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Abstract. In this paper, we introduce an iterative scheme for finding a common element

of the set of solutions of an equilibrium problem and the set of fixed points of strictly

pseudocontractive mappings of Browder–Petryshyn type in Hilbert spaces. Some strong

and weak convergence theorems are obtained. In particular, the necessary and sufficient

conditions for strong convergence of our iterative scheme are obtained. The results presented

in this paper improve and extend the recent corresponding results.

1. Introduction

Let H be a real Hilbert space with inner product < ·, · > and norm ‖ · ‖.
Let K be a nonempty closed convex subset of H and G : K × K → R be a
bifunction, where R is the set of real number. The equilibrium problem (for
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short, EP ) is to find x∗ ∈ K such that

G(x∗, y) ≥ 0, ∀y ∈ K. (1.1)

The set of solutions of EP (1.1) is denoted by EP (G). Given a mapping
T : K → K, Let G(x, y) =< Tx, y − x > for all x, y ∈ K. Then x∗ ∈ EP (G)
if and only if x∗ ∈ K is a solution of the variational inequality < Tx, y −
x >≥ 0 for all y ∈ K, i.e., x∗ is a solution of the variational inequality.
Numerous problems in physics, optimization, and economics reduce to find
a solution of EP (1.1). It has been shown that equilibrium problems include
variational inequalities, fixed point, Nash equilibrium and game theory as
special cases [1, 12]. Equilibrium problems cover a vast range of applications.
Some methods have been proposed to solve the EP (1.1) (see, e.g., [3-5, 7, 17,
18] and references therein). Motivated by the work in [5, 11, 17], Takahashi
and Takahashi [18] introduced a viscosity iteration scheme to find a common
element of the set of solutions of the EP (1.1) and the set of fixed points of a
nonexpansive mapping in the setting of Hilbert spaces. they also studied the
strong convergence of the sequences generated by their algorithm in Hilbert
spaces. Later, Some authors used many iteration methods to approximate
a solution of EP (1.1). But many iteration methods that they used involved
in projection operator. They had to compute many iterative elements and
projection subsets(See, e.g., [6, 8, 16, 20] and reference therein) in each step
iteration process. It is a very difficult work.

Let E be a real Banach space and let J denote the generalized duality
mapping from E into 2E

∗
given by

J(x) = {f ∈ E∗ : ‖f‖2 = ‖x‖2 =< x, f >};

where E∗ denotes the dual space of E and < ·, · > denotes the generalized
duality pairing. If E∗ is strictly convex, then J is single−valued. In the sequel
we shall denote single−valued duality mapping by j.

Let E be a real Banach space, A mapping T : E → E is said to be L −
Lipschitzian if there exists constant L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ E. (1.2)

A mapping T is said to be nonexpansive if L = 1 in (1.2). The set of all fixed
points of T is denoted by F (T ), that is F (T ) = {x ∈ K : Tx = x}.

A mapping T with domain D(T )and range R(T ) in E is called strictly
pseudocontractive in the terminology of Browder and Petryshyn [2] if ∀x, y ∈
D(T ) there exists λ ≥ 0 and j(x− y) ∈ J(x− y) such that

< Tx− Ty, j(x− y) >≤ ‖x− y‖2 − λ‖x− y − (Tx− Ty)‖2. (1.3)
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Without loss of generality we may assume that λ ∈ (0, 1). If I denotes the
identity mapping, then (1.3) can be written in the following form

< (I − T )x− (I − T )y, j(x− y) >≥ λ‖(I − T )x− (I − T )y‖2. (1.4)

In Hilbert spaces, (1.3)(and hence (1.4)) is equivalent to the inequality

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, k = (1− 2λ) < 1. (1.5)

It follows from (1.4) that

‖x− y‖ ≥ λ‖x− y − (Tx− Ty)‖ ≥ λ‖Tx− Ty‖ − λ‖x− y‖.
So

‖Tx− Ty‖ ≤ 1 + λ

λ
‖x− y‖ = L∗‖x− y‖, ∀x, y ∈ D(T ), (1.6)

where L∗ = 1+λ
λ , hence T is Lipschitzian in Hilbert space. It also follows from

(1.5) that

‖Tx− Ty‖ ≤ 1 +
√
k

1−
√
k
‖x− y‖ = L∗‖x− y‖,

where L∗ = 1+
√
k

1−
√
k
.

