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RECENT ADVANCES ON

TSAGAS-SOURLAS-SANTILLI ISOTOPOLOGY

R. M. Falcón and J. Núñez

dedicated to the memory of Professor Grigorios F. Tsagas in admiration

Abstract. Because the Lie theory solely applies to linear systems, in 1978
Santilli proposed the isotopic lifting of Lie’s theory for nonlinear systems, to-
day known as the Lie-Santilli isotheory, via the reconstruction of linearity on
the isotopic lifting of spaces and fields. In order to identify the proper mathe-
matical background of the Lie-Santilli isotheory, Kadeisvili introduced in 1992
the notion of isocontinuity; Tsagas and Sourlas proposed in 1995 a form of
isotopology defined over conventional fields; Santilli extended it in 1996 its for-
mulation on isofields; and the authors conducted in 2003 a systematic study
of the new isotopology. In this paper we outline the foundation of the new
isotopology and present various advances.

1. Introduction

Since the Lie theory solely applies to linear systems, while systems are
generally nonlinear in reality, the physicist Santilli [7] proposed in 1978 the
axiom-preserving isotopic lifting of Lie’s theory for nonlinear systems, today
known ad the Lie-Santilli isotheory. The proposal was based on the lifting of
enveloping associative algebras, Lie algebras, Lie group, representation theory,
as well as the spaces on which they are defined. Consistency was achieved via
the reconstruction of linearity on isospaces, with the nonlinearity emerging in
the projection of the isotheory into ordinary spaces. Santilli then continued
his studies on isotopies in monographs [5], [6] of 1978-1991, the lifting of fields
in Ref. [8] of 1993, the introduction of the new isodifferential calculus in Ref.
[9] of 1996, and other contributions.
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In order to identify the proper mathematical framework of the Lie-Santilli
isotheory, the Russian mathematician Kadeisvili [4] introduced in 1992 the
notion of isocontinuity. The Greek mathematicians Tsagas and Sourlas pre-
sented in monograph [7] a systematic study of the Lie-Santilli isotheory on
isospaces over ordinary fields and in the subsequent papers [12], [13] of 1995
they introduced the notion of isomanifold as well as the first known form of
isotopology formulated on conventional fields. Subsequently, Santilli [9] pre-
sented an extension of the isotopology to isofields and the new topology is
today called the Tsagas-Sourlas-Santilli isotopology. We should also indicate
that the Chinese mathematician Jiang conducted in monograph [3] of 2002 a
comprehensive study of Santilli isonumber theory.

More recently, in 2001, the authors have presented in monograph [1] a sys-
tematic study of the Lie-Santilli theory within a full isotopic context, includ-
ing the isotopies of spaces and fields. In the subsequent memoir [2] of 2003,
the authors have presented a systematic study of the Tsagas-Sourlas-Santilli
isotopology, with numerous advances.

As a result of all these studies there has been the emergence of a new
branch of mathematics that applies not only to nonlinear systems, but also
to nonlocal and non-Hamiltonian systems occurring in physics, chemistry,
biology and other fields.

In this paper we review the foundations of the Tsagas-Sourlas-Santilli iso-
topology and present various advances.

The fundamental notion is that of Santilli isoreal isofield [8] (R̂m, +̂, ×̂)
of dimension m, based on the isotopic lifting of the unit, called isounit,
with expressions of the type Î = diag(n2

1, n
2
2, ..., n

2
m), with nk = nk(x, dx,

d2x, τ, δ, ...) 6= 0, ∀k ∈ {1, ..., m}.
Particularly important for these studies is the classification of isofields into

those of type I, occurring when the isounit is an arbitrary (non-null) element
of the original field, and thsoe of type II, occurring when the isounit is not an
element of the original field [8] (see also Jiang [3] for details).

