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THE SPECTRAL GEOMETRY OF THE RIEMANN

CURVATURE OPERATOR IN THE

HIGHER SIGNATURE SETTING

C. Dunn, P. Gilkey, R. Ivanova, and S. Nikčević

Dedicated to the Memory of Professor Grigorios F Tsagas in admiration

Abstract. We study the spectral geometry of the Riemann curvature tensor
for pseudo-Riemannian manifolds and provide some examples illustrating the
phenomena which can arise in the higher signature setting.

1. Introduction

Many authors have studied the spectral geometry of the Laplacian for a
compact Riemannian manifold; see, for example, Tsagas [36, 37] for additional
references. Let ∆q := (dδ + δd)q be the q form valued Laplacian. Tsagas [38]
showed that if (M, g) is an m dimensional closed Riemannian manifold, then
there exists q = q(m) so that (M, g) has the same q spectrum as that of
a round sphere Sm if and only if (M, g) is in fact isometric to Sm. Thus
round spheres are characterized by their q spectrum; there are many other
results relating the spectrum of the Laplacian to the underlying geometry of
the manifold.

In this brief note, we shall discuss the spectral geometry of the Riemann cur-
vature tensor. Let ∇ be the Levi-Civita connection of a pseudo-Riemannian
manifold (M, g) of signature (p, q) and dimension m := p + q. The associated
curvature operator and curvature tensor are defined by setting:

R(x, y) := ∇x∇y −∇y∇x −∇[x,y], and

R(x, y, z, w) := g(R(x, y)z, w) .
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Instead of examining the L2 spectrum of the Laplacian, one assumes that a
natural operator which is associated to R has constant Jordan normal form on
the associated domain of definition and then studies the attendant geometric
consequences. Such questions were first raised in the seminal works of Ivanova-
Stanilov [25] and Osserman [31] and are a natural analogue of the questions
studied for the Laplacian. In the Riemannian setting (p = 0), the operators
in question are self-adjoint or skew-adjoint and the spectrum determines the
conjugacy class of the operator. However if the metric is indefinite, then this
is no longer the case, so one works with the Jordan normal form rather than
with the eigenvalues.

Here is a brief outline to this paper. In Section 2, we present the basic
definitions and give a short survey of the current state of the field. Certain
questions are essentially settled for Riemannian manifolds or for Lorentzian
manifolds (p = 1). However, relatively little is known in the higher signature
setting. In Section 3 we shall exhibit some examples to illustrate phenomena
which arise for manifolds of higher signature. We conclude the paper with a
rather lengthy bibliography to serve as a partial introduction to the field.

2. Natural operators defined by the Riemann curvature tensor

2.1. The Jacobi operator J . Set

J(x) : y → R(y, x)x ; (2.a)

this self-adjoint operator plays an important role in the study of geodesic
sprays. One says (M, g) is spacelike (resp. timelike) Jordan Osserman if the
Jordan normal form of J is constant on the bundle of unit spacelike (resp.
timelike) tangent vectors in TM .

In the Riemannian setting (p = 0), the Jordan normal form is determined
by the eigenvalue structure and, as every vector is spacelike, we shall drop
the qualifiers ‘spacelike’ and ‘Jordan’. This is not true in the higher signature
context which is why we focus on the Jordan normal form, i.e. the conjugacy
class, instead of only on the eigenvalue structure.

One has the following results due to Chi [9] and to Nikolayevsky [28, 29] in
the Riemannian setting and to N. Blažić et. al. [2] and to Garćıa–Ŕıo et. al.
[11] in the Lorentzian setting; the classification is essentially complete here:

Theorem 2.1.
(1) Let (M, g) be an Osserman Riemannian manifold of dimension m 6=

8, 16. Then either (M, g) is locally isometric to a rank 1 symmetric
space or (M, g) is flat.
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(2) Let (M, g) be a spacelike or timelike Jordan Osserman Lorentzian
manifold. Then (M, g) has constant sectional curvature.

