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Abstract. In this paper, we study iterative approximations for finding a common element
of the fixed points of a nonexpansive mapping and the set of solutions of the variational
inequalities for an inverse-strongly monotone mappings in Hilbert spaces. The conditons
which guarantee strong convergence and stability of these approximations with respect to
perturbations of nonexpansive operator S, metric projection operator Po and constraint set
Q) are considered. We show that the sequence converges strongly to a common element of

two sets.

1. INTRODUCTION AND PRELIMINARIES

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Let
Q be a closed convex subset of H and let Py be the metric projection of H
onto 2 . It is well-known that Py, is a nonexpansive mapping of H onto € and
satisfies

(x —y, Pax — Poy) > ||Paz — Payl?,
for every x,y € H. Moreover, Pq is characterized by the properties: Pox € 2
and

(x — Poz,y — Pox) <0,
for all y € Q.
Recall a mapping T of 2 into H is called monotone if for all z,y € €2
(x —y,Tx —Ty) > 0.
The variational inequality problem is to find a v € € such that
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<”U - U, TU’> > 07
for all v € Q (see [2-4]). The set of solutions of the variational inequality

is denote by VI(Q,T). A mapping T of 2 into H is called inverse-strongly
monotone if there exists a positive real number « such that

(x —y,Tx —Ty) > o||Tz — Ty|?,

for all x,y € ). For such a case, T is called a- inverse-strongly monotone.
Recall also a mapping 1" of €2 into itself is called nonexpansive if

[Tz — Tyl < [lz =y,
for all z,y € Q. We denote by F(T) the set of fixed points of 7.

A mapping T of Q into H is called strongly monotone if there exists a
positive real number 7 such that
for all z,y € Q. In such a case, we say that T is n-strongly-monotone. If T is
an a-inverse-strongly monotone mapping of €2 into H, then it is obvious that
T is + -Lipschitz continuous. We also have that for all z,y € Q and A > 0,

«

I(Z = AT)a — (I = AT)y|* = |[(z — y) = ATz — Ty)||?
= |z = ylI” = 2X\(z —y, Tw — Ty) + \?||Tx — Ty|”
< lz =yl + A\ = 20)[| Tz — Ty|?

so, if A < 2q, then I — AT is a nonexpansive mapping of §2 into H.

A set-valued mapping A : H — 2 is called monotone if for all z,y €
H,f € Az and g € Ay imply (z —y,f —g) > 0. A monotone mapping
A : H — 21 is maximal if the graph G(A) of A is not properly contained
in the graph of any other monotone mapping. It is known that a monotone
mapping A is maximal if and only if for all (z,y) € H x H,(z —y,f —g) >0
for every (y,g) € G(A) implies f € Ax.

Let T be an inverse-strongly monotone mapping of €2 into H and let Nqv
be the normal cone to 2 at v € €, i.e.,

Nov={we H: (v—u,w)>0,Yu e Q}

and define
Tn+ Nan, neQ
A — ) )
7 { %, n¢ Q.
Then A is maximal monotone and 0 € An if and only if n € VI(Q,T)(see,
[6,7]).

Now we introduce several lemmas for our main results in this paper.
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Lemma 1.1. [1] Let Q1 and Qg are two convez closed sets. If H(21,8s) < o,
then there exists a positive real number C' such that for all x € H
HPQIHJ - PszH < C\/E’
where
H(Q1,02) = max{sup.,cq, infsc, |21~ 2], sup.,cq, nloen, 21— 2}
18 the Hausdroff distance between €21 and .

Lemma 1.2. [5] Let (E, (-,-)) be an inner product space. Then, for allx,y,z €
E and o, 3,7 € [0,1] with « + 3+ v = 1, we have

laz + By + vz || = al|z||* + BllylI* + 7]12]?
—aflllz — ylI* — ayllz — 21> = Bylly — 2>

Lemma 1.3. [8] Let {z,} and {y,} be bounded sequences in a Banach space
X and {Bn} a sequence in [0,1] with 0 <liminf,, . By, <limsup, . fn < 1.
Suppose

Tn+1 = (]- - ﬁn)yn + Bnn,
for all integers n > 0 and limsup,, o (||[Yn+1 — Yn|| = [|Tn+1 — zn||) < 0. Then,
lim,, oo [|Yn — xn|| = 0.

