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MAPPINGS WITH UNCOUNTABLY MANY

TOPOLOGICALLY CRITICAL POINTS AND

APPLICATIONS TO SOME CURVATURE PROBLEMS

Dorin Andrica and Cornel Pintea

Dedicated to the Memory of Professor Grigorios F. Tsagas in admiration

Abstract. In this paper we improve the results of [9, 10] showing that, under
certain topological conditions, the topological ϕ-category of a pair (M, N) of
topological manifolds is infinite uncountable. The improved result is then
applied to improve the results of [4], showing that various Ltop categories are
infinite uncountable.

1. Introduction

Let M, N be topological manifolds such that dim M = dim N and let
f : M → N be a continuous mapping. We call a point p ∈ M to be a topo-
logical regular point of f if f is a local homeomorphism at p. Otherwise p is a
topological critical point of f . Denote by Rtop(f) and Ctop(f) the set of topo-
logical regular points and the set of topological critical points respectively and
observe that Rtop(f) is open while Ctop(f) is closed. Another important asso-
ciated set of f is the set of its topological critical values Btop(f) = f

(
Ctop(f)

)
.

When M, N are differentiable manifolds and f : M → N is a differentiable
mapping, the similar notions of regular and critical points of f are usually
given in terms of the rank of the tangent mapping, the sets R(f) and C(f) of
regular and critical points have the same properties above mentioned.
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Examples 1.1. 1. If f : R→ R, f(x) = x3, then Ctop(f) = ∅ ⊂ {0} = C(f);
2. If f : S2 → R2, f(x, y, z) = (x, y), then it can be easily checked that
Ctop(f) = C(f) = {(x, y, z) ∈ S2 | z = 0}.

While the classical Sard’s theorem for differentiable mappings ensures us
that the set of critical values is of zero measure in N , so it is a small set for
any differential mapping, we have been concerned, in some previous papers
[3, 4, 8, 9, 10], with showing that, under certain topological conditions on the
given manifolds M and N , the critical set cannot be arbitrarily small with
respect to cardinality, it actually having uncountably many critical points for
any mapping acting between such manifolds. In the present paper we are
improving first the previous results of [9] and [10], showing that they are still
valid at the topological level, and then apply the improved results to show
that various Ltop categories are infinite uncountable.

Related to the critical set we define, for a pair (M, N) of differentiable
manifolds, the so called ϕ-category as

ϕ(M, N) = min{#C(f) | f ∈ C∞(M, N)}.

In a completely analogous way, for a pair (M,N) of topological manifolds,
define the so called topological ϕ-category as

ϕtop(M, N) = min{#Ctop(f) | f ∈ C(M, N)}

and observe that for any two differentiable manifolds M, N having the same
dimension the following inequality holds

ϕtop(M, N) ≤ ϕ(M, N).

A survey on these categories is given in the paper [2] and some other details
in the book [1]. Related to the ϕ-category of a pair of differentiable manifolds
having the same dimension, we have:

Theorem 1.2. ([9]) Let M, N be compact connected differentiable manifolds
having the same dimension m. The following statements are true:

(i) If m ≥ 3 and π1(M) cannot be embedded as a subgroup in π1(N), then
ϕ(M, N) = ℵ1;

(ii) If m ≥ 4 and πq(M) 6' πq(N) for some q ∈ {2, . . . ,m − 2}, then
ϕ(M, N) = ℵ1.



Topological critical points 693

2. Basic Results

Theorem 2.1. ([11]) Let M be an m-dimensional topological manifold and let
A be a closed, at most countable subset of M. If P is a compact differentiable
k-dimensional manifold (k < m, ∂P 6= ∅) and if f : P → M is a continuous
mapping such that f(∂P ) ⊆ M\A, then there exists a continuous mapping
g : P → M such that g(P ) ⊆ M\A, g

∣∣∣
∂P

= f
∣∣∣
∂P

and f ' g(rel∂P ).

