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Abstract. Let X denote the class of functions of the form

f(z) = L + i anz"

2 = neo
which are analytic in the annulus D = {z € C : 0 < |z| < 1}. In this paper, we intro-
duce a convolution operator for functions f belonging to the class ¥ and we obtain some
mapping properties and argument estimates for meromorphic functions associated with this

convolution operator.

1. INTRODUCTION
Let H = H(U) denote the class of analytic functions in the open unit disk
U={ze€C:|z| <1}.
Forn e N={1,2,---} and a € C, let
Hla,n| ={f e H: f(2) =a+an2" + an12" ™ +---}.
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Let f and F' be members of H. The function f is said to be subordinate to
F if there exists a function w analytic in U, with

w(0) =0 and |w(z)]<1 (z€0),

such that
f(z) = F(w(z)) (2 €N).

In such a case, we write
[<F or f(z)=<F(2).
If the function F is univalent in U, then we have (cf. [9])

f<F << f(0)=F(0) and f(U)c F(U).
Let 3 denote the class of functions of the form [3]:
o=t Y
2) = 2 anz",

which are analytic in the annulus D = U\{0} with a simple pole at origin with
residue one there. For functions

[ 0
&=L+ g (1=12:€D)
in the class X, we define the convolution of f; and fa [1] by

(f1* f2)(2) = % +) aniange” (2 €D). (1.1)
n=0

Making use of the convolution given by (1.1), we now define the following
convolution operator D% by

DYf(z) = Z(l_lz)aﬂ*f(z) (@>-LfeSzeDd). (12
It follows from (1.2) that
2(Df(2)) = (@ +1)D*"' f(2) — (a +2) D f(2). (1.3)

For @« = n € N, the operator D is introduced and studied by Ganigi and
Uralegaddi [4] (see, also [14, 15]). Also, the operator D¢ is closely related
to Ruscheweyh derivative [11] for analytic functions defined in U, which was
extended by Goel and Sohi [5]. In the present paper, we shall derive certain
interesting properties of the convolution operator D® defined by (1.2).
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2. MAIN RESULTS

To prove our results, we need the following lemmas.

Lemma 2.1. ([7]) Let h be analytic and convex in U with h(0) = a, v # 0,
Re{y} > 0. If p € H[a,n] and

zp'(z)
p(z) + o h(z),
then
p(2) < q(2) < h(z),
where

o2) =~ [ it

nz'}//n 0
and ¢ is the best dominant.

Lemma 2.2. ([8]) Let Q be a set in the complex plane C and let b be a
complex number with Re{b} > 0. Suppose that the function

Y:C*xU—C
satisfies the condition:

Pliz,y; 2) & Q,
for all real =,y > —|b — iz|?/(2Re{b}) and all z € U. If the function p is
analytic in U with p(0) = b and if

P(p(2), 2p'(2); 2) € Q,
then

Re{p(z)} >0 (z€U).

Lemma 2.3. ([13]) Let p be analytic in U with p(0) = 1 and p(z) # 0 for all
z € U. If there exist two points 21, 25 € U such that

T T
T = argfp(ea)} < are(p(2)} < mglp()} = 26 (2)
for some d; and d2 (41,02 > 0) and for all z (|z| < |z1| = |22]), then
/ /
ap(z) _ (51 + 52m> and 2P () _ <51 + 52m> 7 (2.2)
p(z1) 2 p(z2) 2
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and b=itan <§z _T_ gi) : (2.3)

Theorem 2.4. Leta > —1, 0<A<land~y>1. If f € X, then

Da-‘rlf > Da+2f Py
re{ (-0 e

} <7y (z€0) (2.4)

implies that

Da+1f(z)
Re{ DoF(2) } <pB (z€l), (2.5)
where B € (1,00) is the positive root of the equation:
2(a+1)(1 = A) 4+ 2X(a + 1)z? + (3X — 2y(a +2))z — A = 0. (2.6)
Proof. Let

a+1 P
p(2) ! (5— D 1(z)