Lemma 1.4. [9] Let v, be a sequence of nonnegative real numbers such that
apq1 < (1 - 'Yn)an + 6n7

where {y,} is a sequence in (0,1) and {0,} is a sequence such that
(1) E;.Lozl%l = 00,
(2) limsup,, % =0 or X2°,|0,| < oo.

Then lim,_, o a, = 0.

2. MAIN RESULTS

In this section, we study the stability of iterative approximation to a com-
mon element of the fixed points of a nonexpansive mapping and the set of
solutions of the variational inequalities for an inverse-strongly monotone map-
pings in Hilbert spaces. We assume that the following conditions hold:

(Py): Instead of ©, there is a sequence of convex closed sets 2, such that
the Hausdroff distance H(2,Q,) < o, where {0,,} is a sequence of positive
numbers with the properties (the function ((t) is defined below)

Ont1 < Op, o —0, LS:) — 0, as n — 0.

(P2): On each set y,, there is a nonexpansive self-mapping S, : Q,, — Q,
satisfying the condition: there exists the increasing positive for all ¢ > 0
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functions ¢(t) and ¢(t) such that g(0) > 0,{(0) =0 and if z € Q;,y € Q;, ||z —
yll <o, then

1Siz = Sjyll < g(max{[lz]l, [[y[})¢ (o).

Theorem 2.1. Let € be a closed convex subset of a real Hilbert space H and
let S be a nonexpansive mapping of Q into itself. The conditions (Py) — (P)
are fulfilled. Let T : H — H be an a-inverse-strongly monotone mapping

such that F(S)NVI(Q,T) # 0. Suppose xog = u € Q and {x,} is given by
Tptl = apu + ﬁnwn + ’YnSnJrlPQnJrl (-rn - )\nTxn);

where {an },{Bn},{m} are three sequences in [0,1], satisfying an, + Bn+vn = 1
and {\,} is a sequence in [0,2a]. If {an}, {Bn}, {1} and {\,} are chosen
so that

(1) A\ € [a,b],0 < a<b<2a,

(2) limy— o0 v, = 0,322, vy, = 00,

(3) 0 < liminf,, ﬁn <limsup,,_. Bn <1,

( ) hmn—>oo ntl — A ) =0,
then {x,} converges strongly to Pp(synv o r)U-

Proof. Put y, = Po,.,(xn — \yTxy,) and let 2* € F(S)NVI(Q,T).
Since I — A\, T is nonexpansive and z* = Po(x* — \,,Tx*), we have

lyn = 2| = | Py yy (tn — AnTxy) = Pala* — A Ta")|
< ||Pa, iy (@0 = MTan) — Po, (2" = A Ta")||
+ || P, (" — A\Tx™) — Po(z™ — A\, Tz
< lwn = AnTxp — (2" = NT2%)|| + Cy/on1
< lon = 27| + Cy/onit.

Now we estimate [[Sp4+1yn, — 2| own to H(Q,41,Q2) < op41, there exists
Un41 € Q41 such that ||v41 — 2| < Qpyq, thus

[Sn419n — 27| = [|Snt1yn — Sz
< Snt1yn = Snrvnsll + [[Snrvngr — 527
< lynvna ]l + glmax{[[on 1, [[27[[})¢(ont1)
< llyn — 2™l + v — 27| + g(max{{lvnga |, [|27]})C(om+41)
< llyn = 2™l + ons1 + g(max{|lvpia[[, [[27 1) (on41)-
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Then, we have

[@n41 — 27|
= [|anu 4 BnZn + YnSn+1yn — ||
< apllu — 2| + Bullzn — &% + [ Snt1yn — 27|
< apllu — 2| + Bullzn — =7
+n{llyn — 2" + ons1 + gmax{{jonsa |, [27([})C(ons1)}
< anllu — 27| + (1 = an)[Jan — 27|
+ M{CVons1 + ongr + g(max{|[vppa], [|27]|}) ¢ (ons1)}
< max{[ju — &[], [lzo — 2|}
A Ot + ot + glmaxd ol 27 1DC ()}
< llu— 2| + 3 Cy/anTT + oms1 + glmax{vmsall, ¥ [D¢(ons 1)}