Next, we have the isotopic lifting of metric spaces, for the first time intro-
duced by Santilli [5] and [6]: M(x,m,R) → M̂(x̂, m̂, R̂II), where x̂ = x × Î ,

m̂ = T × m̂ and T = Î−1 over the isoreal isofield R̂ of the second type.
This last construction is also important due to its practical applications.

As an example, we have that the valence bond characterizing every molecule
is, structurally, non local-integral, due to the penetration of the packages of
waves of the valence electrons, which requires the use of a non local-integral
topology to be studied in this paper. In fact, Santilli proved in [10] that
the use of both a new integer-differentiable isotopology and isotopic methods
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related for a Santilli’s isounit Î = O × exp−3r
∫

ψ†(r) × ψ(r), where O is an
operator and ψ(r) is the wave function of the degree electron has allowed, for
the first time, to obtain an exact and invariant representation of all molecular
characteristics. In this sense, it is necessary to use Santilli isospaces and
isofields of the second type to get the results obtained in [7].

Tsagas and Sourlas [12], [13] introduced the isotopic lifting of topology
over ordinary fields, subsequently extended by Santilli [9] to the isofields,
by constructing an isotopy of the conventional space Rm, defined by T =
{∅,Rm,∪i∈IBi}, where each of Bi is:

Bi = {P = (P1, ..., Pm) : αik
< Pk < βik

; αik
, βik

∈ R,∀k ∈ {1, ..., m}},
which can be considered as the Cartesian product of the topology of open
intervals on the straight line, m times. The topological space {Rm, T} is
denoted by Tm(R) and it is called real Cartesian topological space.

In the isospace R̂m, they defined the isotopic lifted of the topology T as:
T̂ = {∅, R̂m,∪i∈IB̂i}, where each of B̂i is

B̂i = {P̂ = (P̂1, ..., P̂m) : α̂ik
< P̂k < β̂ik

; α̂ik
, β̂ik

∈ R̂n2
k
, ∀k ∈ {1, ...,m}}.

When R̂ = R, Tsagas and Sourlas pointed out that R̂n2
k
' R and that

R̂
m

' Rm. For this reason, they called the pair {R̂m, T̂} as real Cartesian
isotopological space, and they denoted it by T̂m(R̂). They also pointed out
that Tm(R) ≡ T̂m(R̂), which involves the coincidence between that new topol-
ogy on R̂m and the conventional one on Rm, with the exception of Î , which
incorporates integrals terms. The resulting structure is actually known as
Tsagas-Sourlas Isotopology or Integro-differentiable topology.

All the previous studies finally allowed to generalize in 2003 [2] the Tsagas-
Sourlas-Santilli Isotopology for isofields of the types I and II, by making use
of the isotopic construction model MCIM, introduced by the authors in 2001
[1], which generalizes in turn the model by Santilli in 1978 [7]. In particular,
we provide an alternative formulation of Kadeisvili isocontinuity [4] from an
analytic and a topological point of view.

Note finally that some results appearing in this paper will not be proved,
due to restrictions on length length.

2. Isotopology by using the MCIM isotopic model

The generalization of the Tsagas - Sourlas Isotopology [11] to the case of
isofields of the second type, proposed by Santilli in [9] was deeply analyzed
by ourselves in a recent paper, appeared in 2003 (see [2]).
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Such an analysis is made by using the isotopic model named MCIM, which
we also introduced in [1]. Every isotopy can be reduced to this model and it
is based on the use of so many isounits and ∗-laws as operations existing in
the initial mathematical structure:

Proposition 2.1. Fixed a mathematical structure (E, +,×, ◦, •, ...), if we
construct an isotopic lifting such that:

a) Both primaries ∗, Î and secondaries ?, Ŝ elements of isotopy are used.
b) (E, ?, ∗, ...) is a structure of the same type as the initial, which is

endowed with isounits S, I, ..., with respect to ?, ∗, ..., respectively.
c) I is an unit with respect to ∗ in the corresponding general set V, being

T = Î−I ∈ V the associated isotopic element.
So, by defining in the isotopic level the operations:

â+̂b̂ = â ? b; â×̂b̂ = â ∗ b; ...