Note that the class of strict pseudocontraction mappings strictly includes
the class of nonexpansive mappings. Clearly, T is nonexpansive if and only if
k = 0 in (1.5).

Many iteration methods have been proposed to approximate fixed points of
strictly pseudocontractive mappings by many authors (see, e.g., [9,10,13,15]).
Recently, Wang [19] introduced the following hybird iteration method for non-
expansive mappings and obtained some strong and weak convergence theorems
of fixed points of nonexpansive mappings.

For arbitrarily given x1 ∈ H, the iterative scheme {xn} is defined by

xn+1 = αnxn + (1− αn)T λn+1xn, n ≥ 1,

where T λn+1xn = Txn − λn+1µA(Txn), T : H → H is a nonexpansive
mapping with F (T ) 6= ∅, and A : H → H an η−strongly monotone and
L−Lipschitizian mapping, {αn} ⊂ [0, 1) and {λn} ⊂ [0, 1).

Later, Osilike, Isiogugu and Nwokoro [15] used this method to approxi-
mate fixed points of k−strictly pseudocontractive mappings and obtained some
strong and weak convergence theorems. Their results improved and extended
the results of Wang [19].

Motivated and inspired by the recent work of Wang [19], Osilike, Osiogugu
and Nwokoro [15], Combettes and Hirstoaga [5], Takahashi and Takahashi
[18], etc., we introduce an iteration method, which does not involve in pro-
jection operators, to approximate a common element of the set of solutions of
EP (1.1) and the set of fixed points of a strictly pseudocontractive mapping
of Browder−Petryshyn type in Hilbert spaces. The iterative method reduces
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the burden of computation task in iterative process and the results presented
in this paper improve and extend the recent corresponding results.

2. Preliminaries

Throughout this paper, H is a Hilbert space with inner product < ·, · >
and norm ‖ · ‖, K is a nonempty closed convex subset of H.

Let bifunction G : K ×K → R satisfy the following conditions:
(A1) G(x, x) = 0, ∀x ∈ K;
(A2) G(x, y) +G(y, x) ≤ 0, ∀x, y ∈ K;
(A3) For all x, y, z ∈ K, limt↓0G(tz + (1− t)x, y) ≤ G(x, y);
(A4) For each x ∈ K, the function y 7−→ G(x, y) is convex and lower semi-

continuous.

By using the conditions above, Combettes and Hirstoaga [5] obtained the
following results.

Lemma 2.1. ([5]) Let K be a nonempty closed convex subset of Hilbert space
H and let G : K ×K → R be a bifunction satisfying (A1) − (A4). Let r > 0
and x ∈ H. Then there exists z ∈ K such that

G(z, y) +
1

r
< y − z, z − x >≥ 0, ∀y ∈ K.

Lemma 2.2. ([5]) Assume that G : K ×K → R satisfies (A1) − (A4). For
r > 0 and x ∈ H, define a mapping Tr(x) : H → H as follows:

Tr(x) = {z ∈ K : G(z, y) +
1

r
< y − z, z − x >≥ 0, ∀y ∈ K}, ∀x ∈ H.

Then,

(1) Tr is single-valued;
(2) Tr is firmly nonexpansive, that is, for all x, y ∈ H,

‖Trx− Try‖2 ≤< Trx− Try, x− y >;

(3) G(Tr) = EP (G);
(4) EP (G) is nonempty, closed and convex.

A Banach space E is said to satisfy Opial’s condition if, for any sequence
{xn} in E, xn ⇀ x implies that lim supn→∞ ‖xn − x‖ < lim supn→∞ ‖xn − y‖
for all y ∈ E with y 6= x, where xn ⇀ x denotes that {xn} converges weakly
to x. It is well known that every Hilbert space satisfies Opial’s condition.
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A mapping T : K → E is said to be semi−compact, if for any sequence
{xn} in K such that ‖xn − Txn‖ → 0, (n → ∞), there exists subsequence
{xnj} of {xn} such that {xxj} converges strongly to x∗ ∈ K.