Because 0, — 0, /o, — 0, {(0,) — 0 as n — oo, we know that {z,} is

bounded. Hence {y,}, {Sn+1yn},{Tx,} are also bounded.
On the other hand, we have

[Yn+1 = ynll

= HPQn+2 (Znt1 — A1 TTny1) — PQnH(xn — ATz

< | Poyyo (Tnt1 — Ang1Txng1) — Po, o (Tn — ATxy)||
+ |1 Po, o (Zn — ATxy) — Po, (2 — AT'2y)||

2.1
< H-’En+1 — A1l wp 1 — (l‘n - )\nTCUn)H + 20\/ On+1 ( )
= Hxn+1 — 1Ty — (l‘n - )\n+1T1:n) + ()\n - >\n+1)Txn||

+ C\/O’n+1

S wpp1 — zoll + [Angr — Al | T + 2C /041
We estimate ||Sy+2Un+1 — Snt1Yn|| own to
H(Qpt1, Qny2) < H(Qny1, Q) + H(Qpg2, Q) < 20041,
there exists wp42 € Qpy2 and ||wpt2 — Y|l < 204,41, therefore
| Snt2yns1 — Sn+1yn”
= HSn—&-2yn+1 - Sn+2wn+2H + || Snrown o — Sn—i—lynH
< yn+1 — wnpoll + g(max{|[wn2l], [yl })C(20m+1) (2.2)

< ynt1 = Ynll + lwnr2 — ynll + g(max{||wni2ll, |ynll}) (200 41)
< NYns1 — ynll + 20011 + g(max{||wpi2 ||, |ynll})C (2004 1).
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Let p41 = (1 — Bn)zn + Bnxn. Then we obtain

Q1 1
Zn+l — Zn = (1 ng . Ju + 1 ’Yng 15n+2yn+1 “1-3 ’Ynﬂ Snt1Yn
- Mn+ - Mn+ - Mn
An+1 Tn+1
= (1 _ng T )U, + 1 _ng 1 (Sn+2yn+1 - Sn+1yn) (23)
n n
+ ( Tntl Tn )Sn+1ym

1_ﬁn+1_1_ﬁn

From (2.1)-(2.3), we obtain

241 = znll = [Zns1 — 2nll
< 2l 4 | Syt — Snaynl
~ 1= b 1 — Bnt1
— S _ _
+ |1 B 1 —ﬁnm n1¥nll = [[Zng1 — zn|
nt1 Yn+1 Yn
Sl llluf + — Spi1y
Yn+1
_ Hl‘n+1 - iL'nH + ’mHHynJﬂ - yn“ + 20,41
mn
+ g(max{|lwn2|; |ynll})C(200+1)}
An+1 Yn+1 Yn
T a5 - S
1 1
+ |1jn75+1||)\n+1 — Ml[|Tzn || + |1’_yn7;+1|{20m+ 20041
n n

+ g(max{{lwn o, [ynl})¢(20m+1)},
which implies that
limsup([|zn1 = 2nl| = |Znt1 = 2al)) <0.
n—oo
By Lemma 1.3, we obtain ||z, — z,|| — 0 as n — co. Consequently
lim ||zp41 — 2n|| = lim (1 — B,)]|zn — znl] = 0.
n—oo n—oo

From (2.1) we also have ||yn4+1 — yn| — 0 as n — oo.
Since Tpt1 — Tn = an(u — =) + Y (Snt1Yn — Tn)s [Snt1yn — x| — 0 as
n — o0.
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Put M = sup{||vnll, lwnll; llynll, |z*||}. Then, by Lemma 1.4, for a* €
F(S)NVI(Q,T), we obtain

|41 — 2"

= |lant + Bntn + YnSni1yn — ||

< agllu = 2*|* + Bullzn — 21 + vl Snt1ym — 277

< agllu =2 + Bullzn — 217 +y{llyn — 2 + onr1 + g(M)¢(0n11)}?

