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Abstract. Let B(H) be the set of all bounded linear operators on a Hilbert space H. We
will consider an approximately self-adjoint operator S € B(H) with [|S™(z) — S(z)]| < ¢||z||”
(Vz € H), and an approximately normal operator T € B(H) satisfying |T*T(z) —TT" (z)|| <
ellz||? (V& € H) for some real numbers € > 0 and p. We prove that an approximate self-
adjoint (normal) operator is an exact self-adjoint (resp. normal) operator when p # 1. For

p =1, we give examples that such superstability results do not hold.

1. INTRODUCTION

It seems that the stability problem of functional equations had been first
raised by S. M. Ulam (cf. [16, Chapter VI]). “For what metric groups G is it
true that an e-automorphism of G is necessarily near to a strict automorphism?
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(An e-automorphism of G means a transformation f of G into itself such that

p(f(z-y), f(x) fly) <eforallz,y € G.)

D. H. Hyers [7, Theorem 1 and Corollary] gave an answer in the affirmative
to the problem as follows.

Theorem A. Suppose that E1 and FEo are two real Banach spaces and f: E1 —
Es is a mapping. If there exists € > 0 such that

1f(z+y) = flz) - f)ll <e
for all x,y € Ey, then the limit

T(z) = lim f(2"z)

n—oo 2N
exists for each x € E1, and T: E1 — FEs is the unique additive mapping such
that
[f(z) =T (z)| <e
for every x € Ey. If, in addition, the mapping R > t — f(tz) is continuous
for each fixed x € E1, then T is linear.

This result is called the Hyers-Ulam stability of the additive Cauchy equa-
tion g(x +y) = g(x) + g(y). Here we note that Hyers calls any solution of this
equation a “linear” function or transformation. Hyers considered only bounded
Cauchy difference f(x +y) — f(x) — f(y). T. Aoki [1] introduced unbounded
one and generalized a result [7, Theorem 1] of Hyers obtaining the stability
of additive mapping. Th.M. Rassias [11], who independently introduced the
unbounded Cauchy difference, was the first to prove the stability of the lin-
ear mapping between Banach spaces. The concept of the Hyers-Ulam-Rassias
stability was originated from Rassias’s paper [11] for the stability of the lin-
ear mapping and its importance in the proof of further results in functional
equations. Rassias generalized Hyers’s Theorem as follows:

Theorem B. Suppose that By and Es are two real Banach spaces and f: Fy —
Es5 is a mapping. If there exist € > 0 and 0 < p < 1 such that

Iz +y) = f(z) = F)ll < e(ll=]” + llyl?)

for every x,y € F1, then there is a unique additive mapping T: Fy — Eo such
that 5
€
-T <
I£@) = T@) < 5= 5
for every x € Ey. If, in addition, the mapping R > t — f(tz) is continuous
for each fixed x € Eq, then T is linear.

(el

This result is what is called, the Hyers-Ulam-Rassias stability of the linear
mapping. The result of Hyers is just the case of Rassias’s Theorem when
p = 0. During the 27th International Symposium on Functional Equations,
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Rassias raised the problem whether a similar result to Theorem B holds for
1 < p. Z. Gajda [5, Theorem 2] proved that Theorem B is valid for 1 < p.
In the same paper [5, Example], he also gave an example that a similar result
to the above does not hold for p = 1. Later, Th. M. Rassias and P. Semrl
[12, Theorem 2] gave another counter example for p = 1. Note that if p < 0,
then [|0]|P is obviously meaningless. However, if we assume that [|0]|P means
00, then the proof given in [11] also works for x # 0. Moreover, with minor
changes in the proof, we see that the result is also valid for p < 0. Thus, the
Hyers-Ulam-Rassias stability of the linear mapping holds for p € R\ {1}.

Let B(H) be the set of all bounded linear operators on a Hilbert space H.
It seems natural to consider stability problems for operators in B(H). In fact,
K. Fan and A. J. Hoffman [4] considered stability of self-adjoint operators
in B(H) for finite-dimensional H. Here and after, T* denotes the adjoint of
T € B(H). P. R. Halmos [6] pointed out that if H is a Hilbert space, which
need not be of finite-dimensional, and if S € B(H) satisfies

15"z — Szf| <ellz (V2 € H)

for some £ > 0, then S = (S* 4+ 5)/2 € B(H) is a self-adjoint operator such
that

~ €
ISz~ 3all < &l (v2 € ).
In this paper, we consider a perturbation of normal operators of the form
| T*Tx — TT x| < e||z|? (Vx € H),

where € > 0 and p € R. For negative p, we assume that [|0[|P means co. We
shall prove that “approximate normal operators” are exact ones when p # 1.
Such stability phenomena are called superstability (cf. [2, 3]). We will also
consider Hyers-Ulam stability of normal operators when p = 1.

2. MAIN RESULTS AND EXAMPLES

Before we consider stability of normal operators, we first prove supersta-
bility for self-adjoint operators. That is, “approximate self-adjoint” operators
are exact self-adjoint operators.

Theorem 2.1. If S € B(H) satisfies
157z — Sz|| <elz|P (Ve H) (1)
for some € >0 and p € R\ {1}, then S is self-adjoint.