We refer to [12] for further details; it contains an excellent discussion of the
spectral geometry of the Jacobi operator.

2.2. The higher order Jacobi operator. Let S(π) be the sphere of unit
spacelike (resp. timelike) vectors in a spacelike (resp. timelike) k dimensional
subspace π of TM . Let

J(π) :=
1

vol{S(π)}
∫

x∈S(π)

J(x)dx

be the average Jacobi operator. If {e1, ..., ek} is an orthonormal basis for
π, then modulo a suitable normalizing constant which plays no role in our
development,

J(π) =
∑

i J(ei) .

These operators were first defined by Stanilov and Videv [34] in the Rie-
mannian context. One says that (M, g) is spacelike (resp. timelike) Jordan
k-Osserman if the Jordan normal form of J is constant on the Grassman-
nian of spacelike (resp. timelike) k planes of TM , where 2 ≤ k ≤ q (resp.
2 ≤ k ≤ p). One has the following classification result in the Riemannian [15]
and Lorentzian [22] settings:

Theorem 2.2. Let (M, g) be a spacelike Jordan k-Osserman pseudo-Rieman-
nian manifold of signature (p, q).

(1) If p = 0 and if 2 ≤ k ≤ m − 2, then (M, g) has constant sectional
curvature.

(2) If p = 0 and if k = m− 1, then either (M, g) is locally isometric to a
rank 1 symmetric space or (M, g) is flat.

(3) If p = 1 and if 2 ≤ k ≤ m − 1, then (M, g) has constant sectional
curvature.

2.3. The skew-symmetric curvature operator R. Let {e1, e2} be an
orthonormal basis for an oriented spacelike or timelike 2 plane π. One defines

R(π) := R(e1, e2); (2.b)

this skew-symmetric operator is independent of the particular orthonormal
basis which was chosen for π. It is, however, sensitive to the orientation of π;
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if −π denotes π with the opposite orientation, then R(−π) = −R(π). The
manifold (M, g) is said to be spacelike (resp. timelike) Jordan Ivanov-Petrova
if for every P ∈ M , the Jordan normal form of R is constant on the spacelike
(resp. timelike) 2 planes in TP M ; in contrast to the Jacobi operator, the
Jordan normal form is allowed to vary with the point in question.

In addition to manifolds of constant sectional curvature, there are warped
product metrics which are both spacelike and timelike Jordon Ivanov-Petrova.
Let M := I ×N , where I is an open sub-interval of R and where (N, gN ) is a
pseudo-Riemannian manifold with constant sectional curvature κ. Let

gM := εdt2 + {εκt2 + At + B}gN for ε = ±1 . (2.c)

The sub-interval I is chosen so that the warping function εκt2 + At + B 6= 0
(this ensures the metric is non-degenerate) and so that A2 − 4εκB 6= 0 (this
ensures the metric is not flat). The manifold (M, gM ) is then both spacelike
and timelike Jordan Ivanov-Petrova [14].

The classification of such manifolds is essentially complete in the Riemann-
ian setting [16, 20, 24] and in the Lorentzian setting [23, 41]; there are some
partial results due to Stavrov [35] if p ≥ 2:

Theorem 2.3. Let (M, g) be a pseudo-Riemannian manifold of signature
(p, q) which is spacelike Jordan Ivanov-Petrova.

(1) If p = 0, if m ≥ 4, and if m 6= 7, then either (M, g) has constant
sectional curvature or (M, g) is locally isometric to a manifold as in
Equation (2.c).

(2) If q ≥ 11 and if {q, q + 1} does not contain a power of 2, then either
(M, g) has constant sectional curvature or (M, g) is locally isometric
to a manifold as in Equation (2.c).

(3) If q ≥ 11, if 1 ≤ p ≤ (q − 6)/4, if the set {q, q + 1, ..., q + p} does not
contain a power of 2, and if R(π) is not nilpotent for some 2 plane π,
then either (M, g) has constant sectional curvature or (M, g) is locally
isometric to a manifold as in Equation (2.c).