And being defined in the projection level:

â = a ∗ Î; α+̂β = ((α ∗ T ) ? (β ∗ T )) ∗ Î; α×̂β = α ∗ T ∗ β; ...

It is obtained that the isostructure (Ê, +̂, ×̂, ...) is of the same type as the
initial one.

The study in [2] is made by taking into consideration both isotopic and
projection levels. Equivalent results related to injective isotopies are also
obtained. In the first place, it is verified Proposition 2.1 for topological
spaces and for their elements and basic properties: isotopologies, isoclosed
sets, isoopen sets, T2, etc:

A topological isospace is every isospace endowed with a topological space
structure. If, besides, such an isospace is an isotopic projection of a topological
space, it is called isotopological isospace.

Similarly, they are defined concepts of (iso)boundary isopoint, closure of a
set, closed set, isointerior isopoint, interior of a set, open set, (iso)Hausdorff
isospace and second countable isospace, among others.

Proposition 2.2. The space from which any topological isospace in the iso-
topic level is obtained can be endowed with the final topology relative to the
mapping I.

The isotopic projection of a topological space is an isotopological iso-space
in the projection level. If such a projection is injective, then every topological
isospace in such a level is, in fact, isotopological.
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Similar results are obtained for the concepts of (iso)boundary isopoint,
isointerior isopoint and (iso)Hausdorff isospace.

Next, we try to analyze the concept of isocontinuity of isofunctions, at-
tempting to generalize the Kadeisvili isocontinuity [4]:

Let Û be a R̂-isonormed vector isospace, where R̂ is an isofield of the type
I. Let ≤ be the usual order in R and f̂ an isofunction from Û on R̂. We will
say that f̂ is a Kadeisvili isocontinuous isofunction in X̂ ∈ Û , if for all ε̂ > 0,

there exists δ̂ > 0 such that, for all Ŷ ∈ Û with I(|‖(π ◦ I)−1(X̂ − Ŷ )‖) < δ̂,
it is verified that:

I(|(π ◦ I)−1(f̂(X̂)− f̂(Ŷ ))|) < ε̂.

We will say that f̂ is Kadeisvili isocontinuous in Û if it is Kadeisvili isocon-
tinuous in X̂, for all X̂ ∈ Û .

The Kadeisvili isocontinuity is defined for isofields of the type I obtained
from R, which are endowed with the usual real order ≤ . For this reason, it
was proposed in [2] that the basic isofield can be endowed with an isoorder,
according to:

Let K̂ be an isofield associated with a field K, endowed with an order ≤,
by using an isotopology which preserves the inverse element with respect to
the addition. We define the isoorder ≤̂ as â≤̂b̂ if and only if a ≤ b. If the
isotopy is injective, the isoorder ≤̂ en K̂ is defined in the same way.

Proposition 2.3. The isoorders ≤̂ and ≤̂ are orders over K̂ and K̂, of the
same type as ≤ .

The Kadeosvili isocontinuity was generalized in [2] of the following way:
Let Û be a R̂ isovectorspace with isonorm ‖̂.‖̂ ≡ ‖̂.‖ and isoorder ≤̂, ob-

tained from an isotopy compatible with respect to each one of the initial
operations. It will be said that an isoreal isofunction f̂ of Û is isocontinuous
in X̂ ∈ Û , if for all ε̂>̂Ŝ, there exists δ̂>̂Ŝ such that for all Ŷ ∈ Û with
‖̂X̂ − Ŷ ‖̂<̂δ̂, it is verified that |̂f̂(X̂)− f̂(Ŷ )̂|<̂ε̂. We will say that f̂ is isocon-
tinuous in Û if it is isocontinuous in X̂, for all X̂ ∈ Û . Finally, when dealing
with injective isotopies, the isocontinuity in the projection level is defined in
a similar way.