51 Do F () ) (z € U). (2.7)

Then p is analytic in U and p(0) = 1. Differentiating (2.7) and using (1.3), we
obtain

Da+1f(z) Da+2f(z)

=N Darey T o)

R el ((BDICE R ey e
ME-De)
(@123~ (8- p()
— (o), 29 (),
where

A1+ (a+1)p)
oa+2

AB—1)s

@ 2(B— (G- D)

P(r,s) = (1=A)B+

- (a-nE-p+ 2EDE=DY,

o+ 2

(2.8)
By virtue of (2.4) and (2.8), we have

{(p(2),20'(2) : 2 € U} C Q = {w € C: Re{w} <~}.
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Now for all real z,y < —(1 + 22)/2, we have

. A1+ (a+1 AB -1
Re{u(ia)) = (L= g+ 20O o S
M1+ (a+1)8) AMB = 1B +2?)
=N T Y et (R (B %)
RSN i

where 3 is the positive root of the equation (2.6). Note that, if

g(z) = (2(1+a)(1 = A) + 2X(a + 1))z% + (3N — 2y(a + 2))x — A,

then g(0) = —A < 0 and ¢(1) = 2((a + 1)(1 — 7)) < 0. This shows that
B € (1,00). Hence for each z € U, 9(iz,y) ¢ Q. Therefore, by Lemma 2.2,
Re{p(z)} > 0 for z € U, which proves (2.5). O

Theorem 2.5. Let A >0, v > 1 and 0 < § < 1. Suppose also that

DO(
Re{mj;’?z)}>5 (g € ;2 € U). (2.9)
If f € X satisfies
Df(z) , \D**'f(2)
Re{(l—A)Dag(z) +>\Da+1g(2)} <~v (z€0), (2.10)
then
D f(z) 2y(a+1)+ X6
Re{Dag(z)}< o +1) T 20 (z € U). (2.11)
Proof. Let ( )
C 2y(a+ 1)+ A
B = m (B>1)
and
p(2) = 61< Dafj > (2.12)
Then the function p is analytic in U and p(0) = 1. Setting
Da
B:) = pars (g€ Ziz )

by assumption, we have
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Re{B(z)} >d (2 €U).
Differentiating (2.12) and using (1.3), we have

DOf(z) | D™ f(2)
Dag(z) T Datig(z)
=5 (5 - 1p(z) - WD),

(1=2)

Letting

AP —1)sB(z)

Ulrs) =8 (B hr— 20

we deduce from (2.10) that

(z € ),

{¢(p(2),2p'(2));2 € U} € @ = {w € C: Re{w} <7}
Now for all real x,y < —(1 + 22)/2, we have

Refy(ir, )} = 6 - 0 Re(B())
> 5+ e L)
YR
BT

Hence for each z € U, ¢(iz,y) ¢ Q. Thus by Lemma 2.2, Re{p(2)} > 0 for

z € U. Therefore we complete the proof of Theorem 2.5.

Theorem 2.6. Let Let a« > —1, 8> 1 and v > 0. If f € X, then

DYt f(2) a+1l+ny
Re{ Do F(2) }< o (z€ )

implies that

Re {(zpaf(z))*l/%} > 27 V8 (zeU).
The bound 271/8 is the best possible.
Proof. From (1.3) and (2.13), we have

re {201

D f(2) }<1+7 (z €U).

g

(2.13)

(2.14)
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That is,

1 (=(D*f(2)) o,
27( D) +1><1+z (z € U). (2.15)

Let

p(z) = (zD°f(2))""* (2 € ).
Then (2.15) may be written as

z (logp(2)) < 2 (log T z> (z € U). (2.16)

By using the well-known result [12] to (2.16), we obtain

)< (zeD),

that is, that

1

1/p
(ZDaf(Z))_l/Qvﬁ = (1—|—w(z)> (z € U), (2.17)

where w is analytic function in U, w(0) = 0 and |w(z)] < 1 for z € U.
According to Re{t'/?} > (Re{t})'/? for Re{t} > 0 and 8 > 1, (2.17) yields

Re{(zDo‘f(z))—l/Qvﬁ} > (Re{w}>l/ﬁ
>27 Y8 (zeU).