Assertion (3) can be used to derive results for timelike Jordan Ivanov-
Petrova manifolds by changing the sign of the metric in question and inter-
changing the roles of p and q. We refer to [14] for additional results concerning
Ivanov-Petrova manifolds. The manifolds given in Sections 3.3 and 3.4 will
be spacelike Jordan Ivanov-Petrova but will neither have constant sectional
curvature nor have the form given in Equation (2.c).
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2.4. The Stanilov operator. Let π be a spacelike or timelike 2 plane in
TM . Let Gr2(π) be the Grassmannian of oriented 2 planes in π. The Stanilov
operator is an average of the square of the skew-symmetric curvature operator:

Θ(π) :=
1

vol(Gr2(π))

∫

π∈Gr2(π)

R(π)2dπ .

This operator is self-adjoint; it is necessary to square R to obtain a non-zero
average since R(−π) = −R(π).

If {e1, ..., ek} is an orthonormal basis for π, then modulo a suitable nor-
malizing constant which plays no role in the development,

Θ(π) =
∑

i<j

R(ei, ej)2 .

This operator was first defined by Stanilov [32, 33] in the Riemannian context.
One says that (M, g) is spacelike (resp. timelike) Jordan k-Stanilov if the
Jordan normal form of Θ is constant on the Grassmannian of spacelike (resp.
timelike) k planes of TP M , where 2 ≤ k ≤ q (resp. 2 ≤ k ≤ p) for every
P ∈ M ; as with the skew-symmetric curvature operator, the Jordan normal
form is permitted to vary with the point of M .

We refer to [21] for the proof of the following result:

Theorem 2.4. Let (M, g) be a connected spacelike Jordan Ivanov-Petrova
pseudo-Riemannian manifold of signature (p, q). Assume either that (p, q) =
(0, 4) or that q ≥ 5. Assume that R(π) is not nilpotent for at least one
spacelike 2 plane in TM and that R has spacelike rank 2 for all P ∈ M . Then

(1) (M, g) is spacelike Jordan k-Stanilov for any 2 ≤ k ≤ q.
(2) (M, g) is timelike Jordan k-Stanilov for any 2 ≤ k ≤ p.

Theorem 2.5. Let (M, g) be a connected Riemannian manifold of dimension
m, where m 6= 3, 7. If (M, g) is 2-Stanilov, then (M, g) is Ivanov-Petrova.

We also refer to [39] for related results. We shall exhibit manifolds which
are spacelike Jordan k-Stanilov for any k but which are not spacelike Jordan
Ivanov-Petrova in the higher signature setting in Section 3.

2.5. Subspaces of mixed type. It is not necessary to restrict to spacelike
or timelike planes in discussing the skew-symmetric curvature operator, the
higher order Jacobi operator, or the Stanilov operator. Let {e1, e2} be a
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oriented basis for a non-degenerate oriented 2 plane π of signature (1, 1). Let
gij = g(ei, ej) describe the metric on π. Set:

R(π) := |det(g)|−1/2R(ei, ej) .

One says that (M, g) is mixed Jordan Ivanov-Petrova if the Jordan normal
form ofR(π) is constant on the Grassmannian of oriented 2 planes of signature
(1, 1) in TP M for every P ∈ M ; the Jordan normal form is allowed to vary with
the point. The manifolds described in Equation (2.c) are spacelike, timelike,
and mixed Jordan Ivanov-Petrova. In Theorem 3.2, we present manifolds
which are spacelike and timelike Jordan Ivanov-Petrova but which are not
mixed Jordan Ivanov-Petrova. In Theorem 3.6, we present manifolds which
are spacelike Jordan Ivanov-Petrova but which are neither mixed nor timelike
Jordan Ivanov-Petrova. Thus these concepts are distinct.

Similarly, let {e1, ..., ek} be a basis for an unoriented non-degenerate k
plane π. Let gij := g(ei, ej). One can define

J(π)(y) :=
∑

ij

gijR(y, ei)ej , and

Θ(π)y :=
∑

ijkl

gijgklR(ei, ek)R(ej , el)y .

