Nonlinear Functional Analysis and Applications Vol. 12, No. 5 (2008), pp. 731-735

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \bigodot 2008 Kyungnam University Press

A NOTE ON COMPLEMENTARITY PROBLEMS FOR MULTIVALUED MONOTONE OPERATORS IN BANACH SPACES

Weiping Guo

Department of Applied Mathematics, University of Science and Technology of Suzhou, Suzhou, Jiangsu 215009, P. R. China e-mail: guoweiping18@yahoo.com.cn

Abstract. In this paper, the existence theorems of solutions of the complementarity problems for multivalued monotone operators are proved in Banach spaces.

1. INTRODUCTION AND PRELIMINARIES

Let E be a real Banach space, E^* denotes the dual space of E, 2^{E^*} denotes the family of all nonempty subsets of E^* and $\langle \cdot, \cdot \rangle$ denotes the pairing between E^* and E. Let $K \subset E$ be a convex cone, K^* denotes the conjugate cone of K, i.e.,

 $K^* = \{ u \in E^* : \langle u, x \rangle \ge 0, \forall x \in K \}.$

Let $T: K \to 2^{E^*}$ be a multivalued operator, the so-called the complementarity problem of T is to find points $\bar{x} \in K$ and $\bar{u} \in T\bar{x}$ such that

$$T\bar{x} \subset K^*$$
 and $\langle \bar{u}, \bar{x} \rangle = 0$.

The complementarity problems for multivalued non-monotone operators were discussed in [2] and the following result was proved.

Theorem A. Let E be a real Banach space and $K \subset E$ be a closed convex cone. Suppose that $T : K \to 2^{E^*}$ is upper semicontinuous from the norm

⁰Received December 25, 2006. Revised February 18, 2007.

⁰2000 Mathematics Subject Classification: 49R20, 47H09, 47H10.

 $^{^0{\}rm Keywords}:$ Multivalued monotone operator, complementarity problem.

⁰Project supported by the Foundation of Jiangsu Education Committee (04KJD110170) and the Foundation of University of Science and Technology of Suzhou.

W. P. Guo

topology in K to the norm topology in E^* and each Tx is norm compact; If there exist two nonempty compact subsets Q and Ω in K, for each $x \in K \setminus Q$ there exists $y \in \Omega$ such that $\inf_{u \in Tx} \langle u, x - y \rangle > 0$ and for each fixed $x \in Q$ we have

 $\inf_{u \in Tx} \langle u, y - x \rangle \ge 0 \text{ for all } y \in K.$ Then there exist $\bar{x} \in Q \subset K$ and $\bar{u} \in T\bar{x}$ such that $T\bar{x} \subset K^* \text{ and } \langle \bar{u}, \bar{x} \rangle = 0.$

The purpose of this paper is to prove the existence theorems of solutions of the complementarity problems for multivalued monotone operators in Banach spaces and to give a new method of proof different from that of [2].

We need the following lemma for the main theorems.

Lemma 1.1.[6] Let E be a locally convex Hausdorff topological vector space and X be a nonempty compact convex subset of E. Let $T : X \to 2^{E^*}$ be monotone such that for each $x \in X$, Tx is a nonempty subset of E^* and T is lower semicontinuous from the relative topology of X to the strong topology of E^* . Then there exists a point $\hat{y} \in X$ such that

$$\sup_{w \in T\hat{y}} \operatorname{Re}\langle w, \hat{y} - x \rangle \le 0 \text{ for all } x \in X.$$

We note that every Banach space is a locally convex Hausdorff topological vector space with respect to the weak topology. Therefore we have the following.

Corollary 1.2. Let E be a Banach space and X be a nonempty weakly compact convex subset of E. Let $T: X \to 2^{E^*}$ be monotone such that for each $x \in X$, Tx is nonempty subset of E^* and T is lower semicontinuous from the weak topology of X to the norm topology of E^* . Then there exists a point $\hat{y} \in X$ such that

$$\sup_{w \in T\hat{y}} Re\langle w, \hat{y} - x \rangle \le 0 \text{ for all } x \in X.$$

2. Complementarity problems for monotone operators

Let *E* be a real Banach space, we denote by $\|\cdot\|$ the norm, by Ω° and $\partial\Omega$ the interior and the boundary of a subset Ω of *E*, respectively.