Proof. Take x € H \ {0} and fix n € N arbitrarily. Put s = |1 —p|/(1 — p). It
follows from (1) that

15%(n°z) = S(n°z)|| < e[[nx|”.
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The linearity of S and S* implies that

n®||S*x — Sz|| < en’Pljz|?,

and hence

15"z — Sa|| < en*P=Y |z |P.
Recall that s(p — 1) = —|1 — p| < 0. Since n € N was arbitrary, we obtain
|S*z — Sxz|| = 0, and so S*x = Sx: This is true for x = 0. We thus conclude
that S is a self-adjoint operator. O

Example 1. In Theorem 2.1, we excluded the case where p = 1. We give an
example to show that a similar result to Theorem 2.1 does not hold for p = 1.

Let ¢ > 0. We define S = 8 % .ThenS*:<g %),andhenceSis

not self-adjoint. On the other hand, we get
157z — S| = el|l|

for every x € R?. We thus conclude that Theorem 2.1 does not hold for p = 1
in general.

Next we prove superstability of normal operators. That is, approximate
normal operators are exact normal ones.

Theorem 2.2. If T € B(H) satisfies
| T*Tx —TT x| < e||lx|” (Vz € H) (2)
for some e >0 and p € R\ {1}, then T is normal.

Proof. Pick x € H \ {0} and fix n € N arbitrarily. Put s = |1 — p|/(1 —p). It
follows from (2) that

IT*T (n°x) — TT*(n°x)| < eln’x|P.
The linearity of T" and T™* implies that
| T*Tx — TT*z|| < en*P=1||z||P.

Taking n — oo, we obtain |T*Tz — TT*z|| = 0, and so we see that T is a
normal operator. O

Example 2. A similar result to Theorem 2.2 does not hold for p = 1. Indeed,

take € > 0. If we define T' = ( 8 \f >,then

o (0 0 « (€ 0
TT_(O 6) and TT-(0 0).

Hence, T is not normal. On the other hand, we obtain
| T*Tz = TT z|| = el|||
for every x € R%. This shows that Theorem 2.2 need not be true for p = 1.
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In the case where p = 1, we see by Example 2 that superstability need not
hold. That is, there is an operator T such that T is not normal but that T’
satisfies

[T°T = TT"|| <, (3)
where || - || denotes the operator norm. One might ask whether Hyers-Ulam
stability holds for normal operators. Here, we give an answer to this question
in the negative in the following sense.

Theorem 2.3. Let H be a Hilbert space with dim H > 2. There is no constant
K > 0 with the following property:

(%) To eache >0 and T € B(H) satisfying (3) there corresponds a normal
operator N € B(H) such that |T — N|| < Ke.

Proof. Suppose, on the contrary, that there is a constant K > 0 with (). Let
N C B(H) be the set of all normal operators. We first prove that (x) implies
the following;:

() inf{||T — N||: N e N} < K||T*T — TT*| holds for every T € B(H).
For if T'€ B(H), we put g9 = ||T*T — TT*||. By hypothesis, there exists a
normal operator Ny € B(H) such that

T — No|| < Keog = K||T*T — TT™||.
This implies that
inf{|T—N||: Ne N} <|T-No|| < K||T*T —TT*|,

and so () = (f) is proved.
Since dim H > 2, there exists Tp € B(H) \N. Put T,, = n='Ty € B(H) for
each n € N. By (#) we have

inf{||T, — N||: N e N} < K|T,*T,, — T,,)T,”||. (4)
Since nN = N for each n € N, we see that
1
inf{||T, - N|: Ne N} = . inf{||To — N|| : N e N' }.
It follows from (4) that
1. K
ﬁ lnf{”T() — N” NS N} < KHTn*Tn — TnTn*H = ﬁ ||T0*T0 — T()To*”,
and so %
inf{||To — N||: N e N} < -~ T3 To — ToTy |-

Letting n — oo, we obtain inf{||7y — N|| : N € N'} = 0. Since N is closed,
we conclude Ty € N, in contradiction to Ty € B(H )\ N. We thus proved that
there is no constant K > 0 with (x). O
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Example 3. If T'is a (2 x 2)-matrix over R, then there exists a (2 x 2)-matrix
Ny, which is normal as an operator, such that

|77 = T = 2|7 — 7| |T = No].

where || - || denotes the operator norm on R?. Indeed, put T = ( CCL Z )7

where a, b, c,d € R. A simple calculation shows that
—b—c a-—d
* _ * o
T —-TT* = (b c)( a—d biec >7

and hence
|T*T — TT*||? = |b—c|? {(a —d)?+ b+ 0)2} .
We define a matrix Ny by
1 _
M=y (4 0
It is easy to see that Ny is normal. Moreover, we obtain
1 _
r-N=3 (G0 i),
and so
I~ Noll? = 7 {(a— ) + (b + )2}
We thus obtain
|IT*T — TT*||> = 4lb — ¢* | T — No||* = 4|T — T*||*||T — No|*.

As a direct consequence, we get the following stability result: Suppose that T’
is a (2 x 2)-matrix over R satisfying

| T*T —TT*|| < e

for some £ > 0. If T is not self-adjoint, then there exists normal Ny such that

g
|T — Noll < i1
2T — T+

Here we notice that the constant 1/2||T" — T*|| obviously depends on T, and
so this stability result does not contradict Theorem 2.3.
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