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Abstract. Let X be a reflexive Banach space and X∗ its dual space. Applying the property

of pseudo–monotone map and maximal monotonicity of subdifferential, we discuss the exis-

tence of solutions of the variational inequalities and complementarity problem for PM-map

in X. When both X and X∗ are uniformly convex Banach spaces, We give the necessary and

sufficient condition that the map T having nearest point in J(D), and study the equivalent

conditions to J − T having zero point in D.

1. Introduction

The theory of variational inequalities were introduced by Lions, Browder,
Stampacchia, Ky-Fan, has made important progress, and it is a border subject
including abundant contents. Many mathematicians have paid much attention
to it in theory and applications. Some nonlinear problems arising in applica-
tions have led to the study of variational inequalities for maps of the form
J − T , that is, to find y ∈ D such that

〈Jy − Ty, y − x〉 ≤ 0, ∀x ∈ K,

where T : D ⊂ K → X∗ is a suitable map, K is a closed convex subset of a
Banach space X, X∗ is the dual space of X, and J : X → X∗ is the duality
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map. For example, Lan and Webb [4] study the variational inequality for maps
of the form J − T in [1, 4], where T is demi-continuous PM-map.

In this paper, we discuss the complementarity problem, that is, to find
y ∈ K, such that

〈Ay, y〉+ Φ(y) = 0,
and

〈Ay − f, x〉+ Φ(x) ≥ 0, ∀x ∈ K.

As we all know, the complementary problem has closely relation with varia-
tional inequality, with the increasing development of the variational inequal-
ity, hence, the theory and applications of complementarity problem have made
progress. At last, we’ll discuss the sufficient and necessary condition that the
map T having nearest point in J(D) equivalent to J − T having zero point in
D, when X and X∗ are locally uniformly convex Banach spaces.

In the following, we’ll list some basic concept. Let X be a Banach space
and X∗ its dual space.

An operator T : X → X∗ is called monotone, if ∀x, y ∈ K,

〈Tx− Ty, x− y〉 ≥ 0.

An operator T : X → X∗ is called maximal monotone if it is monotone and
its graph is not properly contained in the graph of any other monotone.

An operator T : K → X∗ is called pseudo-monotone (see [4,5]) if for each
sequence {yn|n ∈ N}, such that yn ⇀ y ∈ K, and lim supn→∞〈Tyn, yn − y〉 ≤
0, then

〈Ty, y − x〉 ≤ lim inf
n→∞ 〈Tyn, yn − x〉, ∀x ∈ K.

An operator T : K → X∗ is called S+ type if for each sequence {yn}, such
that yn ⇀ y ∈ K and lim supn→∞〈Tyn, yn − y〉 ≤ 0, then yn → y ([4,5]).

An operator T : D ⊂ K → X is called a generalized inward map (relative
K) if d(Tx, K) < ‖x−Tx‖, x ∈ D,Tx /∈ K, where d(Tx, K) = inf{‖Tx− z‖ :
z ∈ K}.

Let K be a closed convex set of a Banach space X. Then K is called a wedge
if λx ∈ K,∀x ∈ K, and λ ≥ 0. A wedge K is a cone if also {K}∩{−K} = {0}
[1].

Let X be a Banach space, we always assume that X∗ is strictly convex.
Recall that a continuous function φ : [0,∞) → [0,∞) is said to be a gauge
function, if φ is a strictly increasing function with φ(0) = 0,

lim
t→+∞φ(t) = +∞.

A map J : X → X∗ is said to be a duality map with gauge function φ [3],
if for each x ∈ X,

〈J(x), x〉 = φ(‖x‖)‖x‖ and ‖Jx‖ = φ(‖x‖).
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As we all know, if X∗ is a strictly convex Banach space, the duality map in
X is single-valued and demi-continuous.

Recall that a Banach space X has property (H), if yn ⇀ y and ‖yn‖ → ‖y‖
imply yn → y [6]. It is known that a locally uniformly convex Banach space
has the property (H).

Definition 1.1. A map T : K → X∗ is said to be a PM-map if J − T is
pseudo-monotone.

Definition 1.2. A map T : K → X∗ is said to be S-contractive if J − T is of
S+ type.

Now, we have the important lemmas.

Lemma 1.1. [2] Let X be a uniformly convex Banach space. Assume that
T : K → X∗ is an S-contractive map and G : K → X∗ is compact. Then T +G
is S-contractive. In particular, a compact map is S- contractive. Furthermore
if T is demi-continuous, then T + G is a PM-map.