< anllu = 21* + Bollzn — 21° + ynllyn — 277 + 30 {2llyn — 2" lonsa

+oni1 + 2(lyn — 2%l + 0ns1)g(M)C(0n41) + 9(M)*C(on11)°}

< apllu— 37*H2 + BallTn — $*||2 +llen — AnTxy — (2% — AT2")||
=+ C\/Un+1)2

+ 1 {2lYyn = 27 llon1 + 2(lyn — 27| + ont1)g(M)C(on11)
+on+ g (M) (onr1)}

= apllu — m*HZ + Bullzn — x*||2 + ndn
+Yollzn — ATz — (2 — ATz ||?
< apllu— x*HQ + Bnlln — 1‘*”2 + ndn
+n{llzn — 2 + A(An = 20) | Tan — ™%}

< apl|u — x*H2 + ||z — x*H2 + Yndp, + ana(b —2a) || Tz, — Tx*Hz,

(2.4)
where
Tndn
= Y l2llyn — 2" o1 + oni1 +2(llyn — 2| + 0p1)g (M) (n11)
+g(M)*¢(0n+1)"} (2.5)
+ 2|y —

MTxy, — (25 — X\Tx")||Cy/ont1
+ C2O'n+1.

From (2.4) and (2.5), we have
— apa(b — 2a)||Tz, — Tx*|?
< nllu— &2 + Andn + 0 — 2 = onsr — 2°)
< apllu — 2*|]° + ndn + (|20 — 2| + [|2ns1 — z*))

X ([[en = zngal)-

Since ay, — 0, dy, — 0, ||z —Zp41]| — 0 asn — oo, we obtain || Tz, —Tz*|| — 0
as n — 00.
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On the other hand

lyn — 2|

< ||PQ71,+1 (Tn — AT'xn) — PQn+1(37* — )\nT$*)||2 + 020n+1
+2||Po,  (xn — AMTwy) — Pa,,, (" = \T2")||Cy/onst

< ((xp — AT zy) — (2" = NTx"),y, — Po, ., (x" — N\, Tx"))
+2||Pa, i (xn — MTxy) — Po,., (" = \T2%)||C /ot
+ C%0piq

<Axp — \Txp — (¥ = N Tx¥), yp — ™)
+|zn — ATz — (2% = M\ T2")|ops1 + C%0ni
+2|| P, (2 — A\Txy) — Pa,,, (2" — X\T2%)||Cy/onit

(2.6)
= (zp — NTxn — (25 = NT2%),yp — ) + €
1 * * 1 *
< §H$n —MTzy — (2% = AT )||2 + §||yn -z ||2
1
— —|lzn — ATz — (2% — NT2™) — yp, — x*H2 +ep,
2
1 1 1
< inn - 1:*”2 + iHyn - x*Hz - 5”3371 —Yn — M(Txy — Tx*)HZ +en
1 1 1
= gllzn — z*||* + Sy — a*||* — g llen = ynll?
1
+ Mz, — yn, Ty, — Tx™) — iA%“Tmn — Ta:*H2 + en,
where
en = 2||Pq, ., (0 — AMTx,) — Po, ., (2" — X\Tx")||Cy/oni
+ |z — ATy — (2" — A\Tx™) |41 (2.7)
+ C2O'n+1
Therefore ) ) )
lyn — 2*(|° < [lzn — 2|7 + |lzn — Yl
+ 20 (xp, — yp, Ty, — Tx™) (2.8)

— A2 || Tz, — Tx*||* + 2e,,.
From (2.6)-(2.8), we obtain

[Zn+1 —x*Hz
< anllu—2** + Ballzn — 2** + Ynllyn — 27|12

+ 'Yn{QHyn - x*Han—H + 0721+1 + Q(H?Jn - x*H + Un+1)g(M)C(Un+l)
+ g (M) (oni1)}
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< agllu =2 + Bullzn — &P + vallen — 21 = Wz — yal?
+ 29 A (@ — Yy Ty — T2*) — 1 N2 || Ty, — T2 || + men
+ 90 {2llyn — 2" lons1 + opin + 2(llyn — 2| + 0ns1)g(M)¢(on11)