Using these operators, one can define the notions Jordan Osserman of type
(r, s) and Jordan Stanilov of type (r, s) by requiring that the Jordan normal
form of J(π) or Θ(π) is constant on the Grassmannian of non-degenerate
planes of type (r, s). We omit details in the interests of brevity.

2.6. Conformal geometry. Let {e1, ..., em} be a basis for TP M . Let

ρ(x, y) :=
∑

ij

gijR(x, ei, ej , y) and τ :=
∑

ij

gijρ(ei, ej)

be the Ricci tensor and the scalar curvature, respectively. The Weyl conformal
curvature W is then defined by setting:

W (x, y, z, w)

:= R(x, y, z, w) +
1

(m− 1)(m− 2)
τ{g(x,w)g(y, z)− g(x, z)g(y, w)

− 1
m− 2

{ρ(x,w)g(y, z) + ρ(y, z)g(x,w)− ρ(x, z)g(y, w)− ρ(y, w)g(x, z)} .
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One generalizes Equations (2.a) and (2.b) setting:

JW (x) : y → W (y, x)x and RW (π) : y → W (e1, e2)y .

One says that (M, g) is conformally spacelike (resp. timelike) Jordan Osser-
man if the Jordan normal form of JW is constant on S(TP M); the Jordan
normal form is permitted to vary with the point P ∈ M . Similarly, one
says that (M, g) is conformally spacelike (resp. timelike) Ivanov-Petrova if the
Jordan normal form of RW is constant on the appropriate Grassmannian of
TP M ; again, the Jordan normal form is permitted to vary with the point of
M .

One says that two metrics g1 and g2 on M are conformally equivalent if
there exists a smooth positive conformal factor α ∈ C∞(M) so g1 = αg2. One
then has

Wg1 = αWg2 .

The notions defined above are conformal invariants [4]:

Theorem 2.6. Let g1 and g2 be conformally equivalent pseudo-Riemannian
metrics on a manifold M . Then:

(1) (M, g1) is conformally spacelike (resp. timelike) Jordan Osserman if
and only if (M, g2) is conformally spacelike (resp. timelike) Jordan
Osserman.

(2) (M, g1) is conformally spacelike (resp. timelike) Jordan Ivanov-Petro-
va if and only if (M, g2) is conformally spacelike (resp. timelike) Jor-
dan Ivanov-Petrova.

One also has

Theorem 2.7. If (M, g) is Einstein, then (M, g) is conformally spacelike
(resp. timelike) Jordan Osserman if and only if (M, g) is pointwise spacelike
(resp. timelike) Jordan Osserman.

The classification of conformally spacelike Jordan Osserman manifolds is
complete in certain settings. One says that (M, g) is conformally flat if W = 0
or, equivalently, if g is locally conformally equivalent to a flat metric. Note
that metrics of constant sectional curvature are conformally flat. We refer to
[4] for the proof of Assertion (1) and to [3] for the proof of Assertion (2) in
the following result:

Theorem 2.8. Let (M, g) be a conformally Osserman Riemannian manifold
of dimension m.

(1) If m is odd, then (M, g) is conformally flat.
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(2) If m ≡ 2 mod 4 and if P is a point of M where WP 6= 0, then (M, g)
is locally conformally equivalent near P either to complex projective
space with the Fubini-Study metric or to the negative curvature dual.

Theorem 2.9. If (M, g) is a conformally spacelike or conformally timelike
Jordan Osserman Lorentzian manifold, then (M, g) has constant sectional cur-
vature.

Similarly, there are results for conformally spacelike Jordan Ivanov-Petrova
manifolds [4]:

Theorem 2.10.

(1) Let (M, g) be a conformally Ivanov-Petrova Riemannian manifold of
dimension m 6= 3, 7. Then (M, g) is conformally flat.