Lemma 1.2. Let X be a locally uniformly convex Banach space, K ⊂ X be
a closed convex subset, and C : K → X∗ be a compact map. Then C is a
PM-map.

Proof. We only prove that J −C is a pseudo-monotone map. Let yn ⇀ y and
lim supn→∞〈(J−C)yn, yn−y〉 ≤ 0. Since J is a S+ type and limn→∞〈Cyn, yn−
y〉 = 0, we have limn→∞〈Jyn, yn − y〉 ≤ 0. Therefore, yn → y. Thus for all
v ∈ K

lim inf
n→∞ 〈(J − C)yn, yn − v〉 = lim inf

n→∞ {〈(J − C)yn, yn − y〉+ 〈(J − C)yn, y − v〉}
= lim inf

n→∞ 〈(J − C)yn, y − v〉
= 〈(J − C)y, y − v〉,

this implies that J − C is a pseudo-monotone map. ¤

Lemma 1.3. [4] Let C be a nonempty bounded closed and convex subset of
a reflexive Banach space X, T : C → X∗ be a bounded, demi-continuous and
pseudo-monotone operator on C, and A : C → X∗ be a maximal monotone
operator. Let f ∈ X∗. Then there exists an element u ∈ C ∩D(A) such that

〈Ax + Tu− f, x− u〉 ≥ 0, ∀x ∈ C.

Lemma 1.4. [7] Let p > 1, r > 0 be two fixed real numbers and X be a
Banach space. Then the following conditions are equivalent.

(i) X is uniformly convex,
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(ii) There is a continuous, strictly increasing and convex function g : R+ →
R+, g(0) = 0, such that

‖x + y‖p ≥ ‖x‖p + p〈y, fx〉+ g(‖y‖),
for every x, y ∈ Br = {x : ‖x‖ ≤ r}, fx ∈ Jp(x) = {x∗ ∈ X∗, 〈x, x∗〉 = ‖x‖p

and ‖x∗‖ = ‖x‖p−1}.
Lemma 1.5. [7] Let X be a uniformly smooth Banach space (means X∗
is uniformly convex ). Then there exists a continuous increasing function
b : R+ → R+ such that b(0) = 0, b(ct) ≤ cb(t) (c > 1) and

‖x + y‖2 ≤ ‖x‖2 + 2〈y, J(x)〉+ max{‖x‖, 1}‖y‖b(‖y‖).

2. Complementarity problem for PM-maps

Theorem 2.1. Let X be a reflexive Banach space, K ⊂ X be a wedge,
T : Kr → X∗ be a bounded, demi-continuous PM-map, (where Kr = {x ∈
K, ‖x‖ ≤ r} and ∂Kr = {x ∈ K, ‖x‖ = r}) and 〈Jx− f, x〉+ Φ(x) ≥ 〈Tx, x〉,
∀x ∈ ∂Kr, where Φ(x) : X → R is proper convex lower semi-continuous
function, and Φ(0) = 0, Φ(λy) ≤ λΦ(y) (∀λ > 0). Then there exists y0 ∈ Kr

such that
〈Jy0 − Ty0 − f, y0〉+ Φ(y0) = 0

and
〈Jy0 − Ty0 − f, x〉+ Φ(x) ≥ 0, ∀x ∈ K.

Proof. We may assume A = J −T , By Lemma 1.3 and maximal monotonicity
of subdifferential, there exists y0 ∈ Kr such that

〈∂Φ(y0) + Ay0 − f, x− y0〉 ≥ 0, ∀x ∈ Kr.

By the definition of subdifferential, we have

〈Ay0 − f, x− y0〉+ Φ(x)− Φ(y0) ≥ 0, ∀x ∈ Kr.

In the following, we prove 〈Ay0 − f, y0〉+ Φ(y0) = 0. In fact, Since 0 ∈ Kr,
we have 〈Ay0 − f, y0〉+ Φ(y0) ≤ 0.

On the other hand, we have to prove that

〈Ay0 − f, y0〉+ Φ(y0) ≥ 0.