A mapping T with domain D(T ) and range R(T ) in E is said to be demi-
closed at p if whenever {xn} is a sequence in D(T ) such that {xn} converges
weakly to x∗ ∈ D(T ) and {Txn} converges strongly to p, then Tx∗ = p.
T is said to satisfy condition (A) if F (T ) 6= ∅ and there exists a nonde-

creasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(t) ≥ 0 for all
t ∈ (0,∞) such that ‖x − Tx‖ ≥ f(d(x, F (T ))) for all x ∈ D(T ), where
d(x, F (T )) := inf{‖x− p‖ : p ∈ F (T )}.

Lemma 2.3. ([10]) Let H be a Hilbert space.The following identities hold:

(1) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2 < x− y, y >, ∀x, y ∈ H;
(2) ‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2,
∀t ∈ [0, 1], ∀x, y ∈ H.

Lemma 2.4. ([13]) Let E be a real q−uniformly smooth Banach which also
uniformly convex and let K be a nonempty closed convex subset of E. Let
T : K → K be a strictly pseudocontractive mapping of Browder−Petryshyn
type. Then (I − T ) is demiclosed on K, where I is the identity mapping.

Lemma 2.5. ([14]) Let {an}, {bn} and {δn} be sequences of nonnegative real
number satisfying the inequality

an+1 ≤ (1 + δn)an + bn, n ≥ 1

If
∑∞

n=1 δn < ∞ and
∑∞

n=1 bn < ∞, then limn→∞ an exists. In particular, if
{an} has a subsequence which converges strongly to zero, then limn→∞an = 0.

3. Main Results

Theorem 3.1. Let K be a nonempty closed convex subset of a real Hilbert
space H. Let G : K × K → R be a bifunction satisfying (A1) − (A4), and
T : K → K be a strictly pseudocontractive mapping of Browder−Petryshyn
type for some 0 ≤ k < 1 such that F (T )∩EP (G) 6= ∅, and A : K → K be an
L−Lipschitzian mapping. For any given x1 ∈ K, {xn} is defined by{

G(un, y) + 1
rn
< y − un, un − xn >≥ 0, ∀y ∈ K,

xn+1 = αnun + (1− αn)T λnun, n ≥ 1,
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where T λnx = Tx − λnµA(Tx) for all x ∈ K,µ > 0, and {αn} ⊂ (0, 1),
{λn} ⊂ [0, 1) and {rn} satisfy the following conditions:

(i) k < α ≤ αn ≤ β < 1 for some α, β ∈ (0, 1);
(ii)

∑∞
n=1 λn <∞;

(iii) {rn} ⊂ (0,∞) and lim infn→∞ rn > 0.

Then

(1) limn→∞ ‖xn − q‖ exists for each q ∈ F (T ) ∩ EP (G);
(2) limn→∞ ‖xn − Txn‖ = 0;
(3) {xn} converges weakly to a common element of F (T ) and EP (G);
(4) {xn} and {un} converge strongly to a common element of F (T ) and

EP (G) if and only if lim infn→∞ d(xn, F (T ) ∩ EP (G)) = 0, where
d(xn, F (T ) ∩ EP (G)) denotes the metric distance from xn to F (T ) ∩
EP (G).

Proof. (1) It follows from Lemma 2.2 that un = Trnxn. For any q ∈ F (T ) ∩
EP (G) and any positive integer n, we have

‖un − q‖ ≤ ‖Trnxn − Trnq‖ ≤ ‖xn − q‖.

In addition (by Lemma 2.3)

‖xn+1 − q‖2

= ‖αn(un − q) + (1− αn)(T λnun − q)‖2

= ‖αn(un − q) + (1− αn)(Tun − q)− (1− αn)λnµA(Tun)‖2

= ‖αn(un − q) + (1− αn)(Tun − q)‖2 + (1− αn)2λ2nµ
2‖A(Tun)‖2

−2(1− αn)λnµ < A(Tun), αn(un − q) + (1− αn)(Tun − q) >
≤ αn‖un − q‖2 + (1− αn)‖Tun − q‖2 − αn(1− αn)‖un − Tun‖2

+2(1− αn)λnµ‖A(Tun)‖ · ‖αn(un − q) + (1− αn)(Tun − q)‖
+(1− αn)2λ2nµ

2‖A(Tun)‖2

≤ αn‖un − q‖2 + (1− αn)[‖un − q‖2 + k‖un − Tun‖2]
−αn(1− αn)‖un − Tun‖2 + (1− αn)2λ2nµ

