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Abstract. Let Σ denote the class of functions of the form

f(z) =
1

z
+

∞∑
n=0

anz
n,

which are analytic in the annulus D = {z ∈ C : 0 < |z| < 1}. In this paper, we intro-

duce a convolution operator for functions f belonging to the class Σ and we obtain some

mapping properties and argument estimates for meromorphic functions associated with this

convolution operator.

1. Introduction

Let H = H(U) denote the class of analytic functions in the open unit disk

U = {z ∈ C : |z| < 1}.

For n ∈ N = {1, 2, · · · } and a ∈ C, let

H[a, n] = {f ∈ H : f(z) = a+ anz
n + an+1z

n+1 + · · · }.
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Let f and F be members of H. The function f is said to be subordinate to
F if there exists a function w analytic in U, with

w(0) = 0 and |w(z)| < 1 (z ∈ U),

such that

f(z) = F (w(z)) (z ∈ U).

In such a case, we write

f ≺ F or f(z) ≺ F (z).

If the function F is univalent in U, then we have (cf. [9])

f ≺ F ⇐⇒ f(0) = F (0) and f(U) ⊂ F (U).

Let Σ denote the class of functions of the form [3]:

f(z) =
1

z
+
∞∑
n=0

anz
n,

which are analytic in the annulus D = U\{0} with a simple pole at origin with
residue one there. For functions

fj(z) =
1

z
+

∞∑
n=0

an,jz
n (j = 1, 2; z ∈ D)

in the class Σ, we define the convolution of f1 and f2 [1] by

(f1 ∗ f2)(z) =
1

z
+
∞∑
n=0

an,1an,2z
n (z ∈ D). (1.1)

Making use of the convolution given by (1.1), we now define the following
convolution operator Dα by

Dαf(z) =
1

z(1− z)α+1
∗ f(z) (α > −1; f ∈ Σ; z ∈ D). (1.2)

It follows from (1.2) that

z(Dαf(z))′ = (α+ 1)Dα+1f(z)− (α+ 2)Dαf(z). (1.3)

For α = n ∈ N, the operator Dα is introduced and studied by Ganigi and
Uralegaddi [4] (see, also [14, 15]). Also, the operator Dα is closely related
to Ruscheweyh derivative [11] for analytic functions defined in U, which was
extended by Goel and Sohi [5]. In the present paper, we shall derive certain
interesting properties of the convolution operator Dα defined by (1.2).
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2. Main results

To prove our results, we need the following lemmas.

Lemma 2.1. ([7]) Let h be analytic and convex in U with h(0) = a, γ 6= 0,
Re{γ} ≥ 0. If p ∈ H[a, n] and

p(z) +
zp′(z)

γ
≺ h(z),

then

p(z) ≺ q(z) ≺ h(z),

where

q(z) =
γ

nzγ/n

∫ z

0
h(t)t(γ/n)−1

and q is the best dominant.

Lemma 2.2. ([8]) Let Ω be a set in the complex plane C and let b be a
complex number with Re{b} > 0. Suppose that the function

ψ : C2 × U→ C
satisfies the condition:

ψ(ix, y; z) 6∈ Ω,

for all real x, y ≥ −|b − ix|2/(2Re{b}) and all z ∈ U. If the function p is
analytic in U with p(0) = b and if

ψ(p(z), zp′(z); z) ∈ Ω,

then

Re{p(z)} > 0 (z ∈ U).

Lemma 2.3. ([13]) Let p be analytic in U with p(0) = 1 and p(z) 6= 0 for all
z ∈ U. If there exist two points z1, z2 ∈ U such that

−π
2
δ1 = arg{p(z1)} < arg{p(z)} < arg{p(z2)} =

π

2
δ2 (2.1)

for some δ1 and δ2 (δ1, δ2 > 0) and for all z (|z| < |z1| = |z2|), then

z1p
′(z1)

p(z1)
= −i

(
δ1 + δ2

2
m

)
and

z2p
′(z2)

p(z2)
= i

(
δ1 + δ2

2
m

)
, (2.2)

where
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m ≥ 1− |b|
1 + |b|

and b = i tan

(
δ2 − δ1
δ2 + δ1

)
. (2.3)

Theorem 2.4. Let α > −1, 0 ≤ λ ≤ 1 and γ > 1. If f ∈ Σ, then

Re

{
(1− λ)

Dα+1f(z)

Dαf(z)
+ λ

Dα+2f(z)

Dα+1f(z)