Corollary 2.2. If Mm is a connected topological manifold (∂M = ∅) and if
A ⊆ M is a closed at most countable subset of M, then M\A is also connected
and πq(M, M\A) ' 0 for all q ∈ {1, . . . , m − 1}. In particular, using the
Hurewicz’s theorem, we get that the natural group homomorphism

χm−1 : πm−1(M, M\A) → Hm−1(M, M\A)

is an isomorphism. On the other hand the inclusion i
M\A

: M\A ↪→ M is
(m− 1)-connected, that is the induced group homomorrphism

πq(iM\N
) : πq(M\N) ↪→ πq(M)

is an isomorphism for q ≤ m− 2 and it is an epimorphism for q = m− 1.

Proof. The connectedness of M\A follows easily from Theorem 2.1 by con-
sidering the particular case P = [0, 1]. The fact that πq(M, M\A) = 0 for all
q ∈ {1, 2, . . . , m− 1} is an immediate consequence of Theorem 2.1 and of the
fact that [α] ∈ πq(M, M\A) is zero if and only if there exists β ∈ [α] such
that β(Dq) ⊆ M\A. Further on, using the exact homotopy sequence

· · · → πr+1(M, M\A) → πr(M\A)
πr(i

M\A
)

−→ πr(M) → πr(M, M\A) → · · · ,

and the relations πq(M, M\A) = 0 for all q ∈ {1, 2, . . . , m−1}, it follows that
the inclusion i

M\A
: M\A ↪→ M is (m− 1)-connected. ¤

3. The topological version of the theorem 1.2

In this section we are going to give the arguments in proving the topological
version of Theorem 1.2.

Theorem 3.1. Let M,N be compact connected topological manifolds having
the same dimension m ≥ 2. If the continuous mapping f : M → N is
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surjective and its topological critical set is at most countable, then the set
f−1(Btop(f)) is at most countable and its restriction

M\f−1(Btop(f))
g→N\Btop(f), p 7→ f(p)

is a covering mapping with finitely many sheets.

Proof. The fact that the restriction g is a finitely sheeted covering mapping
follows, for instance, from [6, Theorem 4.22,pp 29], taking into account that
g is a proper local homeomorphism.

It remains only to prove that f−1(f(Btop(f)) is at most countable. Obvi-
ously Btop(f) = f(Ctop(f) is at most countable and for any q ∈ N the set
f−1(q) = (f−1(q)∩Ctop(f))∪ (f−1(q)∩Rtop(f)) is at most countable because
both f−1(q) ∩ Ctop(f) and f−1(q) ∩ Rtop(f) have this property too, being
discrete. In particular the closed set f−1(f(Btop(f)) =

⋃

q∈Btop(f)

f−1(q) is also

at most countable, as an at most countable union of at most countable sets.
¤
Corollary 3.2. Let M, N be connected topological manifolds such that dim M
≥ dimN ≥ 2. If f : M → N is a non-surjective closed continuous mapping,
then either Ctop(f) = M , or f has an infinite uncountable number of topo-
logical critical values. Therefore, in any case, f has an infinite uncountable
number of topological critical points. If M is compact and N is noncompact,
then one particularly gets that ϕtop(M,N) = ℵ1.

The proof of Corollary 3.2 uses Theorem 2.1 and it is completely similar
with that of [10, Theorem 1.1] (see also [8, Theorem 2.1]).

Proposition 3.3. Let M be an m-dimensional topological manifold (m ≥ 2
and ∂M = ∅) and let A be a closed, at most countable subset of M. If M is
connected, then M\A is also connected and the inclusion i : M\A ↪→ M is (m-
1)-connected, that is the homomorphism πq(i) : πq(M\A) → πq(M), induced
by the inclusion, is an isomorphism for q ≤ m − 2 and it is an epimorphism
for q = m− 1.

The proof of Proposition 3.3 uses Theorem 2.1 and it is completely similar
with that of [10, Proposition 2.3].