(2) Let (M, g) be a connected pseudo-Riemannian manifold of signature
(p, q) which is conformally spacelike Ivanov-Petrova. Assume that q ≥
11, that p ≤ q−6

4 , and that {q, q+1, ..., q+p} does not contain a power
of 2. Then either W (π) is nilpotent for every spacelike 2 plane or
(M, g) is conformally flat.

3. The higher signature setting

As noted in the previous section, there are many classification results avail-
able in the Riemannian and Lorentzian settings. The situation is much less
clear in the higher signature setting (p > 1, q > 1).

3.1. Curvature homogeneous manifolds. We follow Kowalski, Tricerri,
and Vanhecke [26, 27] and say that (M, g) is curvature homogeneous if given
any two points P, Q ∈ M , there is an isomorphism Ψ : TP M → TQM so
Ψ∗gQ = gP and so Ψ∗RQ = RP . Similarly, (M, g) is said to be locally homo-
geneous if the local isometries of (M, g) act transitively on (M, g).

The manifold (M, g) is said to be locally symmetric if ∇R = 0. Locally
symmetric manifolds are locally homogeneous and locally homogeneous mani-
folds are curvature homogeneous. What is interesting from our point of view is
that the converse fails in general; there are curvature homogeneous manifolds
which are not locally homogeneous.

There is by now an extensive literature on the subject of curvature homo-
geneous manifolds in the Riemannian setting, see, for example, the discussion
in [5, 40]. There are also a number of papers in the Lorentzian setting [7,
8] and also in the affine setting [30]. There are, however, few papers in the
higher dimensional setting – and those that exist appear in the study of 4
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dimensional neutral signature Osserman manifolds, see, for example, [6]. In
this section we present two families of examples which illustrate many of the
phenomena which can arise. In Section 3.3, we exhibit pseudo-Riemannian
manifolds in balanced neutral signature [10, 17, 18] and of signature (2s, s)
[19]. We refer to [1, 13] for other examples and to [12] for a more complete
bibliography.

3.2. Algebraic curvature tensors. It is convenient at this stage to intro-
duce a purely algebraic formalism. Let V be an m dimensional finite dimension
real vector space. We say that A ∈ ⊗4V ∗ is an algebraic curvature tensor if
A satisfies the usual symmetries of the Riemann curvature tensor:

A(x, y, z, w) = −A(y, x, z, w) = A(z, w, x, y),

A(x, y, z, w) + A(y, z, x, w) + A(z, x, y, w) = 0 .

Let gV be a non-degenerate symmetric inner product of signature (p, q) on V .
The associated curvature operator is then characterized by the identity:

gV (A(x, y)z, w) = A(x, y, z, w) .

Consider a triple V := (V, gV , A), where A is an algebraic curvature tensor
on V and g is an inner product on V . We say that V is a model for a
pseudo-Riemannian manifold (M, g) if given any point P ∈ M , there is an
isomorphism φP : TP M → V so that φ∗P gV = g|TP M and φ∗P A = RP ∈
⊗4T ∗P M . Clearly (M, g) is curvature homogeneous if and only if there exists
a model V for (M, g).

3.3. Signature (p, p). We follow the discussion in [10, 17, 18]. Suppose
p ≥ 3 henceforth. Introduce coordinates (x, y) = (x1, ..., xp, y1, ..., yp) on R2p.
Let O be an open subset of Rp and let f = f(x) ∈ C∞(O). We define a
non-degenerate pseudo-Riemannian metric gf of balanced signature (p, p) on
M := O × Rp by setting:

gf (∂x
i , ∂x

j ) = ∂x
i f · ∂x

j f, gf (∂x
i , ∂y

j ) = gf (∂y
j , ∂x

i ) = δij ,

and
gf (∂y

i , ∂y
j ) = 0 .

This pseudo-Riemannian metric arises as a hyper-surface metric. Let

{α1, ..., αp, β1, ..., βp, γ}
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be a basis for R2p+1. Define an inner product of signature (p, p + 1) on R2p+1

whose non-zero components are given, up to the usual Z2 symmetries, by

〈αi, βj〉 = δij and 〈γ, γ〉 = 1 .