If ‖y0‖ = r, by the given boundary condition, we have 〈Ay0−f, y0〉+Φ(y0) ≥ 0.
If ‖y0‖ < r, let x = βy0 (β > 1) such that x ∈ Kr, then

0 ≤ 〈Ay0 − f, βy0 − y0〉+ Φ(βy0)− Φ(y0)
≤ (β − 1)〈Ay0 − f, y0〉+ (β − 1)Φ(y0)
= (β − 1)[〈Ay0 − f, y0〉+ Φ(y0)].
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Since β > 1, 〈Ay0 − f, y0〉+ Φ(y0) ≥ 0.
In a word, if ‖y0‖ ≤ r, then 〈Ay0 − f, y0〉+ Φ(y0) = 0, it show that

〈Ay0 − f, x〉+ Φ(x) ≥ 0, ∀x ∈ Kr.

This implies 〈Ay0 − f, x〉+ Φ(x) ≥ 0,∀x ∈ K, since K is a wedge. ¤

Remark 2.1. Above Theorem generalizes the Theorem 3.2 in [4], here bound-
ary condition 〈Jx, x〉 ≥ 〈Tx, x〉 changes into 〈Jx− f, x〉 ≥ (Tx, x), ∀x ∈ ∂Kr.

Remark 2.2. If Φ(λy) ≤ λαΦ(y) (α > 0, λ > 1), the conclusion of Theorem

2.1 is also true. For example, if Φ(u) =
1
2

∫
|∇u|2dx, then ∂φ = −4 satisfies

Φ(λu) ≤ λ2Φ(u).

As a special case of Theorem 2.1, if Φ(x) ≡ 0, Theorem 2.1 becomes follow-
ing:

Corollary 2.1. [4] Let K be a wedge in a reflexive Banach space X and let
r > 0. Assume that T : Kr → X∗ is a bounded and demi-continuous PM-map
such that, for f ∈ X∗,

〈Jx− f, x〉 ≥ 〈Tx, x〉, ∀x ∈ ∂Kr.

Then there exists y0 ∈ Kr such that

〈Jy0 − Ty0 − f, y0〉 = 0

and
〈Jy0 − Ty0 − f, x〉 ≥ 0, ∀x ∈ K.

In the following, we study the situation that T may not be defined on Kr:

Theorem 2.2. Let X be a reflexive Banach space, K ⊂ X be a wedge and
T : K → X∗ be a bounded and demi-continuous PM -map. Assume that
following condition holds

lim
x∈K

‖x‖→∞

〈Jx− Tx, x〉
‖x‖ = ∞. (P )

Let Φ(x) : X → R be a proper convex lower semi-continuous function such
that Φ(0) = 0, and Φ(λy) ≤ λΦ(y) (λ > 0). Then for every f ∈ X∗ there
exists y ∈ K such that

〈Jy − Ty − f, y〉+ Φ(y) = 0

and
〈Jy − Ty − f, x〉+ Φ(x) ≥ 0, ∀x ∈ K.
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Proof. Since Φ(x) is a proper convex lower semi-continuous function, by the
result of Barbu [2], we have Φ(x) is bounded from an affine function, that is,
there exists a functional x∗ ∈ X∗ and µ ∈ R such that Φ(x) ≥ 〈x∗, x〉+ µ. So

Φ(x) ≥ 〈x∗, x〉+ µ ≥ µ− ‖x∗‖‖x‖.
Let f ∈ X∗ and M

′
> ‖f‖+ ‖x∗‖+ |µ|. Then, from the condition (P ), there

exists r > 1 such that
〈Jx− Tx, x〉 ≥ M ′‖x‖,

for all x ∈ K, ‖x‖ ≥ r. Since for all x ∈ K, ‖x‖ ≥ r.

〈Jx− Tx− f, x〉+ Φ(x) = 〈Jx− Tx, x〉 − 〈f, x〉+ Φ(x)
≥ M

′‖x‖ − ‖f‖‖x‖+ µ− ‖x∗‖‖x‖
= (M

′ − ‖f‖ − ‖x∗‖)‖x‖+ µ
> |µ|r + µ > 0.

Hence, if x ∈ K, ‖x‖ ≥ r, then 〈Jx− Tx− f, x〉+ Φ(x) > 0, the remain part
follows Theorem 2.1. ¤

Remark 2.3. The above Theorem generalizes the Theorem 2.1, that is, the
domain Kr of operator T is changed into K.

Remark 2.4. The following conditions are equivalent to the condition (P ).
(i) There exists λ, α, r > 0 such that 〈Jx, x〉 ≥ λ‖x‖1+α for all x ∈ K with

‖x‖ ≥ r and lim supx∈K, ‖x‖→∞
〈Tx, x〉
‖x‖1+α < λ.