Theorem 3.4. Let M, N be compact connected topological manifolds having
the same dimension m. The following statements are true:

(i) If m ≥ 3 and π1(M) cannot be embedded as a subgroup in π1(N), then
ϕtop(M, N) = ℵ1;
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(ii) If m ≥ 4 and πq(M) 6' πq(N) for some q ∈ {2, . . . ,m − 2}, then
ϕtop(M, N) = ℵ1.

Proof. We have to show that any continuous mapping f : M → N has an
infinite uncountable number of topological critical points. If f is not surjective,
this follows easily by Corollary 3.2. Assume that f : M → N is surjective and
that f has at most a countable number of topological critical points. Hence,
by Theorem 3.1 the restriction g = f |M\f−1(Btop(f)) : M\f−1(Btop(f)) →
N\Btop(f) is a covering map. It follows that

g1 : π1(M\f−1(Btop(f))) → π1(N\Btop(f))

is a monomorphism and

gq : πq(M\f−1(Btop(f))) → πq(N\Btop(f))

are isomorphisms for all q ≥ 2. On the other hand, by Theorem 3.1 and
Proposition 3.3 it follows that the homomorphisms

iq : πq(M\f−1(Btop(f))) → πq(M) and jq : πq(N\Btop(f)) → πq(N)

induced by the inclusions

i : M\f−1(Btop(f)) → M and j : N\Btop(f) → N

are isomorphisms for all q ∈ {0, 1, . . . , m−2}. From the commutative diagram

M\f−1(Btop(f))
g−−−−→ N\Btop(f)

i

y
yj

M
f−−−−→ N

we get the following commutative diagrams

πq(M\f−1(Btop(f)))
gq−−−−→ πq(N\Btop(f))

iq

y
yjq

πq(M)
fq−−−−→ πq(N)

(i) In the case when q = 1, because f1 ◦ i1 = j1 ◦g1, i1, j1 are isomorphisms
and g1 is a monomorphism, it follows that f1 = j1◦g1◦i−1

1 is a monomorphism,
that is a contradiction with the hypothesis of the statement (i).

(ii) For q ∈ {2, . . . ,m−2}, iq, jq, gq are isomorphisms which together with
fq ◦ iq = jq ◦gq leads to the conclusion that fq = jq ◦gq ◦ i−1

q are isomorphisms
for all q ∈ {2, . . . ,m − 2}, that is a contradiction with the hypothesis of the
statement (ii). ¤
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Corollary 3.5. (i) If M and N are compact topological manifolds having the
same dimension m ≥ 3 and #

(
π1(M)

)
> #

(
π1(N)

)
, then ϕtop(M, N) = ℵ1.

Therefore, one particularly gets ϕtop(Tm, Sm) = ℵ1 and that

ϕtop(Pn(R)× P k(R), Pn+k(R)) = ℵ1

where n, k are two natural numbers such that n + k ≥ 3 and P s(R) is the real
s-dimensional projective space.

(ii) Under the same conditions on the manifolds M, N as above, if π1(M)
and π1(N) are finite groups such that

(
#

(
π1(M)

)
, #

(
π1(N)

))
= 1,

then ϕtop(M,N) = ℵ1.
(iii) If m, k are two natural numbers such that n, k ≥ 2, then

ϕtop(Tn+k, Tn × Sk) = ℵ1, ϕtop(Tn × Sk, Tn+k) = ℵ1,

ϕtop(Sn+k, Sn × Sk) = ℵ1, ϕtop(Sn × Sk, Sn+k) = ℵ1,

where T p denotes the p dimensional torus S1 × · · · × S1

︸ ︷︷ ︸
p times

.

4. The G and L categories of a manifold
and some geometric applications

For a differentiable m-dimensional manifold we denote by k(M) the small-
est natural number such that M is immersible in Rm+k(M). By means of
Whitney’s theorem, observe that k(M) ≤ m + 1 and if Mm is a compact
manifold, then k(M) ≤ m− 1.

Let Mm be an orientable manifold immersible in Rm+1, f : M → Rm+1 be
an immersion and Nf : M → Sm its associated Gauss mapping. Because the
Gauss-Kronecker curvature is defined as Kf (p) = det(dNf )p it follows that
Kf (p) = 0 iff p ∈ C(Nf ), that is

C(Nf ) = {p ∈ M |Kf (p) = 0}.