We define an embedding of O × Rp as a graph in R2p+1 by setting:

Ψf (x, y) := x1α1 + ... + xpαp + y1β1 + ... + ypβp + f(x)γ .

It is then immediate that Ψ∗f 〈·, ·〉 = gf . The normal to the surface is:

ν(x, y) = −(∂x
1 f)β1 − ...− (∂x

p f)βp + γ .

Let Hij = ∂x
i ∂x

j f ∈ Mp(R) be the Hessian. The second fundamental form L
and curvature tensor are given by:

L(∂x
i , ∂x

j ) = Hij , L(∂x
i , ∂y

j ) = L(∂y
j , ∂x

i ) = L(∂y
i , ∂y

j ) = 0,

R(x, y, z, w) = L(x,w)L(y, z)− L(x, z)L(y, w) .

The only non-zero action of the curvature operator is:

R(∂x
i , ∂x

j ) : ∂x
k → Rijkl∂

y
l .

The curvature operator is 2-nilpotent as:

R(·, ·) : Span{∂x
i } → Span{∂y

i },
R(·, ·) : Span{∂y

i } → {0} .

As the Ricci operator is nilpotent, (M, gf ) is Ricci flat and Einstein.
Let {X1, ..., Xp, Y1, ..., Yp} be a basis for V := R2p. We define an inner

product gV on V of signature (p, p) and an algebraic curvature tensor whose
non-zero components are, up to the usual Z2 symmetries:

gV (Xi, Yj) = gV (Yj , Xi) = δij , and

AV (Xi, Xj , Xk, Xl) = δilδjk − δikδjl .

Let Vp,p := (V, gV , AV ). We then have [10]
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Theorem 3.1. Let p ≥ 2. Assume that H is positive definite on O.
(1) (M, f) is curvature homogeneous with model Vp,p.
(2) If p ≥ 3, then (M, gf ) is not locally homogeneous for generic f .

If f(x) = x2
1 + ... + x2

p, then (M, gf ) is a local symmetric space; thus V
is the model space of a symmetric space of signature (p, p). These manifolds
form a nice family of examples to study the spectral geometry of the Riemann
curvature tensor. One has [18]:

Theorem 3.2. Assume that H is non-degenerate.
(1) The manifold (M, gf ) is spacelike and timelike Jordan Ivanov-Petrova.
(2) The manifold (M, gf ) is not mixed Jordan Ivanov-Petrova.
(3) If p = 2 or if p ≥ 3 and if H is definite, then (M, gf ) is spacelike and

timelike Jordan Osserman
(4) If p ≥ 3 and if H is indefinite, then (M, gf ) is neither spacelike Jordan

Osserman nor timelike Jordan Osserman.

Since R(·, ·)2 = 0, the manifolds (M, gf ) are spacelike and timelike Jordan
k-Stanilov for 2 ≤ k ≤ p. If H is degenerate, then (M, gf ) is neither spacelike
nor timelike Jordan Ivanov-Petrova. Thus there are examples of manifolds
which are Jordan k-Stanilov but not Jordan Ivanov-Petrova.

Let R(a,b) be a flat manifold with a metric of signature (a, b). One has [18]:

Theorem 3.3. Assume Hf is definite. Let N := M × R(a,b) and let gN be
the product metric on N .

(1) For generic f , (N, gN ) is not locally homogeneous if p ≥ 2.
(2) The manifold (N, gN ) is not mixed Jordan IP.
(3) Suppose that a > 0 and that b = 0. Then (N, gN ) is neither timelike

Jordan Osserman nor timelike Jordan Ivanov-Petrova. Furthermore
(N, gN ) is spacelike Jordan Osserman and spacelike Jordan IP.

(4) Suppose that a = 0 and that b > 0. Then (N, gN ) is timelike Jordan
Osserman and timelike Jordan Ivanov-Petrova. Furthermore (N, gN )
is neither spacelike Jordan Osserman nor spacelike Jordan IP.

