
the uniqueness is proved.

By an argument similar to the above, we can also prove that if €(¢)[po(¢)| and
q(t)po(t) are integrable on (a, 0], then there exists a unique ga € CY(I, X) such

that ga'(t) +p(t)ga(t) + q(t) = 0 and || f(£) = ga(t)]| < [, €(7)|Bo(7)] dr/[Po(t)|
for every ¢ € I.

7)|po(7)| dT (Vt e I).

IN

!
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