+9* (MG (one1)} 29
< anllu — ¥ + lzn — 2*|* = nllzn — yal
+ 2y \nllzn — ynlll T2 — Tx™|| + Ay
Put
hn = 1 {2[lyn — 2" [|ont1 + 0721-5-1 +2(lyn — 2% + ont1)g(M)((on+1) (2.10)
+g(M)*¢(0041)*} + Fnen. '
From (2.9) and (2.10), we also have
Yalltn = ynll® < anllu —2*| + [l — 2*(° — [Jznrs — 2"
+ 2 Anl|n — yn || Tzn — Tx*|| + hn
< apllu— x*HZ + 2 Anl|zn — yn ||| T2 — T2™[| + by
+ ([n — 2™ + [[enr — 27D ([[2n — 27| = [lon1 — 27]).

Since ay, — 0, ||zp, — 2pt1l| — O, ||[Tzp — T2*|| — 0, by, — 0 as n — oo,
therefore ||z, — yn|| — 0 as n — co.
On the other hand, since

HSn+lyn - yn” < NSntryn — anll + Hxn o y””’
we obtain [|Sy11yn — Yul| — 0 as n — oo. Let 20 = Pp(g)nviQ,r)U-
Next we show that
lim sup,, _, o (v — 20, 2, — 20) < 0.

To show this, we choose a subsequence {yy, } of {y,}, such that

lim SUPp 00 <’LL — 20, Sn41Yn — ZO> = limy, 0 <u — 20, Sni+1yni - ZO>-

As {yn,} is bounded, we have that a subsequence {ym]} of {yn,} converges
weakly to z. We may assume without loss of generality that y,, — 2. Since

|Sn+1Yn — Ynll — 0, we obtain Sy, +1yn, — 2z as @ — oco. Then we can obtain
z € F(S)NVI(Q,T). In fact, let us first show that z € VI(Q,T). Let

Tn+ Nan,n € Q,
An =
g {dn n ¢ Q.
and
Tn+ Na,n,n € Qy,
Apn = n
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Let (n,€&) € G(A). Since £ —Tn € Nqn, we have (n—u,&—Tn) > 0,YVu € Q.
For {y,} € Q,41, there exists {y},} € Q, such that ||y, — .|| < ont1, then

M=Yn, & =Tn) = —yp, & =Tn) + (W, — Yn, & —T)
and
N =Yn:&) = 0= Yn, § = T0) + (Y, — Yn:, € = T) + (1 — yn, T)
> (10— Yn, T) + (Y, — Yn, § — T).
On the other hand, by the properties of Py, for all u € Q0,41

<33n = MTTn — Yn,u — yn> > 0.

For n € Q, there exists ), € Qp41, such that ||n), — n|| < opt1. So we have
<xn — Tz — ym% - yn> <0,

and

(M, — Y, 225752 + Ta) <0
Thus
(N = Ynis &) = (= Yp,, € = T0) + (Yn, = Yni»& = T0) + (0 = Yn;, T)
> (N = Ynis TN) + (Yp, = Ynin € = T)
Yn;, — Tn,

A

7

+Tay,)

Yn; — Tny
)\ni nz>
ym - :Eni

ng

- <77 — Mn;»

.

(3

= <77 - ynHTT] - Txni> - <77 — Mn» (2.11)

ym - 'T’ni
An;
=N = Yni» TN — TYn;) + 0 = Yni» Tyn; — Tn;)
Yni = Tng 0 Yng T Ty
(N — My . ) = (M, — I w—
+ (Y, = Yni & — T)

2 <77 - yn,-aTyni - T$nz> - <77 - nniu

— (1, —

+ Txy,)

M>
An;
— Ty,

M+T$ni>+<y;“ — Yni & = Tn).