2‖A(Tun)‖2

+2(1− αn)λnµ‖A(Tun)‖ · ‖αn(un − q) + (1− αn)(Tun − q)‖
= ‖un − q‖2 − (1− αn)(αn − k)‖un − Tun‖2

+2(1− αn)λnµ‖A(Tun)‖ · ‖αn(un − q) + (1− αn)(Tun − q)‖
+(1− αn)2λ2nµ

2‖A(Tun)‖2. (3.1)

It follows from (1.6) that

‖A(Tun)‖ ≤ LL∗‖un − q‖+ ‖A(q)‖. (3.2)



Equilibrium problems and fixed point problems 279

and

‖αn(un − q) + (1− αn)(Tun − q)‖ ≤ (1 + L∗)‖un − q‖. (3.3)

Thus, it follows from (3.1), (3.2) and (3.3) that

‖xn+1 − q‖2

≤ ‖un − q‖2 − (1− αn)(αn − k)‖un − Tun‖2

+(1− αn)2λ2nµ
2[L2L2

∗‖un − q‖2 + 2LL∗‖un − q‖.‖A(q)‖+ ‖A(q)‖2]
+2(1− αn)λnµ[LL∗‖un − q‖+ ‖A(q)‖](1 + L∗)‖un − q‖

= ‖un − q‖2 − (1− αn)(αn − k)‖un − Tun‖2

+(1− αn)2λ2nµ
2L2L2

∗‖un − q‖2 + (1− αn)2λ2nµ
2‖A(q)‖2

+2LL∗(1− αn)2λ2nµ
2‖un − q‖.‖A(q)‖

+2(1− αn)λnµLL∗(1 + L∗)‖un − q‖2

+2(1− αn)λnµ(1 + L∗)‖un − q‖.‖A(q)‖
≤ ‖un − q‖2 − (1− αn)(αn − k)‖un − Tun‖2

+(1− αn)2λ2nµ
2L2L2

∗‖un − q‖2 + (1− αn)2λ2nµ
2‖A(q)‖2

+LL∗(1− αn)2λ2nµ
2[‖un − q‖2 + ‖A(q)‖2]

+2(1− αn)λnµLL∗(1 + L∗)‖un − q‖2

+(1− αn)λnµ(1 + L∗)[‖un − q‖2 + ‖A(q)‖2]
= [1 + (1− αn)2λ2nµ

2LL∗(1 + LL∗) + (1− αn)λnµ(1 + L∗)(1

+2LL∗)]‖un − q‖2 − (1− αn)(αn − k)‖un − Tun‖2

+[(1− αn)2λ2nµ
2(1 + LL∗) + (1− αn)λnµ(1 + L∗)]‖A(q)‖2

≤ (1 + an)‖un − q‖2 − (1− β)(α− k)‖un − Tun‖2 + bn

≤ (1 + an)‖xn − q‖2 − (1− β)(α− k)‖un − Tun‖2 + bn, (3.4)

where

an = (1− αn)2λ2nµ
2LL∗(1 + LL∗) + (1− αn)λnµ(1 + L∗)(1 + 2LL∗),

and

bn = (1− αn)2λ2nµ
2(1 + LL∗) + (1− αn)λnµ(1 + L∗)‖A(q)‖2.

Obviously,
∑∞

n=1 an < +∞,
∑∞

n=1 bn < +∞. It follows from Lemma 2.5 that
limn→∞ ‖xn − q‖ exists for each q ∈ F (T ) ∩ EP (G). This implies that {xn}
is bounded, so are {Txn}, {A(Txn)}. In addition, {Tun} and {A(Tun)} are
bounded, too, since ‖un − q‖ ≤ ‖xn − q‖. This completes the proof of (1).