}
< γ (z ∈ U) (2.4)

implies that

Re

{
Dα+1f(z)

Dαf(z)

}
< β (z ∈ U), (2.5)

where β ∈ (1,∞) is the positive root of the equation:

(2(α+ 1)(1− λ) + 2λ(α+ 1))x2 + (3λ− 2γ(α+ 2))x− λ = 0. (2.6)

Proof. Let

p(z) =
1

β − 1

(
β − Dα+1f(z)

Dαf(z)

)
(z ∈ U). (2.7)

Then p is analytic in U and p(0) = 1. Differentiating (2.7) and using (1.3), we
obtain

(1− λ)
Dα+1f(z)

Dαf(z)
+ λ

Dα+2f(z)

Dα+1f(z)

= (1− λ)β +
λ(1 + (α+ 1)β)

α+ 2
−
(

(1− λ)(β − 1) +
λ(α+ 1)(β − 1)

α+ 2

)
p(z)

− λ(β − 1)zp′(z)

(α+ 2)(β − (β − 1)p(z))

= ψ(p(z), zp′(z)),

where

ψ(r, s) = (1− λ)β +
λ(1 + (α+ 1)β)

α+ 2
−
(

(1− λ)(β − 1) +
λ(α+ 1)(β − 1)

α+ 2

)
r

− λ(β − 1)s

(α+ 2)(β − (β − 1)r)
(2.8)

By virtue of (2.4) and (2.8), we have

{ψ(p(z), zp′(z) : z ∈ U} ⊂ Ω = {w ∈ C : Re{w} < γ}.
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Now for all real x, y ≤ −(1 + x2)/2, we have

Re{ψ(ix, y)} = (1− λ)β +
λ(1 + (α+ 1)β)

α+ 2
− λ(β − 1)βy

(α+ 2)(β2 + (β − 1)2x2)

≥ (1− λ)β +
λ(1 + (α+ 1)β)

α+ 2
+

λ(β − 1)β(1 + x2)

2(α+ 2)(β2 + (β − 1)2x2)

≥ (1− λ)β +
λ(1 + (α+ 1)β)

α+ 2
+

λ(β − 1)

2(α+ 2)β
= γ,

where β is the positive root of the equation (2.6). Note that, if

g(x) = (2(1 + α)(1− λ) + 2λ(α+ 1))x2 + (3λ− 2γ(α+ 2))x− λ,
then g(0) = −λ < 0 and g(1) = 2((α + 1)(1 − γ)) < 0. This shows that
β ∈ (1,∞). Hence for each z ∈ U, ψ(ix, y) /∈ Ω. Therefore, by Lemma 2.2,
Re{p(z)} > 0 for z ∈ U, which proves (2.5). �

Theorem 2.5. Let λ ≥ 0, γ > 1 and 0 ≤ δ < 1. Suppose also that

Re

{
Dαg(z)

Dα+1g(z)

}
> δ (g ∈ Σ; z ∈ U). (2.9)

If f ∈ Σ satisfies

Re

{
(1− λ)

Dαf(z)

Dαg(z)
+ λ

Dα+1f(z)

Dα+1g(z)

}
< γ (z ∈ U), (2.10)

then

Re

{
Dαf(z)

Dαg(z)

}
<

2γ(α+ 1) + λδ

2(α+ 1) + λδ
(z ∈ U). (2.11)

Proof. Let

β =
2γ(α+ 1) + λδ

2(α+ 1) + λδ
(β > 1)

and

p(z) =
1

β − 1

(
β − Dαf(z)

Dαg(z)

)
(z ∈ U). (2.12)

Then the function p is analytic in U and p(0) = 1. Setting

B(z) =
Dαg(z)

Dα+1g(z)
(g ∈ Σ; z ∈ U),

by assumption, we have
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Re{B(z)} > δ (z ∈ U).

Differentiating (2.12) and using (1.3), we have

(1− λ)
Dαf(z)

Dαg(z)
+ λ

Dα+1f(z)

Dα+1g(z)

= β − (β − 1)p(z)− λ(β − 1)B(z)zp′(z)

α+ 1
.