Proposition 2.4. The isocontinuity in Û is equivalent to the continuity in
U. In the case of injective isotopies, both ones are equivalent to the one in Û .
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We are going to observe in the following example that, indeed, the previous
definition of isocontinuity really generalizes the Kadeisvili isocontinuity:

Example 2.5. Let us consider an isoreal isofield of the type I obtained from
an isotopy of the isotopic element ? ≡ +, Ŝ = 0, ∗ ≡ × and Î ∈ R+ non
null. Such an isotopy is injective and allow to obtain the isofield R̂ ≡ R, due

to fixed a ∈ R it is a = â ∗ T , being T = Î−1.

Such an isotopy preserves the inverse element and it is compatible with
respect to +, ◦, • y ×. It is checked that ≤̂ ≡≤, +̂ ≡ + and ◦̂ ≡ ◦.

The Kadeisvili isocontinuity is defined, in this case, of the following way
(note that ≤≡ ≤̂):

Let f̂ be an isofunction of Û on R̂. Then, f̂ is Kadeisvili isocontinuous
in X̂ ∈ Û if for all ε̂ > 0, there exists δ̂ > 0 such that, if Ŷ ∈ Û satisfies

‖̂X̂ − Ŷ ‖̂ < δ̂, then |̂f̂(X̂)− f̂(Ŷ )̂| < ε̂.

Proposition 2.6. Under conditions of the Example 2.5, every (Kadeisvili)

isocontinuous isofunction f̂ en X̂ ∈ Û is conventionally continuous in such
a point. Consequently, every Kadeisvili isocontinuous isofunction f̂ in Û is
conventionally continuous in Û .

Proof. Let us suppose X̂ ∈ R̂ and let f̂ be an isocontinuous isofunction in
X̂. To see that f̂ is a conventionally continuous isofunction, we fix ε > 0.

Let ε′ > 0 be such that ε̂′ = ε′ ∗ Î = ε′ × Î = ε. Due to the isocontinuity

of f̂ there exists δ̂ > 0 such that, if Ŷ ∈ Û is such that ‖̂X̂ − Ŷ ‖̂ < δ̂, then

|̂f̂(X̂)− f̂(Ŷ )̂| < ε̂′. But then, due to the compatibility with respect to ◦ of the

isotopy constructing Û and due to Î acts as a constant, which is positive, the
previous condition is equivalent to the fact of if Ŷ ∈ Û is such that ‖X̂− Ŷ ‖ =

‖X̂ − Y ‖ = ‖(X − Y ) ∗ Î‖ = ‖X − Y ‖ × Î = ‖̂X̂ − Y ‖̂ = ‖̂X̂ − Ŷ ‖̂ < δ̂, then

|f̂(X̂) − f̂(Ŷ )| = |f̂(X) − f̂(Y )| = | ̂f(X)− f(Y )| = |(f(X) − f(Y )) × Î| =

|(f(X)− f(Y ))| × Î = |̂ ̂f(X)− f(Y )̂| = |̂f̂(X̂)− f̂(Ŷ )̂| < ε̂′ = ε. So, it implies

that f̂ is conventionally continuous in X. The consequence of the assert is
then evident. ¤

A problem which appears when Î is not constant, that is, it depends on
external factors, is that the order is not equivalence with the isoorder in the
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model of Example 2.5. It involves that isocontinuity of [2] in not a particular
case of the Kadeisvili isocontinuty. We will see it in the following:

Example 2.7. Under conditions of Example 2.5, let us consider (U, ◦, •) =
(R,+,×), although we take now as an isounit to:

Î = Î(x) =
{

1, if x = 0
1
x2 , if x 6= 0

}
.

Then, R̂ is now given by the lifting:

x → x̂ = x× Î =
{

0, if x = 0
1
x , if x 6= 0

}
.