An,;

7
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By (2.11), we know that (n — z,§) > 0 as ¢ — oo. Since A is maximal
monotone, we have z € A~!0, therefore z € VI(Q,T). Let us show that
z € F(S). Suppose z ¢ F(S), from Opial’s condition,
liminf [|lyn, — 2| <liminf [[y,, — Sz||
1—00 1—00
< liminf |lyn, — Sp,+1Yn, || + liminf |[Sp, 1195, — 52|
1—00 1—00
< hlrggjlf Hsni+1ym - Sni+1vn¢+1|| + hgg}f ”Snﬂrlvm+1 - SZH
< liminf |y, — v 4]l +lim inf g (M) (o+1)
1—00 1—00
< liminf [|yn, — 2] + liminf [jon, 11 — 2||
1—00 71— 00
= lim inf ||y, — z]|.
1—00
This is a contradiction. Thus we obtain z € F(S). Then we have
lim sup(u — 20, zn, — 20) = limsup(u — 2o, Sp+1Yn — 20)

n—oo n—o0o

= nlgx;Q(u — 205 Sni+1Yn; — 20) (2.12)

= (u— 20,2 — 20)
<0.

Therefore

||-75n+1 - 20”2 = <anu + ﬁnxn + 'YnSnJrlyn — 20, Tn+l1 — Z(])
= an (U — 20, Tnt1 — 20) + BnlTn — 20, Tnt1 — 20)

+ Y (Sn+1Yn — 20, Tnt1 — 20)

< nft = 20,211 = 20) + 5 nln = 20l + 7t = 2]

+ 59n(ISur1n = 20l + i1 — 20/

< an = 20,41~ 20) + 300 (lon — 20l + [[2ms1 = 201)
+ g lISns v — SYyI12 + 2019 — S04 11y}, — SZo]
+ 18, = S0l + s — 20/}

< a0 = 20, 41— 20) + 360 (on = 20l + [[2ms1 = 201)
+ Sl (M) (i) + 202, — 20lC (o)

+ [lyr, — 20l* + llzns1 — 2o0l*}
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1
< an<u — 20, Tn+1 — Z0> + ilgn(n-rn - Z(]”2 + Hxn+1 - ZO||2)

1
+ 5 m{lyn = 20l* + 20187, = z0llons1 + ony + (M) (on11)

+ 2g(M) ||y, — 20lI¢(Fns1) + |Tni1 — 20l
9D, — 201G + enss — 20l o)

1
< an (= 20, 2n41 = 20) + 5Ba(llzn = 20/* + zns1 = 20[°)

1
+ 5 Yndllzn — 20| + |zns1 — 20l1* + 2llwn — 20llons1 + 20744
+2]lyn — 20llont1 + 29(M)]|y;, — 20llont1 + g° (M) (ons1) }-
Simplify (2.13) we obtain

[Znt1 — 20]1* = (1 — o) l|lzn — 20[|* + 200 (u — 20, Tny1 — 20)
+ Y 12[|2n — 20l|ons1 + 2]|yn — 20llons1 + 20721+1
+29(M)|lyy, = 2olloni1 + g2 (M) (on41)}-

From (2.12), we know that limsup,, (v — zo,Tn+1 — 20) < 0, and by
introduction we obtain

limsup 2 {2z — z0llor + 2] — 2]

n—oo n

+2075 11+ 29(M)|lyp, — zollonsa + g% (M) (0n41)} = 0.

By Lemma 1.4, we have ||z,11 — 20/] — 0 as n — oo. This completes the
proof. O

Corollary 2.2. Let Q be a closed convexr subset of a real Hilbert space H,
and let T : H — H be an a-inverse-strongly monotone mapping such that
FS)NVI(Q,T) # 0. The condition (Py) of this section is filled. Suppose
xo =u € Q and {x,} is given by

Tyl = apt + Bpay + ’VHPQnJrl( - A Tl’n)

where {an},{Bn}, {1} are three sequences in [0,1] satisfying om + Bn +vn =1
and {\,} is a sequence in [0,2a]. If {an}, {Bn}, {1} and {\,} are chosen
so that

(1) A\p € ]a,0],0 < a <b<2a,

(2) limy— o0 a4y, = 0,32° a0y, = 00,

(3) 0 < liminf, o B, <limsup,_,., Bn <1,
(4) limy— oo (Ang1 — An) =0,
then {x,} converges strongly to Py r)u.
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