Therefore we can define the G− category of M as

G(M) = min{#C(Nf )|f ∈ Imm(M,Rm+1)},



Topological critical points 697

where Imm(M,Rm+1) is the set of all immersions of M into Rm+1.
In a completely analogous way we define the topological G-category of M

as
Gtop(M) = min{#Ctop(Nf ) | f ∈ Imm(M,Rm+1)},

and observe that

ϕtop(M, Sm) ≤ min{Gtop(M), ϕ(M,Sm)}
≤ max{Gtop(M), ϕ(M,Sm)} ≤ G(M).

(1)

Remark 4.1. Let us consider the regular surface (S) z = x4 + y4. We will
give the arguments for the equalities

C(N) = {(x, 0, x4) |x ∈ R} ∪ {(0, y, y4) | y ∈ R}, Ctop(N) = ∅ (2)

where N = Ni : S → S2 is the usual Gauss mapping and i : S ↪→ R3 is the
inclusion.

Indeed, one can easily check, using the equality K(x, y, z) = det(dN)(x,y,z)

and a well known formula for K(x, y, z), that

det(dN)(x,y,z) = K(x, y, z) =
144x2y2

(
16(x6 + y6) + 1

)2 , (x, y, z) ∈ S.

Because C(N) = {(x, y, z) ∈ S | det(dN)(x,y,z) = 0}, the first equality of (2)
follows immediately.

On the other hand, the formula of N : S → S2 is given by

N(x, y, z) =
1√

16(x6 + y6) + 1
(−4x3,−4y3, 1),

meaning that the image of N is contained in the north hemisphere U of
S2. Therefore a local representation of N is α = π ◦ N ◦ r : R2 → R2,
where r : R2 → S, r(u, v) = (u, v, u4 + v4) and π : U → R2, π(x, y, z) =
(x, y). The formula of α is α(u, v) = 1√

16(u6+v6)+1
(−4u3,−4v3) and it gives

a homeomorphism between R2 and its image

B(0, 1) = {(x, y) ∈ R2 |x2 + y2 < 1},
the inverse being β : B(0, 1) → R2,

β(x, y) =
(
−

[ x

4
√

1− x2 − y2

]1/3

,−
[ y

4
√

1− x2 − y2

]1/3)
.



698 Dorin Andrica and Cornel Pintea

Consequently the equality Ctop(N) = ∅ holds.
Let us also mention that the case of the P 2(R)-valued Gauss maps of a

given surface immersed in all possible ways in the Minkowski 3-space and
their singular (parabolic) sets has been treated in [7].

According to Theorem 3.4 and the inequalities of (1) we obtain:

Proposition 4.2. If M is an m dimensional orientable manifold immersible
in Rm+1, then we have:

(i) If m ≥ 3 and M is not simply connected, then G(M) = Gtop(M) = ℵ1;
(ii) If m ≥ 4 and πq(M) is not trivial for some q ∈ {2, . . . ,m − 2}, then

G(M) = Gtop(M) = ℵ1.

Corollary 4.3. If k, n1, . . . , nk are natural numbers such that k ≥ 2 and
n1 + · · ·+nk ≥ 3, then Sn1 ×· · ·×Snk is obviously orientable and immersible
in Rn1+···+nk+1 and

G(Sn1 × · · · × Snk) = Gtop(Sn1 × · · · × Snk) = ℵ1.

Therefore any immersion

f : Sn1 × · · · × Snk → Rn1+···+nk+1

has uncountably many points of zero Gauss-Kronecker curvature.

The Corollary 4.3 follows immediately from Proposition 4.2, taking into
account the fact that the product Sn1 × · · · × Snk is orientable and some of
its homotopy groups of are not trivial (see [9, Corollary 4.2]).

Let us also mention that the inequality ϕtop(Mg, S
2) ≥ 3 can be proved

in a completely analogous way like the same inequality at differentiable level,
the last one being done in [9, Theorem 4.3].