So, we have R̂ ≡ R, and the isotopic lifting used is injective. Moreover, as
it preserves the inverse element with respect to the addition, it has a perfect
sense to consider the isoorder ≤̂, which is not equivalent to the usual one.
Indeed, as an example, we have that 2̂≤̂3̂, due to 2 ≤ 3, but on the opposite
2̂ = 1

2 ≥ 1
3 = 3̂. It cannot be also said that ≤̂ is equivalent to the inverse order

≤, because 0̂≤̂2̂, due to 0 ≤ 2, being 0̂ = 0 ≤ 1
2 = 2̂.

Example 2.8. Under conditions of Example 2.5 let us consider:

Î = Î(x) =





1, if x < 1
x+1

x , if x ∈ [1, 3)
x−2

x , if x ∈ [3, 4)
1, if x ≥ 4





.

Therefore, Î is so positive defined, non singular and invertible, whose inverse
is:

T = T (x) =





1, if x < 1
x+2

x , if x ∈ [1, 2)
x−1

x , if x ∈ [2, 4)
1, if x ≥ 4





.

Then, the injective isotopic lifting from R to R̂ = R, is defined by:

x → x̂ =





x, if x < 1
x + 1, if x ∈ [1, 3)
x− 2, if x ∈ [3, 4)
x, if x ≥ 4





.



880 R. M. Falcón and J. Núñez

Let us consider the function f(x) = x−1, which is conventionally continuous.
We have then the isofunction:

f̂(x) =





x̂− 1, if x̂ < 1
x̂ + 2, if x̂ ∈ [1, 2)

x̂− 2, if x̂ ∈ [2, 3)

x̂− 1, if x̂ ∈ [3, 4)

x̂− 3, if x̂ ∈ [4, 5)

x̂− 1, if x̂ ≥ 5





.

This isofunction is not isocontinuous in the Kadeisvili’s sense, because it is

not so, in particular, in x̂ = 2̂ = 3. Indeed, if we take ε̂ = 1
2 = 1̂

2 , we can find

for each δ̂ > 0, a certain δ0 ∈ (0, 1), with δ0 < min≤{1, δ} and ŷ = 2̂− δ0, and

then |̂2̂− ŷ̂| = |̂2̂− 2̂− δ0̂| = |̂3− 3+ δ0̂| = |̂δ0̂| = |̂δ̂0̂| = |̂δ0| = δ̂0 = δ0 ≤ δ = δ̂.

Then, |̂f̂(2̂)− f̂(ŷ)̂| = |̂f̂(2)− f̂(y)̂| = |̂1̂− 1̂− δ0̂| = |̂2− 1 + δ0̂| = |̂1 + δ0̂| =
|̂3̂ + δ0̂| = ̂|3 + δ0| = 3̂ + δ0 = 1 + δ0 ≥ 1 > 1

2 = 1̂
2 = ε̂. It implies that f̂ is not

isocontinuous in Kadeisvili’s sense.
So, we have found a function f continuous such that its projection f̂ is not

isocontinuous in Kadeisvili’s sense.

Example 2.9. Under conditions of Example 2.8 let us consider the function:

f(x) =





x + 1, if x < 0
x + 3, if x ∈ [0, 1)
x + 1, if x ∈ [1, 2)
x + 2, if x ∈ [2, 3)
x− 2, if x ∈ [3, 4)
x− 1, if x ≥ 4





.

This function is not conventionally continuous. Apart from that, the isofunc-
tion in R̂ is obtained:

f̂(x) = x̂ + 1 =





x + 1, if x < 1
x + 2, if x ∈ [1, 3)
x− 1, if x ∈ [3, 4)
x + 1, if x ≥ 4





.
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Fixed ε̂ > 0 and x̂ ∈ R̂, we have then that for all ŷ ∈ R̂ such that |̂x̂− ŷ̂| < ε̂,

it is verified that |̂f̂(x̂) − f̂(ŷ)̂| = |̂x̂ + 1 − ŷ − 1̂| = |̂x̂ − ŷ̂| < ε̂. In this way,

as x̂ is arbitrary in R̂, we deduce that f̂ is Kadeisvili’s isocontinuous in the
whole of R̂.