Theorem 2.1. Let E be a real Banach space and $K \subset E$ be a closed convex cone. Suppose that $T : K \to 2^{E^*}$ is monotone such that for each $x \in K$, Tx is a nonempty subset of E^* and T is lower semicontinuous from the weak

732

topology of K to the norm topology of E^* . If there exists a weakly compact convex subset Ω of K with $\Omega^{\circ} \neq \emptyset$ such that for each $x \in \Omega$, Tx is weakly^{*} compact subset of E^* and for each $z \in \partial\Omega$, there exists $y_0 \in \Omega^{\circ}$ such that $\inf_{w \in Tz} \langle w, z - y_0 \rangle \geq 0$. Then there exist $\bar{x} \in \Omega \subset K$ and $\bar{w} \in T\bar{x}$ such that

$$T\bar{x} \subset K^*$$
 and $\langle \bar{w}, \bar{x} \rangle = 0.$

Proof. First we prove that there exists $\bar{x} \in \Omega \subset K$ such that

$$\sup_{w \in T\bar{x}} \langle w, \bar{x} - y \rangle \le 0 \text{ for all } y \in K.$$
(2.1)

In fact, by Corollary 1.2 there exists $\bar{x} \in \Omega$ such that

$$\sup_{w \in T\bar{x}} \langle w, \bar{x} - x \rangle \le 0 \text{ for all } x \in \Omega.$$
(2.2)

If $\bar{x} \in \Omega^{\circ}$, then for each $y \in K$, we can choose $\lambda : 0 < \lambda < 1$ small enough so that $x = \lambda y + (1 - \lambda)\bar{x} \in \Omega$. It follows from (2.2) that

$$\lambda \cdot \sup_{w \in T\bar{x}} \langle w, \bar{x} - y \rangle = \sup_{w \in T\bar{x}} \langle w, \bar{x} - x \rangle \le 0.$$

Consequently, we have

$$\sup_{w \in T\bar{x}} \langle w, \bar{x} - y \rangle \le 0 \text{ for all } y \in K.$$

If $\bar{x} \in \partial \Omega$, by the condition of Theorem 2.1, there exists $y_0 \in \Omega^\circ$ such that $\inf_{w \in T\bar{x}} \langle w, \bar{x} - y_0 \rangle \geq 0$. By (2.2), for each $x \in \Omega$ we have

$$\langle w, \bar{x} - x \rangle \leq \langle w, \bar{x} - y_0 \rangle$$
 for all $w \in T\bar{x}$

This implies that

$$\sup_{w \in T\bar{x}} \langle w, y_0 - x \rangle \le 0 \text{ for all } x \in \Omega.$$
(2.3)

Since $y_0 \in \Omega^\circ$, for each $y \in K$, we can choose $\lambda : 0 < \lambda < 1$ small enough so that $\hat{x} = \lambda y + (1 - \lambda)y_0 \in \Omega$. It follows from (2.3) that

$$\lambda \cdot \sup_{w \in T\bar{x}} \langle w, y_0 - y \rangle = \sup_{w \in T\bar{x}} \langle w, y_0 - \hat{x} \rangle \le 0.$$

This shows that

$$\sup_{w \in T\bar{x}} \langle w, y_0 - y \rangle \le 0 \text{ for all } y \in K.$$
(2.4)

Note that $y_0 \in \Omega$, by (2.2) we obtain

$$\sup_{w\in T\bar{x}} \langle w, \bar{x} - y_0 \rangle \le 0.$$
(2.5)

Combining (2.4) and (2.5), for all $y \in K$ we have

$$\sup_{w \in T\bar{x}} \langle w, \bar{x} - y \rangle \le \sup_{w \in T\bar{x}} \langle w, \bar{x} - y_0 \rangle + \sup_{w \in T\bar{x}} \langle w, y_0 - y \rangle \le 0$$

W. P. Guo

This shows that (2.1) holds.

Next we prove that the conclusion of Theorem 2.1 holds. By (2.1) we have

$$\inf_{w \in T\bar{x}} \langle w, \bar{x} - y \rangle \le 0 \text{ for all } y \in K.$$
(2.6)

and

$$\inf_{w \in T\bar{x}} \langle w, y - \bar{x} \rangle \ge 0 \text{ for all } y \in K.$$
(2.7)

We denote by θ the zero vector of E, then $\theta \in K$, it follows from (2.6) that

$$\inf_{w \in T\bar{x}} \langle w, \bar{x} \rangle = \inf_{w \in T\bar{x}} \langle w, \bar{x} - \theta \rangle \le 0.$$
(2.8)

On the other hand, since K is convex cone and $\bar{x} \in K$, so $2\bar{x} \in K$ and, by(2.7) we have

$$\inf_{w \in T\bar{x}} \langle w, \bar{x} \rangle = \inf_{w \in T\bar{x}} \langle w, 2\bar{x} - \bar{x} \rangle \ge 0.$$
(2.9)

Combining (2.8) and (2.9), we have $\inf_{w \in T\bar{x}} \langle w, \bar{x} \rangle = 0$. Note that the real valued function $w \mapsto \langle w, \bar{x} \rangle$ is weakly^{*} continuous on the weakly^{*} compact set $T\bar{x}$, so there exists $\bar{w} \in T\bar{x}$ such that

$$\langle \bar{w}, \bar{x} \rangle = \inf_{w \in T\bar{x}} \langle w, \bar{x} \rangle = 0.$$

Finally we prove that $T\bar{x} \subset P^*$. In fact, for any $w \in T\bar{x}$ and $y \in K$, by (2.7) we have

$$\langle w, y \rangle \ge \inf_{w \in T\bar{x}} \langle w, y \rangle = \inf_{w \in T\bar{x}} \langle w, y \rangle - \inf_{w \in T\bar{x}} \langle w, \bar{x} \rangle \ge \inf_{w \in T\bar{x}} \langle w, y - \bar{x} \rangle \ge 0.$$

s completes the proof. \Box

This completes the proof.