Letting

ψ(r, s) = β − (β − 1)r − λ(β − 1)sB(z)

α+ 1
(z ∈ U),

we deduce from (2.10) that

{ψ(p(z), zp′(z)); z ∈ U} ⊂ Ω = {w ∈ C : Re{w} < γ}.
Now for all real x, y ≤ −(1 + x2)/2, we have

Re{ψ(ix, y)} = β − λ(β − 1)y

α+ 1
Re{B(z)}

≥ β +
λ(β − 1)δ

2(α+ 1)
(1 + x2)

≥ β +
λ(β − 1)δ

2(α+ 1)
= γ,

Hence for each z ∈ U, ψ(ix, y) /∈ Ω. Thus by Lemma 2.2, Re{p(z)} > 0 for
z ∈ U. Therefore we complete the proof of Theorem 2.5. �

Theorem 2.6. Let Let α > −1, β ≥ 1 and γ > 0. If f ∈ Σ, then

Re

{
Dα+1f(z)

Dαf(z)

}
<
α+ 1 + γ

α+ 1
(z ∈ U) (2.13)

implies that

Re
{

(zDαf(z))−1/2βγ
}
> 2−1/β (z ∈ U). (2.14)

The bound 2−1/β is the best possible.

Proof. From (1.3) and (2.13), we have

Re

{
z(Dαf(z))′

Dαf(z)

}
< −1 + γ (z ∈ U).
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That is,

1

2γ

(
z(Dαf(z))′

Dαf(z)
+ 1

)
≺ z

1 + z
(z ∈ U). (2.15)

Let

p(z) = (zDαf(z))−1/2γ (z ∈ U).

Then (2.15) may be written as

z (log p(z))′ ≺ z
(

log
1

1 + z

)′
(z ∈ U). (2.16)

By using the well-known result [12] to (2.16), we obtain

p(z) ≺ 1

1 + z
(z ∈ U),

that is, that

(zDαf(z))−1/2γβ =

(
1

1 + w(z)

)1/β

(z ∈ U), (2.17)

where w is analytic function in U, w(0) = 0 and |w(z)| < 1 for z ∈ U.

According to Re{t1/β} ≥ (Re{t})1/β for Re{t} > 0 and β ≥ 1, (2.17) yields

Re
{

(zDαf(z))−1/2γβ
}
≥
(

Re

{
1

1 + w(z)

})1/β

> 2−1/β (z ∈ U).

To see that the bound 2−1/β cannot be increased, we consider the function
g ∈ Σ such that

zDαg(z) = (1 + z)2γ (z ∈ U).

It is not so difficult to show that g satisfies (2.13) and

Re
{

(zDαg(z))−1/2γβ
}
−→ 2−1/β

as z = Re{z} → 1−. Therefore the proof of Theorem 2.6 is complete. �

Theorem 2.7. Let α > −1, λ ≥ 0 and 0 < δ1, δ2 ≤ 1. If f ∈ Σ satisfies

−π
2
δ1 < arg{(1− λ)zDαf(z) + λzDα+1f(z)} < π

2
δ2, (2.18)

then
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−π
2
η1 < arg{zDαf(z)} < π

2
η2, (2.19)

where η1 and η2 are the solutions of the equations:

δ1 = η1 +
2

π
arctan

{
λ(η1 + η2)

2(α+ 1)

(
1− |a|
1 + |a|

)}
(2.20)

and

δ2 = η2 +
2

π
arctan

{
λ(η1 + η2)

2(α+ 1)

(
1− |a|
1 + |a|

)}
, (2.21)

when

a = i tan

{
η2 − η1
η2 + η1

}
.

Proof. Let

p(z) = zDαf(z) (z ∈ U).

Then by using (1.3), we have

(1− λ)zDαf(z) + λzDα+1f(z) = p(z) +
λ

α+ 1
zp′(z). (2.22)

Let h be the function which maps U onto the angular domain {w ∈ C :
−πδ1/2 < arg{w} < πδ2/2} with h(0) = 1. Then from (2.18) and (2.22), we
get

p(z) +
λ

α+ 1
zp′(z) ≺ h(z).

Therefore an application of Lemma2.1 yields Re{p(z)} > 0 for z ∈ U and
hence p(z) 6= 0 for z ∈ U.

Suppose that there exists two points z1, z2 ∈ U such that the condition (2.1)
is satisfied. Then by Lemma 2.3 , we obtain (2.2) under the restriction (2.3).
Therefore we have

arg

{
p(z1) +

λ

α+ 1
z1p
′(z1)

}
= arg {p(z1)}+ arg

{
α+ 1 + λ

z1p
′(z1)

p(z1)

}
= −π

2
η1 + arg

{
α+ 1− iλ(η1 + η2)

2
m

}
≤ −π

2
η1 − arctan

{
λ(η1 + η2)

2(α+ 1)

(
1− |a|
1 + |a|

)}
= −π

2
δ1
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and

arg

{
p(z2) +

λ

α+ 1
z2p
′(z2)

}
≥ π

2
η1 + arctan

{
λ(η1 + η2)

2(α+ 1)

(
1− |a|
1 + |a|

)}
=
π

2
δ2,

which contradict the assumption (2.18). Therefore we have the assertion
(2.19). �

For δ1 = δ2 = δ in Theorem 2.7, we have the following result.