The above mentioned G-categories can be extended to the so called Lk-
categories considering immersions of arbitrary high codimension instead of
immersions of codimension one and replacing the Gauss-Kronecker curvature
with the Lipschitz-Killing curvature of such an immersion.

Let Mm be a differentiable manifold immersible in Rm+k, Immk(M) be
the set of all immersions of M into Rm+k, f ∈ Immk(M) be an immersion
and v ∈ (df)p(Tp(M))⊥ ∩ Sm+k−1, where p ∈ M is a given point. Consider
the second fundamental form φv

f,p of f and the projections Nf : N f,1 →
Sm+k−1, π : N f,1 → M , where

N f,1 = {(x, v) ∈ M × Sm+k−1 : v ⊥ (df)p(Tp(M))}

=
⋃

p∈M

(
{p} × (

Sm+k−1 ∩ (df)p(Tp(M))⊥
))

.
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Observe that π is a fibration with fibre Sk−1. Recall that the Lipschitz-
Killing curvature of f at the point p ∈ M in the direction v is defined as
Lf,v = det(φv

f,p)

det(gf (p)) . It is clear that φv0
f,p0

is degenerated if and only if (p0, v0) is
a critical point of Nf . Therefore

C(Nf ) = {(p, v) ∈ N f,1 : Lf,v(p) = 0},

that is the ϕ-category of the pair (N f,1, Sm+k−1) is a lower bound for the
minimum number of points of zeros of the Lipschitz-Killing curvature with
respect to all immersions of M in Rm+k. This fact can be shortly written as

Lk(M) ≥ ϕ(N f,1, Sm+k−1),

where Lk(M) = min{#C(Nf ) : f ∈ Immk(M)} is the so called Lk-category
or the immersiability category of M which was defined and studied in [4].

In a completely similar way one can define the topological Lk-category of
M as Lk

top(M) = min{#Ctop(Nf ) : f ∈ Immk(M)}, and the inequality
Lk(M) ≥ Lk

top(M) is obvious. Taking into account that in this paper we
argued all the preparatory results at topological level, it is also obvious that
all the valid results for Lk category, at differential level, remains valid for Lk

top

category, at topological level.

Theorem 4.4. Let Mm be a connected closed differentiable manifold.
(i) If m ≥ 1 and π1(M) is not trivial, then Lk(M) = Lk

top(M) = ℵ1 for all
k ≥ max{3, k(M)};

(ii) If m ≥ 2 and πq(M) is not trivial for some for some q ∈ {2, . . . , k−1},
then Lk(M) = Lk

top(M) = ℵ1 for all k ≥ max{3, k(M)}.
Theorem 4.5. Let Mm be a connected closed differentiable manifold im-
mersible in Rm+2.

(i) If m ≥ 2 and π1(M) is not trivial, then L2(M) = L2
top(M) = ℵ1;

(ii) If m ≥ 3 and π2(M) 6' Z, then L2(M) = L2
top(M) = ℵ1;

(iii) If m ≥ 4 and πq(M) is not trivial for some q ∈ {3, . . . , m − 1}, then
L2(M) = L2

top(M) = ℵ1.

Examples 4.6. (i) If m ≥ 1, then Lk(Pm(R)) = Lk
top(Pm(R)) = ℵ1, for all

k ≥ max{3, k(Pm(R))};
(ii) If m ≥ 1, then Lk(L2m−1(q1, . . . , qp)) = Lk

top(L
2m−1(q1, . . . , qp)) = ℵ1,

for all k ≥ max{3, k(L2m−1(q1, . . . , qp))};
(iii) For m ≥ 2 we have that Lk(SOm) = Lk

top(SOm) = ℵ1, for all k ≥
max{3, k(SOm)}.
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(iv) Lk(Gp,l) = Lk
top(Gp,l) = ℵ1, for all k ≥ max{3, k(Gp,l)};

(v) If m ≥ 3, then Lk(Spinm) = Lk
top(Spinm) = ℵ1, for all

k ≥ max{4, k(Spinm)}.
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