Remark 2.2. Theorem 2.1 generalizes Theorem 1 of Guo and Qu [5] and Theorem 2 and Theorem 3 of Zhang and Li [9] to multivalued operators, and improves Theorem 1 of Guo [1].

Remark 2.3. By the monotonicity of T, we know that the condition $\inf_{w \in Tz} \langle w, z - w \rangle$ $y_0 \geq 0$ in Theorem 2.1 is replaced by $\sup_{u \in Ty_0} \langle u, z - y_0 \rangle \geq 0$ and the conclusion follows.

Remark 2.4. If E is a real reflexive Banach space in Theorem 2.1, then the weakly compact convex subset Ω of E can be replaced by a relatively weak condition.

Theorem 2.5. Let E be a real reflexive Banach space and $K \subset E$ be a closed convex cone. Suppose that $T: K \to 2^{E^*}$ is monotone such that for each $x \in K$, Tx is a nonempty subset of E^* and T is lower semicontinuous from the weak topology of K to the norm topology of E^* . If there exist a point $x_0 \in K$ and a constant $\beta > 0$ such that for each $x \in K$, as $||x - x_0|| \leq \beta$, Tx is weakly

734

compact and as $||x - x_0|| = \beta$, $\inf_{w \in Tx} \langle w, x - x_0 \rangle \ge 0$. Then there exist $\bar{x} \in K$ with $||\bar{x} - x_0|| \le \beta$ and $\bar{w} \in T\bar{x}$ such that

$$T\bar{x} \subset K^*$$
 and $\langle \bar{w}, \bar{x} \rangle = 0$.

Proof. Setting $\Omega = \{x \in K : ||x - x_0|| \leq \beta\}$, it is easy to prove that Ω is a bounded closed convex subset in reflexive Banach space, so Ω is a weakly compact convex in K and $\Omega^\circ = \{x \in K : ||x - x_0|| < \beta\} \neq \emptyset$. For each $x \in \partial\Omega = \{x \in K : ||x - x_0|| = \beta\}$, we take $y_0 = x_0 \in \Omega^\circ$ and

$$\inf_{w \in Tx} \langle w, x - y_0 \rangle = \inf_{w \in Tx} \langle w, x - x_0 \rangle \ge 0.$$

By Theorem 2.1 and the conclusion follows.

Especially, as x_0 is zero vector of E in Theorem 2.5 we have

Corollary 2.6. Let E be a real reflexive Banach space and $K \subset E$ be a closed convex cone. Suppose that $T: K \to 2^{E^*}$ is monotone such that for each $x \in K$, Tx is a nonempty subset of E^* and T is lower semicontinuous from the weak topology of K to the norm topology of E^* . If there exists a constant $\beta > 0$ and for each $x \in K$, as $||x|| \leq \beta$, Tx is weakly compact and as $||x|| = \beta$, $\inf_{w \in Tx} \langle w, x \rangle \geq 0$. Then there exist $\bar{x} \in K$ with $||\bar{x}|| \leq \beta$ and $\bar{w} \in T\bar{x}$ such that

$$T\bar{x} \subset K^*$$
 and $\langle \bar{w}, \bar{x} \rangle = 0.$

References

- W. P. Guo, Complementarity problems for multivalued monotone operator in Banach spaces, J. Math. Anal. Appl. 292 (2004), 344–350.
- [2] W. P. Guo, Complementarity problems for multivalued non-monotone operators in Banach spaces, J. Math. Res. Exposition. 27 (2007).
- [3] W. P. Guo, Two results for the implicit complementarity problems, J. Math. Res. Exposition. 19 (1999), 554–556.
- W. P. Guo, Implicit complementarity problems for multivalued monotone operators, Acta Analysis Functionalis Applicata. 5 (2003), 271–275.
- [5] W. P. Guo and L. X. Qu, Complementarity problems in reflexive Banach spaces, J. Math. Study. **31** (1998), 390–393.
- [6] M. H. Shih and K. K. Tan, Generalized quasi-variational inequalities in locally convex topological vector spaces, J. Math. Anal. Appl. 108 (1985), 333–343.
- [7] W. Takahashi, Nonlinear variational inequalities and fixed point theorems, J. Math. Soc. Japan. 28 (1976), 168–181.
- [8] M. Thera, Existence results for the nonlinear complementarity problem and applications to nonlinear analysis, J. Math. Anal. Appl. 154 (1991), 572–584.
- S. S Zhang and J. Li, Complementarity problems in Banach spaces, Appl. Math. J. Chinese Univ. 9 (1994), 75–83.