To see that the bound 271/# cannot be increased, we consider the function
g € X such that

zD%(2) = (1+2)* (2 € ).
It is not so difficult to show that g satisfies (2.13) and

Re {(zDag(z))_l/%’g} — 27 P
as z = Re{z} — 17. Therefore the proof of Theorem 2.6 is complete. O
Theorem 2.7. Let > —1, A >0 and 0 < 61,09 < 1. If f € X satisfies

—%51 < arg{(1 — \)zDf(2) + \zD**1f(2)} < g(sz, (2.18)
then



268 S. H. An and N. E. Cho

7 T
—5M < arg{zDf(2)} < 57 (2.19)
where n1 and n2 are the solutions of the equations:
2 Al +m2) (1—al
01 = — arct 2.20
1 771+7Tarca,n{ 2ot 1) 15 [l ( )
and
2 A +m2) (1—lal
09 = — arct 2.21
2 7]2+ﬂ_arc a‘n{ 2(Od+1) 1+|a’ Y ( )
when
. {772 —m }
a=1tanq ——— ;.
N2+ M
Proof. Let

p() = 2D°f(z) (s€T),
Then by using (1.3), we have

(1= N)zDf(2) + \zDTL f(2) = p(2) + o 1Zp/(z). (2.22)

Let h be the function which maps U onto the angular domain {w € C :
—md1/2 < arg{w} < mwd2/2} with h(0) = 1. Then from (2.18) and (2.22), we
get

p(z) + 5 j_ 12]9’(2) =< h(z).

Therefore an application of Lemma2.1 yields Re{p(z)} > 0 for z € U and
hence p(z) # 0 for z € U.

Suppose that there exists two points z1, zo € U such that the condition (2.1)
is satisfied. Then by Lemma 2.3 , we obtain (2.2) under the restriction (2.3).
Therefore we have

zlp/(21)} = arg {p(Zl)} T arg {a i )\Z;lzlz(lz)l) }

A

arg {p(21) + o

2 2
< —Em — arctan A +mn2) (1—|a
; 2(+1) \1+|al
=T
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and
A ™ A(m +m2) (1—lal
> — t
arg {p(zz) + P (22)} Z 5 + arc an{ 2o+ 1) \11d
7T
=—0
2 2,
which contradict the assumption (2.18). Therefore we have the assertion
(2.19). O

For §; = 03 = ¢ in Theorem 2.7, we have the following result.

Corollary 2.8. Let a> -1, A> 0 and 0 < d < 1. If f € ¥ satisfies

|arg{(1 — X)zD"f(2) + AzD* " f(2)}] < 33,

then

Jarg{zD*f(2)}] < 3.

where n is the solutions of the equation:

) +2 t A
= — arctan .
" T a+1

Now we consider the following integral operator F. (see [2, 6, 9, 10]) defined
by

Cc

DG = 5 [ s el > 0) (2.23)

Theorem 2.9. Leta> —1,¢c>0 and 0 < 41,800 < 1. If f € ¥ satisfies

—gél <arg{zD*f(z)} < g(&,

then

—gm < arg{zD%F.(2)} < gng,

where F. is the integral operator defined by (2.23), and m1 and ny are the
solutions of the equations (2.20) and (2.21) with « =c¢—1 and A = 1.
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Proof. Let

p(z) = zD%F.(2) (2 €U).
From the definition of F, it can be verified that

2(D*F.(2)) = cDYf(2) — (c+ 1) D*F.(2). (2.24)
Therefore, using (2.24) and (1.3) for F,, we have

2D f(z) = plz) + -2/ (2)

The remaining part of the proof is similar to that of Theorem 2.7 and so we
omit for details. O
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