(2) Since {‖xn − q‖} is bounded, there exist M > 0 such that ‖xn − q‖2 ≤M
for all n ≥ 1. Thus it follows from (3.4) that

‖xn+1 − q‖2 ≤ ‖xn − q‖2 − (1− β)(α− k)‖un − Tun‖2 + σn, (3.5)
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where σn = bn +Man, so that
∞∑
j=1

(1− β)(α− k)‖uj+1 − Tuj+1‖2 ≤ ‖x1 − q‖2 +
∞∑
j=1

σj ,

and since
∑∞

n=1 σn <∞, it follows that

lim
n→∞

‖un − Tun‖ = 0. (3.6)

Since

‖T λnun − un‖ = ‖Tun − λnµA(Tun)− un‖
≤ ‖Tun − un‖+ λnµ‖A(Tun)‖,

it follows from (3.6) that

lim
n→∞

‖T λnun − un‖ = 0. (3.7)

In addition, since xn+1−un = (1−αn)(T λnun−un), from (3.7), we know that

lim
n→∞

‖xn+1 − un‖ = 0. (3.8)

Thus, it follows from (3.6) and (3.8) that

lim
n→∞

‖xn+1 − Tun‖ = 0. (3.9)

On the other hand, since

‖xn+1 − Txn+1‖ ≤ ‖xn+1 − Tun‖+ ‖Tun − Txn+1‖
≤ ‖xn+1 − Tun‖+ L∗‖un − xn+1‖,

by (3.8) and (3.9), we have

lim
n→∞

‖xn+1 − Txn+1‖ = 0. (3.10)

This completes the proof of (2).

(3) For any q ∈ F (T ) ∩ EP (G). Since

‖xn+1 − q‖2 ≤ (1 + an)‖un − q‖2 − (1− β)(α− k)‖un − Tun‖2 + bn

≤ ‖un − q‖2 + σn,

where σn = bn +Man and

‖un − q‖2 = ‖Trnxn − Trnq‖2

≤ < xn − q, un − q >

=
1

2
(‖xn − q‖2 + ‖un − q‖2 − ‖xn − un‖2),

then

‖xn+1 − q‖2 ≤ ‖xn − q‖2 − ‖xn − un‖2 + σn.
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So

‖xn − un‖2 ≤ ‖xn − q‖2 − ‖xn+1 − q‖2 + σn.

Thus, we obtain

lim
n→∞

‖xn − un‖ = 0. (3.11)

Since H is a Hilbert space and {xn} is bounded, there exists a subsequence
{xnj} of {xn} such that {xnj} converges weakly to a p ∈ K. Thus, it follows
from (3.10) and Lemma 2.4 that p ∈ F (T ). In addition, it follows from (3.11)
that {unj} converges weakly to p ∈ K, too.

We now show that p ∈ EP (G). Since un = Trnxn, we have

G(un, y) +
1

rn
< y − un, un − xn >≥ 0, ∀y ∈ K.

From (A2), we obtain

1

rn
< y − un, un − xn >≥ G(y, un).

Thus,
1

rnj

< y − unj , unj − xnj >≥ G(y, unj ).

It follows from (A4) and (3.11) that

G(y, p) ≤ 0, ∀y ∈ K. (3.12)

For t ∈ (0, 1] and ∀y ∈ K. Setting zt = ty+ (1− t)p, we know that zt ∈ K. It
follows from (3.12) that G(zt, p) ≤ 0. From (A1) and (A4), we have

0 = G(zt, zt) ≤ tG(zt, y) + (1− t)G(zt, p) ≤ tG(zt, y).

From (A3), we know thatG(p, y) ≥ 0, so p ∈ EP (G). Hence p ∈ F (T )∩EP (G)
We now prove that {xn} converges weakly to a common element of F (T )

and EP (G). First of all, (3.10) and Lemma 2.4 guarantee that each weakly
subsequential limit of {xn} is a fixed point of T . At the same time, using the
proof of above, it is easily proved that each weakly subsequential limit of {xn}
also is a solution of EP (1.1).

Secondly, since every Hilbert space satisfies Opial’s condition, and Opial’s
condition guarantees that the weakly subsequential limit of {xn} is unique,
hence {xn} converges weakly to a common element of F (T ) and EP (G). This
completes the proof of (3).