Corollary 2.8. Let α > −1, λ ≥ 0 and 0 < δ ≤ 1. If f ∈ Σ satisfies

| arg{(1− λ)zDαf(z) + λzDα+1f(z)}| < π

2
δ,

then

| arg{zDαf(z)}| < π

2
η,

where η is the solutions of the equation:

δ = η +
2

π
arctan

{
λ

α+ 1

}
.

Now we consider the following integral operator Fc (see [2, 6, 9, 10]) defined
by

Fc(f)(z) =
c

zc + 1

∫ z

0
f(t)tcdt (Re{c} ≥ 0). (2.23)

Theorem 2.9. Let α > −1, c ≥ 0 and 0 < δ1, δ2 ≤ 1. If f ∈ Σ satisfies

−π
2
δ1 < arg{zDαf(z)} < π

2
δ2,

then

−π
2
η1 < arg{zDαFc(z)} <

π

2
η2,

where Fc is the integral operator defined by (2.23), and η1 and η2 are the
solutions of the equations (2.20) and (2.21) with α = c− 1 and λ = 1.
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Proof. Let

p(z) = zDαFc(z) (z ∈ U).

From the definition of Fc, it can be verified that

z(DαFc(z))
′ = cDαf(z)− (c+ 1)DαFc(z). (2.24)

Therefore, using (2.24) and (1.3) for Fc, we have

zDαf(z) = p(z) +
1

c
zp′(z).

The remaining part of the proof is similar to that of Theorem 2.7 and so we
omit for details. �

Acknowledgments: This work was supported by the Basic Science Re-
search Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology
(2019R1I1A3A01050861).

References

[1] H.Kh. Abdullah, Studt on meromorphic Hurwitz-Zeta function defined by linear opera-
tor, Nonlinear Funct. Anal. Appl., 24(1) (2019), 195-206.

[2] S.K. Bajpai, A note on a class of meromorphic univalent functions, Rev. Roumaine
Math. Pures Appl., 22 (1977), 295-297.

[3] K.A. Challab, M. Darus and F. Ghanim, �Inclusion properties of meromorphic functions
associated with the extended Cho-Kwon-Srivastava operator by using hypergeometric
function, Nonlinear Funct. Anal. Appl., 22(5) (2017), 935-946.

[4] M.R. Ganigi and B.A. Uralegaddi, New Criteria for meromorphic univalent functions,
Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S.) 33(81) (1989), 9-13.

[5] R.M. Goel and N.S. Sohi, A new criterion for p-valent functions, Proc. Amer. Math.
Soc., 78 (1980), 353-357.

[6] R.M. Goel and N.S. Sohi, On a class of meromorphic functions, Glasnik Mat. Ser. III
17(37) (1981), 19-28.

[7] D.J. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, Proc. Amer.
Math. Soc., 52 (1975), 191-195.

[8] S.S. Miller and P.T. Mocanu, Differential subordination and univalent functions, Michi-
gan Math. J., 28 (1981), 157-171.

[9] S.S. Miller and P.T. Mocanu, Differential Subordination, Theory and Application Marcel
Dekker, Inc., New York, Basel, 2000.

[10] P.T. Mocanu and G.S. Salagean, Integral operators and meromorphic starlike functions,
Mathematica, 32(55) (1990), 147-152.

[11] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49
(1975), 109-115.

[12] T.J. Suffridge, Some remarks on convex maps of the unit disk, Duke Math. J., 37 (1970),
775-777.



Properties of meromorphic functions 271

[13] N. Takahashi and M. Nunokawa, A certain connection between starlike and convex func-
tions, Appl. Math. Lett., 16 (2003), 653-655.

[14] B.A. Uralegaddi and C. Somanatha, Certain subclasses of meromorphic convex func-
tions, Indian J. Math., 32 (1990), 49-57.

[15] B.A. Uralegaddi and C. Somanatha, On generalization of meromorphic Convex func-
tions with negative coefficients, Mathematica 35(58) (1993), 99-107.