So, a function f non conventionally continuous such that its projection f̂
Kadeisvili’s isocontinuous has been found.

The isocontinuity on isotopological isospaces is also analyzed in [2]:
An isocontinuous isomapping in the isotopic level between two topological

isospaces M̂ and N̂ is every isomapping f̂ : M̂ → N̂ preserving closures. The
definition in the projection level is given in a similar way.

Proposition 2.10. They are verified that:

a) f̂ is isocontinuous if and only if the mapping f from which comes from
is continuous. That result is similar in the projection level by using
injective isotopies.

b) Every isoconstant isomapping is isocontinuous.
c) Isocontinuity is preserved by both topological composition and product.

Finally, the analysis of (iso)(pseudo)metric isospaces is also concreted:

Proposition 2.11. Let M̂ be a K̂ isovectorspace, isotopic lifting of a vec-
torspace M, endowed with a (pseudo)metric d defined on an ordered field K,
by using an isotopy which preserves the inverse element and compatible with
respect to the addition in K. Then, the isofunction d̂ is an iso(pseudo)metric.

Let (M̂, d′) be an (iso)(pseudo)metric K̂ isovectorspace, endowed with an
isoorder ≤̂. Bd′(X̂0, ε̂) = {X̂ ∈ M̂ : d′(X̂, X̂0)<̂ε̂} is called metric ball with
center X̂0 ∈ M̂ and radius ε̂>̂Ŝ. If M is endowed with a (pseudo)metric d,

with d̂ = d′, then every metric ball Bd′ = Bd̂ = B̂d in M̂, which is isotopic
lifting of a metric ball Bd in M, is called metric isoball in M̂.

proposition 2.12. Under conditions of Proposition 2.11, if Bd(X0, ε) is a
metric ball in M, then ̂Bd(X0, ε) = Bd̂(X̂0, ε̂) is a metric ball in M̂.

A metric neighborhood of an isopoint X̂ ∈ M̂ is a subset Â ⊆ M̂ containing
a metric ball centered in X̂. The set of metric neighborhoods of X̂ is denoted
by ℵ̂d′

X̂
. Finally, if d′ is the isoEuclidean isodistance over R̂n, the associated

metric neighborhoods are called isoEuclidean neighborhoods.
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Proposition 2.13. Let d′ and d′′ two (iso)(pseudo)metrics over an isovector-
space M̂. It is verified that ℵ̂d′

X̂
= ℵ̂d′′

X̂
if and only if every metric ball Bd′(X̂, ε̂)

contains a ball Bd′′(X̂, ρ̂) and every ball Bd′′(X̂, δ̂) contains a ball Bd′(X̂, µ̂).

Proposition 2.14. Every isospace endowed with an (iso)(pseudo)metric is
an isotopological isospace.

So, the isocontinuity among iso(pseudo)metric isospaces generalize rightly
the Kadeisvili’s one:

Proposition 2.15. Let f̂ : (M̂, d′) → (N̂ , d′′) be an isomapping between K̂-
isospaces endowed with (iso)(pseudo)metric and let us consider X̂ ∈ M̂. Then,
f̂ is isocontinuous in X̂ if and only if for all ε̂>̂Ŝ there exists δ̂ ∈ K̂ such that
δ̂>̂Ŝ, and if Ŷ ∈ Bd′(X̂, δ̂), then it is verified that f̂(Ŷ ) ∈ Bd′′(f̂(X̂), ε̂).

Proposition 2.16. Let f̂ : M̂ → N̂ be an isomapping between two isotopo-
logical isospaces M̂ and N̂ . If conditions of the definition of isocontinuity are
satisfied, then f̂ is isocontinuous if and only if f̂−1(Û) is an isoopen of M̂,

for all isoopen Û of N̂ .
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