(4) Suppose that {xn} converges strongly to a common element q of F (T ) and
EP (G). Then limn→∞ ‖xn − q‖ = 0. Since

0 ≤ d(xn, F (T ) ∩ EP (G)) ≤ ‖xn − q‖,

we have lim infn→∞ d(xn, F (T ) ∩ EP (G)) = 0.
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Conversely, suppose that lim infn→∞ d(xn, F (T ) ∩EP (G)) = 0, then it fol-
lows from (3.4) and Lemma 2.5 that limn→∞ d(xn, F (T )∩EP (G)) = 0. Thus
for arbitrary ε > 0, there exists a positive integer N such that d(xn, F (T ) ∩
EP (G)) < ε

4 ,∀n ≥ N1, Furthermore,
∑∞

n=1 σn <∞ implies that there exists a

positive integer N2 such that
∑∞

j=n σj <
ε2

16 , ∀n ≥ N2. Put N = max{N1, N2},
then d(xN , F (T ) ∩ EP (G) < ε

4 and
∑∞

j=N σj <
ε2

16 . It follows from (3.5) that

for any n,m ≥ N and for all q ∈ F (T )
⋂
EP (G),

‖xn − xm‖2 ≤ [‖xn − q‖+ ‖xm − q‖]2

≤ 2[‖xn − q‖2 + ‖xm − q‖2]

≤ 2[‖xN − q‖2 +
n∑

j=N

σj + ‖xN − q‖2 +
m∑
j=N

σj ]

≤ 4‖xN − q‖2 + 4

∞∑
j=N

σj .

Thus

‖xn − xm‖ ≤ 2‖xN − q‖+ 2(

∞∑
j=N

σj)
1
2 .

Taking the infinimum in the inequality above for all q ∈ F (T ) ∩ EP (G), we
obtain

‖xn − xm‖ ≤ 2d(xN , F (T ) ∩ EP (G)) + 2(

∞∑
j=N

σj)
1
2 < ε, ∀n,m ≥ N.

This implies that {xn} is a Cauchy sequence. Therefore, there exists p ∈ K
such that {xn} converges strongly to p. Then

d(p, F (T ) ∩ EP (G)) = lim
n→∞

d(xn, F (T ) ∩ EP (G)) = 0.

Since F (T ) is closed and convex [10], and EP (G) also is closed and convex [5],
we have F (T ) ∩ EP (G) is closed and convex,too. Hence p ∈ F (T ) ∩ EP (G).
In addition, since ‖un− p‖ ≤ ‖xn− p‖, we know that {un} converges strongly
to p, too. The proof is completed �

Theorem 3.2. Under the conditions of theorem 3.1, if T is semi−compact,
then {xn} converges strongly to a common element of F (T ) and EP (G).

Proof. It follows from Theorem 3.1 that limn→∞ ‖xn−Txn‖ = 0 and limn→∞ ‖xn−
q‖ exists, for each q ∈ F (T ) ∩ EP (G). Therefore there exists a subsequence
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{xnj} of {xn} such that {xnj} converges strongly to p ∈ K. Using the same
argument as in the proof in theorem 3.1, we have p ∈ F (T ) ∩ EP (G). Thus,
we know that limn→∞ ‖xn − p‖ exists. Furthermore, {xn} converges strongly
to p since limn→∞ ‖xnj − p‖ = 0. In addition, since ‖un − q‖ ≤ ‖xn − q‖ for
each q ∈ F (T )∩EP (G), so {un} also converges strongly to a common element
of F (T ) and EP (G). The proof is completed. �

Theorem 3.3. Under the conditions of Theorem 3.1 , if T satisfies condition
(A), then {xn} converges strongly to a common element of F (T ) and EP (G).

Proof. It follows from Theorem 3.1 that limn→∞ ‖xn − Txn‖ = 0. Since T
satisfies condition (A) and f is a nondecreasing function with f(0) = 0 and
f(t) > 0 for all t ∈ (0,∞), we have limn→∞ d(xn, F (T )∩EP (G)) = 0, Thus, it
follows form Theorem 3.1 that {xn} converges strongly to a common element
of F (T ) and EP (G). In addition, Since‖un − q‖ ≤ ‖xn − q‖ for each q ∈
F (T )∩EP (G), so {un} also converges strongly to a common element of F (T )
and EP (G). The proof is completed. �

Remark 3.4. The iterative method of Theorem 3.1 reduces to the iterative
method in [4] when λn = 0 for all n ≥ 1. So, our results improve and extend
the results of Ceng [4].

Remark 3.5. The iterative scheme of Theorem 3.1 does not involve in pro-
jection operator, here it is unnecessary to compute projection subsets in each
step iteration process.

Remark 3.6. The mapping A in [19] is η−strongly monotone and L−Lipsc-
hitzian, but the mapping A in Theorem 3.1 just is L−Lipschitzian, which is
weaker than the one in [19].
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