(ii) There exists α > 0 such that

lim sup
x∈K, ‖x‖→∞

〈Tx, x〉
‖x‖1+α < lim inf

t→∞
φ(t)
tα

,

where φ is the gauge function of the dual map J : X → X∗.
(iii) There exists α > 0 such that

lim inf
x∈K, ‖x‖→∞

〈Jx− Tx, x〉
‖x‖1+α

> 0.

It is easy to see that (i) implies (ii), (ii) implies (iii), and (iii) implies (P ).

As applications of Theorem 2.2, we discuss the existence of solutions for the
following complementarity problem:

〈Ay, y〉+ Φ(y) = 0, 〈Ay, x〉+ Φ(x) ≥ 0, ∀x ∈ K, (∗)
where A = J − λL + S, λ ∈ (0,∞), L is a linear map, S is a nonlinear map,
Φ : X → R is a proper convex lower semi-continuous function, Φ(0) = 0, and
Φ(µy) ≤ µΦ(y), (∀µ > 0).

In Hilbert spaces, the complementarity problem (∗) contains a mathematical
model arising from the study of the postcritical equilibrium state of a thin
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plate resting, without friction, on a flat rigid support, where L is a self-adjoint
compact linear map and S satisfies 〈Sx, x〉 > 0 (see [1]).

Let
1
ρ

= sup
x∈K
x6=0

〈Lx, x〉
‖x‖2 , a = lim inf

x∈K
‖x‖→∞

〈Sx, x〉
‖x‖2 ,

b = lim inf
t→∞

φ(t)
t

,

where φ is the gauge function of dual map J : X → X∗.

Theorem 2.3. Let X be a uniformly convex Banach space, K ⊂ X be a
wedge, L : X → X∗ be a linear compact map and ρ > 0. If S : K → X∗ is
a bounded and demi-continuous PM-map, and a > −b, Φ(x) : X → R is a
proper convex lower semi-continuous function, Φ(0) = 0, and Φ(µy) ≤ µΦ(y)
(µ > 0), then for each λ ∈ ρ[0, ρ(a + b)), there exists y ∈ K such that

〈Ay, y〉+ Φ(y) = 0

and
〈Ay, x〉+ Φ(x) ≥ 0, ∀x ∈ K.

Proof. Since L is a linear compact map, J −λL is a pseudo-monotone map by
Lemma 1.2. However, the sum of two pseudo-monotone maps is also pseudo-
monotone, so λL − S is a bounded and demi-continuous PM-map. Let λ ∈
[0, ρ(a + b)),

lim sup
x∈K

‖x‖→∞

〈λLx− Sx, x〉
‖x‖2 ≤ lim sup

x∈K
‖x‖→∞

〈λLx, x〉
‖x‖2 + lim sup

x∈K
‖x‖→∞

〈−Sx, x〉
‖x‖2

= lim sup
x∈K

‖x‖→∞

〈λLx, x〉
‖x‖2 − lim inf

x∈K
‖x‖→∞

〈Sx, x〉
‖x‖2

≤ λ
ρ − a < b.

So for each λ ∈ [0, ρ(a + b)), λL + S satisfied the condition (iii) in Remark 2.4
with α = 1. Hence, the result follows from Theorem 2.2. ¤

Remark 2.5. If a = ∞, then Theorem 2.3 holds for all λ ∈ [0,∞).

Corollary 2.2. In Theorem 2.3, let J : X → X∗ be a duality map, and
a > −b be replaced by the K-copositive condition: there exists m ∈ (0, 1) such
that

〈Aλx−Aλ0, x〉 ≥ m‖x‖2,

for all x ∈ K and λ ≥ 0, where Aλ = J − λL + S.
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Let Φ(x) : X → R be a proper convex lower semi-continuous function,
Φ(0) = 0, and Φ(µy) ≤ µΦ(y) (µ > 0). Then, there exists y ∈ K such that

〈Ay, y〉+ Φ(y) = 0,

and
〈Ay, x〉+ Φ(x) ≥ 0, ∀x ∈ K.

Proof. For each λ ≥ 0, let Tλ = λL − S. By the condition K-copositive, we
have

〈Jx, x〉 ≥ 〈Tλx, x〉 − 〈Tλ0, x〉+ m‖x‖2, ∀x ∈ K,

so

lim sup
x∈K

‖x‖→∞

〈Tλx, x〉
‖x‖2

< lim inf
t→∞

φ(t)
t

= 1.