(5) Suppose that a > 0 and that b > 0. Then (N, gN ) is neither timelike
Jordan Osserman nor timelike Jordan Ivanov-Petrova nor spacelike
Jordan Osserman nor spacelike Jordan Ivanov-Petrova.

One also has [17]:

Theorem 3.4. Assume that H is definite. Then (N, gN ) is Jordan Osserman
(1) of types (r, 0) and (p− r, q + b) if a = 0 and if 0 < r ≤ p;
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(2) of types (0, s) and (p + a, q − s) if b = 0 and if 0 < s ≤ p;
(3) of types (r, 0) and (p + a− r, q + b) if a > 0 and if a + 2 ≤ r ≤ p + a;
(4) of types (0, s) and (p + q, q + b− s) if b > 0 and if b + 2 ≤ s ≤ q + b.

(N, gN ) is not Jordan Osserman for other values of (r, s).

3.4. Manifolds of signature (s, 2s). The second family arises in signature
(2s, s) for s ≥ 2. Let ~u := (u1, ..., us), ~t := (t1, ..., ts), and ~v := (v1, ..., vs) give
coordinates (~u,~t, ~v) on R3s for s ≥ 2. Let

F (~u) := f1(u1) + ... + fs(us)

be a smooth function on an open subset O ⊂ Rs. Define a pseudo-Riemannian
metric gF of signature (2s, s) on M := O × R2s whose non-zero components
are:

gF (∂u
i , ∂u

i ) = −2F (~u)− 2
∑

1≤i≤s uiti,

gF (∂u
i , ∂v

i ) = gF (∂v
i , ∂u

i ) = 1,

gF (∂t
i , ∂

t
i ) = −1 .

We also define the corresponding model spaces. Let

{U1, ..., Us, T1, ..., Ts, V1, ..., Vs}

be a basis for R3s. Let V3s := (R3s, gV , AV ), where the non-zero entries of the
inner product gV and of the algebraic curvature tensor RV , up to the usual
Z2 symmetries, are:

gV (Ui, Vi) = 1, gV (Ti, Ti) = −1, and

RV (Ui, Uj , Uj , Ti) = 1 for i 6= j .

One then has [19]:

Theorem 3.5. The manifolds (M, gF ) are curvature homogeneous with model
V3s. They are not locally homogeneous for generic F .

It is again immediate from an examination of the model space that

R(·, ·) : Span{Ui} → Span{Ti, Vi},
R(·, ·) : Span{Ti} → Span{Vi},
R(·, ·) : Span{Vi} → {0} .

Consequently, the curvature operator is 3-nilpotent. As the Ricci operator is
nilpotent, the manifold (M, gF ) is Ricci flat and Einstein. One also has [19]:
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Theorem 3.6. We have that (M, gF ) is:

(1) spacelike Jordan Osserman but not timelike Jordan Osserman;
(2) k-spacelike higher order Jordan Osserman for 2 ≤ k ≤ s;
(3) k-timelike higher order Jordan Osserman if and only if s+2 ≤ k ≤ 2s;
(4) spacelike Jordan Ivanov-Petrova;
(5) neither timelike nor mixed Jordan Ivanov-Petrova;
(6) spacelike Jordan k-Stanilov for 2 ≤ k ≤ s;
(7) timelike Jordan k-Stanilov if and only if k = 2s.

Since these manifolds are Ricci flat, W = R. Consequently, we have as well
that

Theorem 3.7. We have that (M, gF ) is:

(1) conformally spacelike Jordan Osserman but not conformally timelike
Jordan Osserman;

(2) conformally spacelike Jordan Ivanov-Petrova;
(3) neither conformally timelike nor conformally mixed Jordan Ivanov-

Petrova.

We remark that the rank of the skew-symmetric curvature operator is 4;
these are the only known examples of spacelike Jordan Ivanov-Petrova mani-
folds which have rank 4.
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