Hence, by the condition of Remark 2.4 (ii) and Theorem 2.3, we can get the
conclusion. ¤

Remark 2.6. Both the Theorem 2.3 and Corollary 2.2 generalized Theroem
3.3 and Corollary of [4]. In hear, we change conditions y ∈ K, 〈Ay, y〉 = 0 and
〈Ay, x〉 ≥ 0, ∀x ∈ K into y ∈ K , 〈Ay, y〉+ Φ(y) = 0 and 〈Ay, x〉+ Φ(x) ≥ 0,
∀x ∈ K.

3. The discussion about zero point for map J − T

Theorem 3.1. Let X and X∗ be uniform convex Banach spaces, K ⊂ X be
a closed convex subset and T : D ⊂ K → X∗ be a map. Then the following
two conditions are equivalent:

(1) There exists y ∈ D, such that 〈Jy − Jx, J−1(Jy − Ty)〉 ≤ 0 ∀x ∈ K.
(2) T has nearest point in J(D); that is, y ∈ D such that

‖Jy − Ty‖ = d(Ty, J(K)),
where d(Ty, K) = inf{‖Ty − z‖ : z ∈ K}.

If also T is generalized inward (relative J(K)), then (1) and (2) are equiv-
alent to

(3) J−T has zero point in D, that is, there exists y ∈ D such that (J−T )y =
0.

Proof. (1) =⇒ (2). Assume that (1) holds. Note that duality map is demicon-
tinuous and one-to-one corresponding between X and X∗ from the uniform
convexity of X and X∗. By Lemma 1.4, we have

‖Ty − Jx‖p ≥ ‖Jy − Ty‖p + ‖Jy − Jx‖p − p〈Jy − Jx, J−1(Jy − Ty)〉
≥ ‖Jy − Ty‖p, ∀x ∈ K.
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So, there exists y ∈ D ⊂ K such that ‖Jy − Ty‖ = d(Ty, J(K)), that is, (2)
holds .

(2) =⇒ (1). Since (2) holds, ∀x ∈ K, J(K) is closed convex, by Lemma 1.5,
we have

‖Jy − Ty‖2 ≤ ‖Ty − (1− t)Jy − tJx‖2

≤ ‖Jy − Ty‖2 − 2t〈Jy − Jx, J−1(Jy − Ty)〉
+ max{‖Jy − Jx‖, 1} · t‖Jy − Jx‖ · b(t‖Jy − Jx‖).

Thus

2〈Jy − Jx, J−1(Jy − Ty)〉 ≤ max{‖Jy − Jx‖, 1}‖Jy − Jx‖ · b(t‖Jy − Jx‖).
Letting t → 0+. Then, we have b(0) = 0 from the continuity of b(t) and we
obtain

〈Jy − Jx, J−1(Jy − Ty)〉 ≤ 0,

this implies that (1) holds.
If T is also an inward map, then we have

‖Jy − Ty‖ = d(Ty, J(K)) < d(Ty, J(D)).

However, if T is also generalized inward, then

d(Ty, J(K)) ≤ ‖Ty − Jy‖,
so Ty ∈ J(K). Hence d(Ty, J(K)) = 0, that is, Jy − Ty = 0, y is the zero
point of J − T . ¤

Remark 3.1. Theorem 3.1 is a generalization of Proposition 2.1 in [4] for the
Banach space setting.

Corollary 3.1. Let X and X∗ be a uniformly convex Banach spaces, K ⊂ X
be a closed convex subset,and T : K → X∗ be a generalized inward PM-
map. Then J − T is demiclosed; that is, yn ⇀ y and (J − T )yn → 0, then
(J − T )y = 0.

Proof. Let yn ⇀ y and (J − T )yn → 0. Then for every x ∈ K,

lim
n→∞〈Jyn − Tyn, yn − y〉 = 0, lim

n→∞〈Jyn − Tyn, yn − x〉 = 0.

Since J − T is pseudo-monotone, we have

〈Jy − Ty, y − x〉 ≤ lim inf
n→∞ 〈Jyn − Tyn, yn − x〉 = 0, ∀x ∈ K.

Since T is generalized inward, it follows from Theorem 3.1 that (J − T )y =
0. ¤
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